Categories
Papers Publications

new symposium paper “Visualizing Internet Measurements of Covid-19 Work-from-Home” at IEEE Symposium on REU Research in Data Science, Systems, and Security

We published a new paper “Visualizing Internet Measurements of Covid-19 Work-from-Home” by Erica Stutz (Swarthmore College), Yuri Pradkin, Xiao Song, and John Heidemann (USC/ISI) at the Symposium for REU Research in Data Science, Systems, and Security, co-located with IEEE BigData 2021.

A screenshot from our Covid-WFH website showing an event in Malaysia on 2020-04-02.
A change in Internet use seen in Malaysia on 2020-04-02, present in our Covid-WFH data but discovered through our website.

From the abstract:

The Covid-19 pandemic disrupted the world as businesses and schools shifted to work-from-home (WFH), and comprehensive maps have helped visualize how those policies changed over time and in different places. We recently developed algorithms that infer the onset of WFH based on changes in observed Internet usage. Measurements of WFH are important to evaluate how effectively policies are implemented and followed, or to confirm policies in countries with less transparent journalism.This paper describes a web-based visualization system for measurements of Covid-19-induced WFH. We build on a web-based world map, showing a geographic grid of observations about WFH. We extend typical map interaction (zoom and pan, plus animation over time) with two new forms of pop-up information that allow users to drill-down to investigate our underlying data.We use sparklines to show changes over the first 6 months of 2020 for a given location, supporting identification and navigation to hot spots. Alternatively, users can report particular networks (Internet Service Providers) that show WFH on a given day.We show that these tools help us relate our observations to news reports of Covid-19-induced changes and, in some cases, lockdowns due to other causes. Our visualization is publicly available at https://covid.ant.isi.edu, as is our underlying data.

Datasets from this work will be available from our website and can be seen now at https://covid.ant.isi.edu. We thank NSF grants 2028279 and CNS-2007106 for supporting this work.

Categories
Uncategorized

congratulations to Erica Stutz for her summer undergraduate internship

Erica Stutz completed her summer undergraduate research internship at ISI this summer, working with John Heidemann, Yuri Pradkin, and Xiao Song on her project “Visualizing COVID-19 Work-from-Home”.

In this project, Erica developed a new Covid-19 Work-From-Home website combinng Xiao WFH data with our existing outage website, and adding new interactive drill-down methods to display additional information to the user.

Visulizing Covid-19 work-from-home: here we look at China, Korea, and Japan and pop-up information about Laiwu, China. The popup shows WFH behavior for that location for the first 6 months of 2020.

We hope Erica’s new website makes it easier to evaluate COVID-19 WFH changes, and we look forward to continue to work with Erica on this topic.

Erica worked virtually at USC/ISI in summer 2021 as part of the (ISI Research Experiences for Undergraduates. We thank Jelena Mirkovic (PI) for coordinating the second year of this great program, and NSF for support through award #2051101.

Categories
Uncategorized

new talk “Observing the Global IPv4 Internet: What IP Addresses Show” as an SKC Science and Technology Webinar

John Heidemann gave the talk “Observing the Global IPv4 Internet: What IP Addresses Show” at the SKC Science and Technology Webinar, hosted by Deepankar Medhi (U. Missouri-Kansas City and NSF) on June 18, 2021.  A video of the talk is on YouTube at https://www.youtube.com/watch?v=4A_gFXi2WeY. Slides are available at https://www.isi.edu/~johnh/PAPERS/Heidemann21a.pdf.

From the abstract:Covid and non-Covid network changes in India; part of a talk about measuring the IPv4 Internet.

Since 2014 the ANT lab at USC has been observing the visible IPv4 Internet (currently 5 million networks measured every 11 minutes) to detect network outages. This talk explores how we use this large-scale, active measurement to estimate Internet reliability and understand the effects of real-world events such as hurricanes. We have recently developed new algorithms to identify Covid-19-related Work-from-Home and other Internet shutdowns in this data. Our Internet outage work is joint work of John Heidemann, Lin Quan, Yuri Pradkin, Guillermo Baltra, Xiao Song, and Asma Enayet with contributions from Ryan Bogutz, Dominik Staros, Abdulla Alwabel, and Aqib Nisar.

This project is joint work of a number of people listed in the abstract above, and is supported by NSF 2028279 (MINCEQ) and CNS-2007106 (EIEIO). All data from this paper is available at no cost to researchers.

Categories
Presentations Publications

new poster “Measuring the Internet during Covid-19 to Evaluate Work-from-Home” at the NSF PREPARE-VO Workshop

Xiao Song presented the poster “Measuring the Internet during Covid-19 to Evaluate Work-from-Home (poster)” at the NSF PREPARE-VO Workshop on 2020-12-15. Xiao describes the poster in our video.

A case study network showing network changes as a result of work-from-home. Here we know ground truth and can see weekly work behavior (the groups of five bumps), followed by changes on the right in March when work-from-home begins.

There was no formal abstract, but this poster presents early results from examining Internet address changes to identify work-from-home resulting from Covid-19.

This work is part of the MINCEQ project, supported as an NSF CISE RAPID, NSF-2028279.

Categories
Presentations

new talk “A First Look at Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (MINCEQ)” at Digital Technologies for COVID-19 Webinar Series

John Heidemann gave the talk “A First Look at Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (MINCEQ)” at Digital Technologies for COVID-19 Webinar Series, hosted by Craig Knoblock and Bhaskar Krishnamachari of USC Viterbi School of Engineering on May 29, 2020. Internet Outages: Reliablity and Security” at the University of Oregon Cybersecurity Day in Eugene, Oregon on April 23, 2018.  A video of the talk is on YoutTube at https://www.youtube.com/watch?v=tduZ1Y_FX0s. Slides are available at https://www.isi.edu/~johnh/PAPERS/Heidemann20a.pdf.

From the abstract:

Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (RAPID-MINCEQ) is a project to measure changes in Internet use during the COVID-19 outbreak of 2020.

Today social distancing and work-from-home/study-from-home are the best tools we have to limit COVID’s spread. But implementation of these policies varies in the US and around the global, and we would like to evaluate participation in these policies.
This project plans to develop two complementary methods of assessing Internet use by measuring address activity and how it changes relative to historical trends. Changes in the Internet can reflect work-from-home behavior. Although we cannot see all IP addresses (many are hidden behind firewalls or home routers), early work shows changes at USC and ISI.


This project is support by an NSF RAPID grant for COVID-19 and just began in May 2020, so this talk will discuss directions we plan to explore.

This project is joint work of Guillermo Baltra, Asma Enayet, John Heidemann, Yuri Pradkin, and Xiao Song and is supported by NSF/CISE as award NSF-2028279.

Categories
Announcements Projects

new project “Measuring the Internet during Novel Coronavirus to Evaluate Quarantine” (MINCEQ)

We are happy to announce a new project “Measuring the Internet during Novel Coronavirus to Evaluate Quarantine” (MINCEQ).

Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (RAPID-MINCEQ) is a project to measure changes in Internet use during the COVID-19 outbreak of 2020. As the world grapples with COVID-19, work-from-home and study-from-home are widely employed. Implementation of these policies varies across the U.S. and globally due to local circumstances. A common consequence is a huge shift in Internet use, with schools and workplaces emptying and home Internet use increasing. The goal of this project is to observe this shift, globally, through changes in Internet address usage, allowing observation of early reactions to COVID and, one hopes, a future shift back.

This project plans to develop two complementary methods of assessing Internet use by measuring address activity and how it changes relative to historical trends. The project will directly measure Internet address use globally based on continuous, ongoing measurements of more than 4 million IPv4 networks. The project will also directly measure Internet address use in network traffic at a regional Internet exchange point where multiple Internet providers interconnect. The first approach provides a global picture, while the second provides a more detailed but regional picture; together they will help evaluate measurement accuracy.

The project website is at https://ant.isi.edu/minceq/index.html. The PI is John Heidemann. This work is supported by NSF as a RAPID award in response to COVID-19, award NSF-2028279.