new talk “Internet Outages: Reliablity and Security” from U. of Oregon Cybersecurity Day 2018

John Heidemann gave the talk “Internet Outages: Reliablity and Security” at the University of Oregon Cybersecurity Day in Eugene, Oregon on April 23, 2018.  Slides are available at

Network outages as a security problem.

From the abstract:

The Internet is central to our lives, but we know astoundingly little about it. Even though many businesses and individuals depend on it, how reliable is the Internet? Do policies and practices make it better in some places than others?

Since 2006, we have been studying the public face of the Internet to answer these questions. We take regular censuses, probing the entire IPv4 Internet address space. For more than two years we have been observing Internet reliability through active probing with Trinocular outage detection, revealing the effects of the Internet due to natural disasters like Hurricanes from Sandy to Harvey and Maria, configuration errors that sometimes affect millions of customers, and political events where governments have intervened in Internet operation. This talk will describe how it is possible to observe Internet outages today and what they are beginning to say about the Internet and about the physical world.

This talk builds on research over the last decade in IPv4 censuses and outage detection and includes the work of many of my collaborators.

Data from this talk is all available; see links on the last slide.

Publications Technical Report

new technical report “Back Out: End-to-end Inference of Common Points-of-Failure in the Internet (extended)”

We released a new technical report “Back Out: End-to-end Inference of Common Points-of-Failure in the Internet (extended)”, ISI-TR-724, available at

From the abstract:

Clustering (from our event clustering algorithm) of 2014q3 outages from 172/8, showing 7 weeks including the 2014-08-27 Time Warner outage.

Internet reliability has many potential weaknesses: fiber rights-of-way at the physical layer, exchange-point congestion from DDOS at the network layer, settlement disputes between organizations at the financial layer, and government intervention the political layer. This paper shows that we can discover common points-of-failure at any of these layers by observing correlated failures. We use end-to-end observations from data-plane-level connectivity of edge hosts in the Internet. We identify correlations in connectivity: networks that usually fail and recover at the same time suggest common point-of-failure. We define two new algorithms to meet these goals. First, we define a computationally-efficient algorithm to create a linear ordering of blocks to make correlated failures apparent to a human analyst. Second, we develop an event-based clustering algorithm that directly networks with correlated failures, suggesting common points-of-failure. Our algorithms scale to real-world datasets of millions of networks and observations: linear ordering is O(n log n) time and event-based clustering parallelizes with Map/Reduce. We demonstrate them on three months of outages for 4 million /24 network prefixes, showing high recall (0.83 to 0.98) and precision (0.72 to 1.0) for blocks that respond. We also show that our algorithms generalize to identify correlations in anycast catchments and routing.

Datasets from this paper are available at no cost and are listed at, and we expect to release the software for this paper in the coming months (contact us if you are interested).