Categories
Internet Papers Publications Software releases

new paper “Chhoyhopper: A Moving Target Defense with IPv6” at NDSS MADWeb Workshop 2022

On April 24, 2022 we will publish a new paper titled “Chhoyhopper: A Moving Target Defense with IPv6” by A S M Rizvi and John Heidemann at the 4th Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb 2022), co-located with NDSS. We provide Chhoyhopper as an open-source tool for SSH and HTTPS—try it out!

From the abstract:

Services on the public Internet are frequently scanned, then subject to brute-force password attempts and Denial-of-Service (DoS) attacks. We would like to run such services stealthily, where they are available to friends but hidden from adversaries. In this work, we propose a discovery-resistant moving target defense named “Chhoyhopper” that utilizes the vast IPv6 address space to conceal publicly available services. The client meets the server at an IPv6 address that changes in a pattern based on a shared, pre-distributed secret and the time of day. By hopping over a /64 prefix, services cannot be found by active scanners, and passively observed information is useless after two minutes. We demonstrate our system with the two important applications—SSH and HTTPS, and make our system publicly available.

Client and server interaction in Chhoyhopper. A Client with the right secret key can only get access into the system.

Thanks: A S M Rizvi and John Heidemann’s work on this paper is supported, in part, by the DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I (PAADDoS), and by DARPA under Contract No. HR001120C0157 (SABRES). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF or DARPA. We thank Rayner Pais who prototyped an early version of Chhoyhopper and version in IPv4 hopping over ports.

Categories
Anycast BGP Internet

new paper “Anycast Agility: Network Playbooks to Fight DDoS” at USENIX Security Symposium 2022

We will publish a new paper titled “Anycast Agility: Network Playbooks to Fight DDoS” by A S M Rizvi (USC/ISI), Leandro Bertholdo (University of Twente), João Ceron (SIDN Labs), and John Heidemann (USC/ISI) at the 31st USENIX Security Symposium in Aug. 2022.

A sample anycast playbook for a 3-site anycast deployment. Different routing configurations provide different traffic mixes. From [Rizvi22a, Table 5].

From the abstract:

IP anycast is used for services such as DNS and Content Delivery Networks (CDN) to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead concentrate attackers in a few sites to preserve operation in others. Operators use these actions during attacks, but how to do so has not been described systematically or publicly. This paper describes several methods to use BGP to shift traffic when under DDoS, and shows that a response playbook can provide a menu of responses that are options during an attack. To choose an appropriate response from this playbook, we also describe a new method to estimate true attack size, even though the operator’s view during the attack is incomplete. Finally, operator choices are constrained by distributed routing policies, and not all are helpful. We explore how specific anycast deployment can constrain options in this playbook, and are the first to measure how generally applicable they are across multiple anycast networks.

Dataset used in this paper are listed at https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html, and the software used in our work is at https://ant.isi.edu/software/anygility. They are provided as part of Call for Artifacts.

Acknowledgments: A S M Rizvi and John Heidemann’s work on this paper is supported, in part, by the DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I. Joao Ceron and Leandro Bertholdo’s work on this paper is supported by Netherlands Organisation for scientific research (4019020199), and European Union’s Horizon 2020 research and innovation program (830927). We would like to thank our anonymous reviewers for their valuable feedback. We are also grateful to the Peering and Tangled admins who allowed us to run measurements. We thank Dutch National Scrubbing Center for sharing DDoS data with us. We also thank Yuri Pradkin for his help to release our datasets.

Categories
Presentations Publications

new poster “Chhoyhopper: A Moving Target Defense with IPv6” at ACSAC-2021

We published a new poster titled “Chhoyhopper: A Moving Target Defense with IPv6” by A S M Rizvi (USC/ISI) and John Heidemann (USC/ISI) at ACSAC-2021. We presented our poster virtually using a video. We provide chhoyhopper as open source–try it out!

Client and server interaction in Chhoyhopper. A client with a shared secret key can only get access to the system.

From the abstract:

Services on the public Internet are frequently scanned, then subject to brute-force and denial-of-service attacks. We would like to run such services stealthily, available to friends but hidden from adversaries. In this work, we propose a moving target defense named “Chhoyhopper” that utilizes the vast IPv6 address space to conceal publicly available services. The client and server hop to different IPv6 addresses in a pattern based on a shared, pre-distributed secret and the time of day. By hopping over a /64 prefix, services cannot be found by active scanners, and passively observed information is useless after two minutes. We demonstrate our system with the two important applications—SSH and HTTPS.

This work is supported, in part, by DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I, and by DARPA under Contract No. HR001120C0157.

Categories
DNS Internet

B-root’s new sites reduce latency

B-Root, one of the 13 root DNS servers, deployed three new sites in January 2020, doubling its footprint and adding its first sites in Asia and Europe. How did this growth lower latency to users? We looked at B-Root deployment with Verfploter to answer this question. The end result was that new sites in Asia and Europe allowed users there to resolve DNS names with B-Root with lower latency (see the catchment map below). For more details please review our anycast catchment page.

B-root added 3 new sites in Singapore, Washington, DC, and Amsterdam to their three existing 3 sites in Los Angeles, Chile, and Miami. The graph below shows anycast catchments after these sites were deployed (each color in the pie charts shows traffic to a different site).