Categories
Uncategorized

new conference paper “Anycast in Context: A Tale of Two Systems” at SIGCOMM 2021

We published a new paper “Anycast in Context: A Tale of Two Systems” by Thomas Koch, Ke Li, Calvin Ardi*, Ethan Katz-Bassett, Matt Calder**, and John Heidemann* (of Columbia, where not otherwise indicated, *USC/ISI, and **Microsoft and Columbia) at ACM SIGCOMM 2021.

From the abstract:

Anycast is used to serve content including web pages and DNS, and anycast deployments are growing. However, prior work examining root DNS suggests anycast deployments incur significant inflation, with users often routed to suboptimal sites. We reassess anycast performance, first extending prior analysis on inflation in the root DNS. We show that inflation is very common in root DNS, affecting more than 95% of users. However, we then show root DNS latency hardly matters to users because caching is so effective. These findings lead us to question: is inflation inherent to anycast, or can inflation be limited when it matters? To answer this question, we consider Microsoft’s anycast CDN serving latency-sensitive content. Here, latency matters orders of magnitude more than for root DNS. Perhaps because of this need, only 35% of CDN users experience any inflation, and the amount they experience is smaller than for root DNS. We show that CDN anycast latency has little inflation due to extensive peering and engineering. These results suggest prior claims of anycast inefficiency reflect experiments on a single application rather than anycast’s technical potential, and they demonstrate the importance of context when measuring system performance.

Tom also blogged about this work at APNIC.

Categories
Papers Publications

new conference paper “A Look at Router Geolocation in Public and Commercial Databases” in IMC 2017

The paper “A Look at Router Geolocation in Public and Commercial Databases” has appeared in the 2017 Internet Measurement Conference (IMC) on November 1-3, 2017 in London, United Kingdom.

From the abstract:

Regional breakdown of the geolocation error for the geolocation databases vs. ground truth data.

Internet measurement research frequently needs to map infrastructure components, such as routers, to their physical locations. Although public and commercial geolocation services are often used for this purpose, their accuracy when applied to network infrastructure has not been sufficiently assessed. Prior work focused on evaluating the overall accuracy of geolocation databases, which is dominated by their performance on end-user IP addresses. In this work, we evaluate the reliability of router geolocation in databases. We use a dataset of about 1.64M router interface IP addresses extracted from the CAIDA Ark dataset to examine the country- and city-level coverage and consistency of popular public and commercial geolocation databases. We also create and provide a ground-truth dataset of 16,586 router interface IP addresses and their city-level locations, and use it to evaluate the databases’ accuracy with a regional breakdown analysis. Our results show that the databases are not reliable for geolocating routers and that there is room to improve their country- and city-level accuracy. Based on our results, we present a set of recommendations to researchers concerning the use of geolocation databases to geolocate routers.

The work in this paper was joint work by Manaf Gharaibeh, Anant Shah, Han Zhang, Christos Papadopoulos (Colorado State University), Brad Huffaker (CAIDA / UC San Diego), and Roya Ensafi (University of Michigan). The findings of this work are highlighted in an APNIC blog post “Should we trust the geolocation databases to geolocate routers?”. The ground truth datasets used in the paper are available via IMPACT.

Categories
Announcements Collaborations Papers

best paper award at PAM 2017

The PAM 2017 best paper award for “Anycast Latency: How Many Sites Are Enough?”

Congratulations to Ricardo de Oliveira Schmidt (U. Twente), John Heidemann (USC/ISI), and Jan Harm Kuipers (U. Twente) for the award of  best paper at the Conference on Passive and Active Measurement (PAM) 2017 to their paper “Anycast Latency: How Many Sites Are Enough?”.

See our prior blog post for more information about the paper and its data, and the U. Twente blog post about the paper and the SIDN Labs blog post about the paper.

Categories
Papers Publications

new conference paper “Anycast Latency: How Many Sites Are Enough?” in PAM 2017

The paper “Anycast Latency: How Many Sites Are Enough?” will appear at PAM 2017, the Conference on Passive and Active Measurement in March 2017 in Sydney, Australia (available at http://www.isi.edu/~johnh/PAPERS/Schmidt17a.pdf)

Update 2017-03-31:  This paper was awarded Best Paper at PAM 2017.

Median RTT (with quartiles as error bars) for countries with at least 5 vantage points for L-Root in 2015. Even more than 100 anycast sites, L still has relatively high latency in some countries in Africa and Asia.

 

 

 

From the abstract:

Anycast is widely used today to provide important services such as DNS and Content Delivery Networks (CDNs). An anycast service uses multiple sites to provide high availability, capacity and redundancy. BGP routing associates users to sites, defining the catchment that each site serves. Although prior work has studied how users associate with anycast services informally, in this paper we examine the key question how many anycast sites are needed to provide good latency, and the worst case latencies that specific deployments see. To answer this question, we first define the optimal performance that is possible, then explore how routing, specific anycast policies, and site location affect performance. We develop a new method capable of determining optimal performance and use it to study four real-world anycast services operated by different organizations: C-, F-, K-, and L-Root, each part of the Root DNS service. We measure their performance from more than 7,900 vantage points (VPs) worldwide using RIPE Atlas. (Given the VPs uneven geographic distribution, we evaluate and control for potential bias.) Our key results show that a few sites can provide performance nearly as good as many, and that geographic location and good connectivity have a far stronger effect on latency than having many sites. We show how often users see the closest anycast site, and how strongly routing policy affects site selection.

This paper is joint work of  Ricardo de Oliveira Schmidt, John Heidemann (USC/ISI), and Jan Harm Kuipers (U. Twente).  Datasets in this paper are derived from RIPE Atlas and are available at http://traces.simpleweb.org/ and at https://ant.isi.edu/datasets/anycast/.

Categories
Presentations

new talk “Anycast Latency: How Many Sites are Enough?” at DNS-OARC

John Heidemann gave the talk “Anycast Latency: How Many Sites are Enough?” at DNS-OARC in Dallas, Texas, USA on October 16, 2016.  Slides are available at http://www.isi.edu/~johnh/PAPERS/Heidemann16b.pdf.

Comparing actual (obtained) anycast latency against optimal possible anycast latency, for 4 different anycast deployments (each a Root Letter). From the talk [Heidemann16b], based on data from [Moura16b].
Comparing actual (obtained) anycast latency against optimal possible anycast latency, for 4 different anycast deployments (each a Root Letter). From the talk [Heidemann16b], based on data from [Moura16b].
From the abstract:

This talk will evaluate anycast latency. An anycast service uses multiple sites to provide high availability, capacity and redundancy, with BGP routing associating users to nearby anycast sites. Routing defines the catchment of the users that each site serves. Although prior work has studied how users associate with anycast services informally, in this paper we examine the key question how many anycast sites are needed to provide good latency, and the worst case latencies that specific deployments see. To answer this question, we must first define the optimal performance that is possible, then explore how routing, specific anycast policies, and site location affect performance. We develop a new method capable of determining optimal performance and use it to study four real-world anycast services operated by different organizations: C-, F-, K-, and L-Root, each part of the Root DNS service. We measure their performance from more than worldwide vantage points (VPs) in RIPE Atlas. (Given the VPs uneven geographic distribution, we evaluate and control for potential bias.) Key results of our study are to show that a few sites can provide performance nearly as good as many, and that geographic location and good connectivity have a far stronger effect on latency than having many nodes. We show how often users see the closest anycast site, and how strongly routing policy affects site selection.

This talk is based on the work in the technical report “Anycast Latency: How Many Sites Are Enough?” (ISI-TR-2016-708), by Ricardo de O. Schmidt, John Heidemann, and Jan Harm Kuipers.

Datasets from the paper are available at https://ant.isi.edu/datasets/anycast/

Categories
Publications Technical Report

new technical report “Anycast Latency: How Many Sites Are Enough?”

We have released a new technical report “Anycast Latency: How Many Sites Are Enough?”, ISI-TR-2016-708, available at http://www.isi.edu/%7ejohnh/PAPERS/Schmidt16a.pdf.

[Schmidt16a] figure 4: distribution of measured latency (solid lines) to optimal possible latency (dashed lines) for 4 Root DNS anycast deployments.
[Schmidt16a] figure 4: distribution of measured latency (solid lines) to optimal possible latency (dashed lines) for 4 Root DNS anycast deployments.
From the abstract:

Anycast is widely used today to provide important services including naming and content, with DNS and Content Delivery Networks (CDNs). An anycast service uses multiple sites to provide high availability, capacity and redundancy, with BGP routing associating users to nearby anycast sites. Routing defines the catchment of the users that each site serves. Although prior work has studied how users associate with anycast services informally, in this paper we examine the key question how many anycast sites are needed to provide good latency, and the worst case latencies that specific deployments see. To answer this question, we must first define the optimal performance that is possible, then explore how routing, specific anycast policies, and site location affect performance. We develop a new method capable of determining optimal performance and use it to study four real-world anycast services operated by different organizations: C-, F-, K-, and L-Root, each part of the Root DNS service. We measure their performance from more than worldwide vantage points (VPs) in RIPE Atlas. (Given the VPs uneven geographic distribution, we evaluate and control for potential bias.) Key results of our study are to show that a few sites can provide performance nearly as good as many, and that geographic location and good connectivity have a far stronger effect on latency than having many nodes. We show how often users see the closest anycast site, and how strongly routing policy affects site selection.

This technical report is joint work of Ricardo de O. Schmidt and Jan Harm Kuipers (U. Twente) and John Heidemann (USC/ISI).  Datasets in this paper are derived from RIPE Atlas and are available at http://traces.simpleweb.org/.

 

Categories
Software releases

Digit tool for T-DNS privacy updated to match current internet-draft

Digit is our DNS client side tool that can perform DNS queries via different protocols such as UDP, TCP, TLS. This tool is primarily designed to evaluate the client side latency of using DNS over TCP/TLS.

IANA has allocated port 853 to use TLS/DTLS for DNS temporarily in the most recent version of Internet draft “DNS over TLS: Initiation and Performance Considerations” (draft-ietf-dprive-dns-over-tls-01).

To track the current specification, we have updated Digit to do direct TLS on port 853 by default, with TCP. STARTTLS and other protocols as options for comparison.

These changes are available as Digit-1.4.1 at https://ant.isi.edu/software/tdns/index.html.

Categories
Software releases

Digit-1.1 release

Digit-1.1 has been released  (available at https://ant.isi.edu/software/tdns/index.htmlScreenshot from 2014-11-08 16:17:45).  Digit is a DNS client side tool that can perform DNS queries via different protocols such as UDP, TCP, TLS. This tool is primarily designed to evaluate the client side latency of using DNS over TCP/TLS, as described in the technical report “T-DNS: Connection-Oriented DNS to Improve Privacy and Security” (http://www.isi.edu/~johnh/PAPERS/Zhu14b/index.html).

A README in the package has detailed instructions about how to use this software.