Categories
Presentations Publications

new poster “Chhoyhopper: A Moving Target Defense with IPv6” at ACSAC-2021

We published a new poster titled “Chhoyhopper: A Moving Target Defense with IPv6” by A S M Rizvi (USC/ISI) and John Heidemann (USC/ISI) at ACSAC-2021. We presented our poster virtually using a video. We provide chhoyhopper as open source–try it out!

Client and server interaction in Chhoyhopper. A client with a shared secret key can only get access to the system.

From the abstract:

Services on the public Internet are frequently scanned, then subject to brute-force and denial-of-service attacks. We would like to run such services stealthily, available to friends but hidden from adversaries. In this work, we propose a moving target defense named “Chhoyhopper” that utilizes the vast IPv6 address space to conceal publicly available services. The client and server hop to different IPv6 addresses in a pattern based on a shared, pre-distributed secret and the time of day. By hopping over a /64 prefix, services cannot be found by active scanners, and passively observed information is useless after two minutes. We demonstrate our system with the two important applications—SSH and HTTPS.

This work is supported, in part, by DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I, and by DARPA under Contract No. HR001120C0157.

Categories
Papers Publications

new symposium paper “Visualizing Internet Measurements of Covid-19 Work-from-Home” at IEEE Symposium on REU Research in Data Science, Systems, and Security

We published a new paper “Visualizing Internet Measurements of Covid-19 Work-from-Home” by Erica Stutz (Swarthmore College), Yuri Pradkin, Xiao Song, and John Heidemann (USC/ISI) at the Symposium for REU Research in Data Science, Systems, and Security, co-located with IEEE BigData 2021.

A screenshot from our Covid-WFH website showing an event in Malaysia on 2020-04-02.
A change in Internet use seen in Malaysia on 2020-04-02, present in our Covid-WFH data but discovered through our website.

From the abstract:

The Covid-19 pandemic disrupted the world as businesses and schools shifted to work-from-home (WFH), and comprehensive maps have helped visualize how those policies changed over time and in different places. We recently developed algorithms that infer the onset of WFH based on changes in observed Internet usage. Measurements of WFH are important to evaluate how effectively policies are implemented and followed, or to confirm policies in countries with less transparent journalism.This paper describes a web-based visualization system for measurements of Covid-19-induced WFH. We build on a web-based world map, showing a geographic grid of observations about WFH. We extend typical map interaction (zoom and pan, plus animation over time) with two new forms of pop-up information that allow users to drill-down to investigate our underlying data.We use sparklines to show changes over the first 6 months of 2020 for a given location, supporting identification and navigation to hot spots. Alternatively, users can report particular networks (Internet Service Providers) that show WFH on a given day.We show that these tools help us relate our observations to news reports of Covid-19-induced changes and, in some cases, lockdowns due to other causes. Our visualization is publicly available at https://covid.ant.isi.edu, as is our underlying data.

Datasets from this work will be available from our website and can be seen now at https://covid.ant.isi.edu. We thank NSF grants 2028279 and CNS-2007106 for supporting this work.