Categories
Outages Presentations Publications Uncategorized

new poster “Internet Outage Detection Using Passive Analysis” at ACM IMC 2022

Asma Enayet will present her poster “Internet Outage Detection Using Passive Analysis” by Asma Enayet and John Heidemann at ACM Internet Measurement Conference, Nice, France from October 25-27th, 2022.

We expect the ACM poster abstract (without the poster) to appear at https://doi.org/10.1145/3517745.3563032 in October 2022.

We are making a report available now with the poster abstract and poster at https://doi.org/10.48550/arXiv.2209.13767 as a pre-print.

From the abstract:

Outages from natural disasters, political events, software or hardware issues, and human error place a huge cost on e-commerce ($66k per minute at Amazon). While several existing systems detect Internet outages, these systems are often too inflexible, with fixed parameters across the whole internet with CUSUM-like change detection. We instead propose a system using passive data, to cover both IPv4 and IPv6, customizing parameters for each block to optimize the performance of our Bayesian inference model. Our poster describes our three contributions: First, we show how customizing parameters allows us often to detect outages that are at both fine timescales (5 minutes) and fine spatial resolutions (/24 IPv4 and /48 IPv6 blocks). Our second contribution is to show that, by tuning parameters differently for different blocks, we can scale back temporal precision to cover more challenging blocks. Finally, we show our approach extends to IPv6 and provides the first reports of IPv6 outages.

IPv6 Coverage: our source of passive data (B-Root) is incomplete, but it provides similar coverage in both IPv4 and IPv6.
IPv6 Outages: Outage rate for IPv6 (12%) is greater than for IPv4 (5.5%) —IPv6 reliability can improve.

This work was supported by NSF grant CNS-2007106 (EIEIO).

Categories
Presentations Publications

new poster “Chhoyhopper: A Moving Target Defense with IPv6” at ACSAC-2021

We published a new poster titled “Chhoyhopper: A Moving Target Defense with IPv6” by A S M Rizvi (USC/ISI) and John Heidemann (USC/ISI) at ACSAC-2021. We presented our poster virtually using a video. We provide chhoyhopper as open source–try it out!

Client and server interaction in Chhoyhopper. A client with a shared secret key can only get access to the system.

From the abstract:

Services on the public Internet are frequently scanned, then subject to brute-force and denial-of-service attacks. We would like to run such services stealthily, available to friends but hidden from adversaries. In this work, we propose a moving target defense named “Chhoyhopper” that utilizes the vast IPv6 address space to conceal publicly available services. The client and server hop to different IPv6 addresses in a pattern based on a shared, pre-distributed secret and the time of day. By hopping over a /64 prefix, services cannot be found by active scanners, and passively observed information is useless after two minutes. We demonstrate our system with the two important applications—SSH and HTTPS.

This work is supported, in part, by DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I, and by DARPA under Contract No. HR001120C0157.

Categories
Presentations Publications

new poster “Measuring the Internet during Covid-19 to Evaluate Work-from-Home” at the NSF PREPARE-VO Workshop

Xiao Song presented the poster “Measuring the Internet during Covid-19 to Evaluate Work-from-Home (poster)” at the NSF PREPARE-VO Workshop on 2020-12-15. Xiao describes the poster in our video.

A case study network showing network changes as a result of work-from-home. Here we know ground truth and can see weekly work behavior (the groups of five bumps), followed by changes on the right in March when work-from-home begins.

There was no formal abstract, but this poster presents early results from examining Internet address changes to identify work-from-home resulting from Covid-19.

This work is part of the MINCEQ project, supported as an NSF CISE RAPID, NSF-2028279.

Categories
Presentations

Deep Dive into DNS at IETF108

The Domain Name System (DNS) is responsible for handling the initial steps of almost all connections on the Internet. USC/ISI’s Wes Hardaker, along with Geoff Houston and Joao Damas from APNIC, gave a “Deep Dive” presentation on how the DNS works at the 108th IETF conference. The recording is available on YouTube for those that missed it.

Categories
Presentations

new talk “A First Look at Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (MINCEQ)” at Digital Technologies for COVID-19 Webinar Series

John Heidemann gave the talk “A First Look at Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (MINCEQ)” at Digital Technologies for COVID-19 Webinar Series, hosted by Craig Knoblock and Bhaskar Krishnamachari of USC Viterbi School of Engineering on May 29, 2020. Internet Outages: Reliablity and Security” at the University of Oregon Cybersecurity Day in Eugene, Oregon on April 23, 2018.  A video of the talk is on YoutTube at https://www.youtube.com/watch?v=tduZ1Y_FX0s. Slides are available at https://www.isi.edu/~johnh/PAPERS/Heidemann20a.pdf.

From the abstract:

Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (RAPID-MINCEQ) is a project to measure changes in Internet use during the COVID-19 outbreak of 2020.

Today social distancing and work-from-home/study-from-home are the best tools we have to limit COVID’s spread. But implementation of these policies varies in the US and around the global, and we would like to evaluate participation in these policies.
This project plans to develop two complementary methods of assessing Internet use by measuring address activity and how it changes relative to historical trends. Changes in the Internet can reflect work-from-home behavior. Although we cannot see all IP addresses (many are hidden behind firewalls or home routers), early work shows changes at USC and ISI.


This project is support by an NSF RAPID grant for COVID-19 and just began in May 2020, so this talk will discuss directions we plan to explore.

This project is joint work of Guillermo Baltra, Asma Enayet, John Heidemann, Yuri Pradkin, and Xiao Song and is supported by NSF/CISE as award NSF-2028279.

Categories
Presentations

Talks at DNS-OARC 61

Wes Hardaker gave two presentations at DNS-OARC on November 1st, 2019. The first was a presentation about the previously announced “Cache me if you can” paper, which is on youtube, and the slides are available as well. The second talk presented Haoyu Jiang’s work during the summer of 2018 on analyzing DNS B-Root traffic during the 2018 DITL data for levels of traffic sent by the Chrome web browser, levels of traffic associated with different languages, and levels of traffic sent by different label lengths. It is available on youtube with the slides here.

Categories
Presentations

new talk “Internet Outages: Reliablity and Security” from U. of Oregon Cybersecurity Day 2018

John Heidemann gave the talk “Internet Outages: Reliablity and Security” at the University of Oregon Cybersecurity Day in Eugene, Oregon on April 23, 2018.  Slides are available at https://www.isi.edu/~johnh/PAPERS/Heidemann18e.pdf.

Network outages as a security problem.

From the abstract:

The Internet is central to our lives, but we know astoundingly little about it. Even though many businesses and individuals depend on it, how reliable is the Internet? Do policies and practices make it better in some places than others?

Since 2006, we have been studying the public face of the Internet to answer these questions. We take regular censuses, probing the entire IPv4 Internet address space. For more than two years we have been observing Internet reliability through active probing with Trinocular outage detection, revealing the effects of the Internet due to natural disasters like Hurricanes from Sandy to Harvey and Maria, configuration errors that sometimes affect millions of customers, and political events where governments have intervened in Internet operation. This talk will describe how it is possible to observe Internet outages today and what they are beginning to say about the Internet and about the physical world.

This talk builds on research over the last decade in IPv4 censuses and outage detection and includes the work of many of my collaborators.

Data from this talk is all available; see links on the last slide.

Categories
DNS Papers Presentations Publications

New paper and talk “Enumerating Privacy Leaks in DNS Data Collected above the Recursive” at NDSS DNS Privacy Workshop 2018

Basileal Imana presented the paper “Enumerating Privacy Leaks in DNS Data Collected  above the Recursive” at NDSS DNS Privacy Workshop in San Diego, California, USA on February 18, 2018. Talk slides are available at https://ant.isi.edu/~imana/presentations/Imana18b.pdf and paper is available at  https://ant.isi.edu/~imana/papers/Imana18a.pdf, or can be found at the DNS privacy workshop page.

From the abstract:

Threat model for enumerating leaks above the recursive (left). Percentage of four categories of queries containing IPv4 addresses in their QNAMEs. (right)

As with any information system consisting of data derived from people’s actions, DNS data is vulnerable to privacy risks. In DNS, users make queries through recursive resolvers to authoritative servers. Data collected below (or in) the recursive resolver directly exposes users, so most prior DNS data sharing focuses on queries above the recursive resolver. Data collected above a recursive resolver has largely been seen as posing a minimal privacy risk since recursive resolvers typically aggregate traffic for many users, thereby hiding their identity and mixing their traffic. Although this assumption is widely made, to our knowledge it has not been verified. In this paper we re-examine this assumption for DNS traffic above the recursive resolver. First, we show that two kinds of information appear in query names above the recursive resolver: IP addresses and sensitive domain names, such as those pertaining to health, politics, or personal or lifestyle information. Second, we examine how often these classes of potentially sensitive names appear in Root DNS traffic, using 48 hours of B-Root data from April 2017.

This is a joint work by Basileal Imana (USC), Aleksandra Korolova (USC) and John Heidemann (USC/ISI).

The DITL dataset (ITL_B_Root-20170411) used in this work is available from DHS IMPACT, the ANT project, and through DNS-OARC.

Categories
DNS Presentations

new talk “LocalRoot: Serve Yourself”

Wes Hardaker gave a talk on his LocalRoot project, allowing recursive resolver operators to keep an up to date cached copy of the root zone data available at all times. The talk was held in Abu Dhabi on November 1, 2017 at the ICANN annual general meeting during the DNSSEC Workshop. Slides and recorded video are available at on the ICANN event page.

Categories
Presentations

new talk “Verfploeter: Broad and Load-Aware Anycast Mapping”

Wes Hardaker gave the talk “Verfploeter: Broad and Load-Aware Anycast Mapping” at DNS-OARC in San Jose, California, USA on September 29, 2017.  Slides are available at on the event page.

From the abstract:

IP anycast provides DNS operators and CDNs with automatic fail-over and reduced latency by breaking the Internet into catchments,each served by a different anycast site. Unfortunately, understanding and predicting changes to catchments as sites are added or removed has been challenging. Current tools such as RIPE Atlas or commercial equivalents map from thousands of vantage points (VPs),but their coverage can be inconsistent around the globe. This paper proposes Verfploeter, a new method that maps anycast catchments using active probing. Verfploeter provides around 3.8M virtual VPs, 430 times the 9k physical VPs in RIPE Atlas,providing coverage of the vast majority of networks around the globe. We then add load information from prior service logs to provide calibrated predictions of anycast changes. Verfploeter has been used to evaluate the new anycast for B-Root, and we also report its use of a nine-site anycast testbed. We show that the greater coverage made possible by Verfploeter’s active probing is necessary to see routing differences in regions that have sparse coverage from RIPE Atlas, like South America and China.

 

A video of the talk is available On YouTube.