The paper “Low-Rate, Flow-Level Periodicity Detection”, by Genevieve Bartlett, John Heidemann, and Christos Papadopoulos is being presented at IEEE Global Internet 2011 in Shanghai, China this week. The full text is available at http://www.isi.edu/~johnh/PAPERS/Bartlett11a.pdf.
The abstract summarizes the work:
As desktops and servers become more complicated, they employ an increasing amount of automatic, non-user initiated communication. Such communication can be good (OS updates, RSS feed readers, and mail polling), bad (keyloggers, spyware, and botnet command-and-control), or ugly (adware or unauthorized peer-to-peer applications). Communication in these applications is often regular, but with very long periods, ranging from minutes to hours. This infrequent communication and the complexity of today’s systems makes these applications difficult for users to detect and diagnose. In this paper we present a new approach to identify low-rate periodic network traffic and changes in such regular communication. We employ signal-processing techniques, using discrete wavelets implemented as a fully decomposed, iterated filter bank. This approach not only detects low-rate periodicities, but also identifies approximate times when traffic changed. We implement a self-surveillance application that externally identifies changes to a user’s machine, such as interruption of periodic software updates, or an installation of a keylogger.
The datasets used in this paper are available on request, and through PREDICT.
An expanded version of the paper is available as a technical report “Using low-rate flow periodicities in anomaly detection” by Bartlett, Heidemann and Papadopoulos. Technical Report ISI-TR-661, USC/Information Sciences Institute, Jul 2009. http://www.isi.edu/~johnh/PAPERS/Bartlett09a.pdf