
Anycast in Context: A Tale of Two Systems
Thomas Koch

Columbia University
Ke Li

Columbia University
Calvin Ardi

USC/ISI

Ethan Katz-Bassett
Columbia University

Matt Calder
Microsoft/Columbia University

John Heidemann
USC/ISI

ABSTRACT

Anycast is used to serve content including web pages and DNS, and
anycast deployments are growing. However, prior work examining
root DNS suggests anycast deployments incur significant inflation,
with users often routed to suboptimal sites. We reassess anycast
performance, first extending prior analysis on inflation in the root
DNS. We show that inflation is very common in root DNS, affecting
more than 95% of users. However, we then show root DNS latency
hardly matters to users because caching is so effective. These find-
ings lead us to question: is inflation inherent to anycast, or can
inflation be limited when it matters? To answer this question, we
consider Microsoft’s anycast CDN serving latency-sensitive con-
tent. Here, latency matters orders of magnitude more than for root
DNS. Perhaps because of this need, only 35% of CDN users experi-
ence any inflation, and the amount they experience is smaller than
for root DNS. We show that CDN anycast latency has little inflation
due to extensive peering and engineering. These results suggest
prior claims of anycast inefficiency reflect experiments on a sin-
gle application rather than anycast’s technical potential, and they
demonstrate the importance of context when measuring system
performance.

CCS CONCEPTS

• Networks→ Network performance analysis.

KEYWORDS

Anycast, root DNS, routing, latency, CDN.

ACM Reference Format:

Thomas Koch, Ke Li, Calvin Ardi, Ethan Katz-Bassett, Matt Calder, and John
Heidemann. 2021. Anycast in Context: A Tale of Two Systems. In ACM
SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–27, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/
3452296.3472891

1 INTRODUCTION

IP anycast is an approach to routing in which geographically diverse
servers known as anycast sites all use the same IP address. It is
used by a number of operational Domain Name System (DNS) [1, 7,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472891

31, 39, 65] and Content Delivery Network (CDN) [16, 21, 30, 65, 75]
deployments today, in part because of its ability to improve latency
to clients and decrease load on each anycast server [45, 55, 64].

However, studies have argued that anycast often provides sub-
optimal performance compared to the lowest latency one could
achieve given deployed sites [51, 54, 67]. Notably, the SIGCOMM
2018 paper "Internet Anycast: Performance, Problems, & Potential"
has drawn attention to the fact that anycast can inflate latency by
hundreds of milliseconds [51], leaving readers of the paper with
a poor impression of anycast. Conversely, other work has shown
inflation is quite low in Microsoft’s anycast CDN [16] and Google
Public DNS [50], but used different coverage, metrics, and method-
ology, so it is difficult to directly compare results. Perhaps because
of the very different takeaways of these studies, we have found that
some experts in the community have negative opinions of anycast.
In particular, it seems surprising that anycast continues to see more
adoption and growth in production systems – why continue to use
anycast if it causes inflation?

To understand the impact of anycast inefficiency, and its wide
use in spite of inflation, we step back and evaluate anycast as a com-
ponent of actual applications/services. User-affecting performance
depends on the anycast deployment, how anycast is used within
the service, and how users interact with the service. To see these
effects, we consider anycast’s role within two real-world systems:
the root DNS and Microsoft’s anycast CDN serving web content.
These applications have distinct goals, they are key components
of the Internet, and they are two of the dominant, most studied
anycast use cases.

We analyze root DNS [39] packet traces which are available
via DITL [26] and which are featured in existing anycast studies
[23, 51, 54, 58, 69], with increased coverage compared to prior work.
The 13 root letters operate independently with diverse deployment
strategies, enabling the study of different anycast deployments
providing the same service. We analyze two days of unsampled
packet captures from nearly all root DNS letters, consisting of tens
of billions of queries from millions of recursive resolvers querying
on behalf of all users worldwide, giving us broad coverage.

We also examine Microsoft’s CDN using the same methodol-
ogy we use for the root DNS so we can directly compare results.
Microsoft’s CDN configures subsets of sites into multiple anycast
“rings” of different sizes, providing deployment diversity, but all
operated by one organization. We analyze global measurements
from over a billionMicrosoft users in hundreds of countries/regions,
giving us a complete view of CDN performance.

With these measurements, we present the largest study of any-
cast latency and inflation to date. We first validate and extend prior
work on inflation in anycast deployments [51]. Whereas that work
focused primarily on a single root letter, we analyze almost the

https://doi.org/10.1145/3452296.3472891
https://doi.org/10.1145/3452296.3472891
https://doi.org/10.1145/3452296.3472891

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

whole root DNS. By joining root DNS captures with global-scale
traces of user behavior, we find that more users than previously
thought experience some inflation (on average, more than 95%), and
as many as 40% of users experience more than 100 ms of inflation
to some root letters (§3). However, average inflation per query to
the roots is lower than previously thought, since each recursive
resolver can preferentially query its best performing root letter
– on average, only 10% of users experience more than 100 ms of
inflation.

Do recursives have to implement preferential querying strategies
for their users so that inflation does not hurt user performance?
The answer is a resounding “no” – using new methodology that
amortizes DNS queries over users who benefit from cached query
results, we find differences in latency and inflation among root
letters are hardly perceived by users – most users interact with the
root DNS once per day (§4). Delay is minimal due to caching of
root DNS records with long TTLs at recursive resolvers.

The inflated anycast routes to root DNS could be a result of
latency not mattering, causing root operators to not optimize for
it, or inflation could be inherent in anycast routing as suggested in
prior work. To determine which is the case, we use measurements
from Microsoft’s CDN and find that, were latency to Microsoft’s
CDN to be hypothetically inflated as to individual root letters, it
would result in hundreds of milliseconds of additional latency per
page load. This increased latency would negatively affect the user’s
overall experience, especially when compared to root DNS. The
key difference is that users incur several RTTs to Microsoft’s CDN
when fetching web content, whereas users rarely wait for a query
to the root DNS because of DNS caching (§5.1).

With this context, we thenmeasure actual inflation inMicrosoft’s
CDN and find that inflation is kept comparatively small (§5.2), espe-
cially compared to individual root letters. To explain why inflation
is so different in these deployments, we contrast AS-level connec-
tivity and inflation between the users, Microsoft’s CDN, and roots.
We find that Microsoft is able to control inflation through extensive
peering and engineering investment (§7.1), even though inefficiency
increases with larger deployments (§7.2). Through discussions with
operators of root DNS and CDNs, we find recent root DNS expan-
sion has (surprisingly) been driven by a desire to reduce latency and
mitigate DDoS attacks, while CDN expansion is driven by market
forces (§7.3).

The comparison between performance in these two deployments
allows us to put results from prior work in perspective [16, 23, 51,
69]. Even though root inflation is large, users rarely experience it,
making its impact on the average query quite small. In contrast,
users frequently interact with the CDN, and inflation there is small.
These inflation results make sense, given the economic incentives
of the organizations running Microsoft’s CDN and the root DNS.
While we expect these results to hold for other latency-sensitive
services using anycast, as they have similar economic incentives,
a key takeaway from our work is that anycast must be analyzed
in the context of the service in which it is used (§7.3), and so we
cannot make definitive statements about generalizability. Hence,
we do not refute past claims that anycast can inflate latencies, but
we expand on these studies to show that, where it counts, anycast
performance can be quite good.

This paper poses no ethical issues.

2 METHODOLOGY AND DATASETS

We use a combination of DNS packet captures and global CDN
measurements to measure latency and inflation. Root DNS data
is readily available [26], while CDN data is proprietary. We sup-
plement these datasets with measurements from RIPE Atlas [71].
We summarize our many data sets’ characteristics, strengths, and
weaknesses in Appendix A.

2.1 Root DNS

The first of the two systems we discuss, the root DNS, is a criti-
cal part of the global DNS infrastructure. DNS is a fundamental
lookup service for the Internet, typically mapping hostnames to IP
addresses [22, 56]. To resolve a name to its result, a user sends DNS
requests to a recursive resolver (recursive). The recursive queries
authoritative DNS servers as it walks the DNS tree from root, to
top-level domain (TLD), and down the tree. Recursives cache results
to answer future requests according to TTLs of records. The root
DNS server is provided by 13 letters [39], each with a different
anycast deployment with 6 to 254 anycast sites (as of July 2021),
run by 12 organizations. A root DNS site can be local or global –
local sites serve small geographic areas or certain ASes (controlled
by restricting the propagation of the anycast BGP announcement
from the site), while global sites are globally reachable.

We use three datasets: for end-users, we use long-term packet
captures from the Information Sciences Institute (ISI) at USC,
and DNS and browser measurements from daily use of two of the
authors. For DNS servers, we use 48-hour packet captures at most
root servers from Day in the Life of the Internet (DITL) [26].

Packet captures from ISI provide a local view of root DNS queries.
The recursive resolver runs BIND v9.11.14. The captures, from 2014
to the present, reflect all traffic (incoming and outgoing) traversing
port 53 of the recursive resolver. We use traces from 2018 (about
100 million queries), as they overlap temporally with our other
datasets. This recursive resolver received queries from hundreds
of users on laptops, and a number of desktop and rack-mounted
computers of a network research group, so the results may deviate
from a typical population. We found no measurement experiments
or other obvious anomalies in the period we use.

We use the 2018 DITL captures, archived by DNS-OARC [26], to
obtain a global view of root DNS use. DITL occurs annually, with
each event including data from most root servers. The 2018 DITL
took place 2018/04/10-12 and included 12 root letters (all except
G root). Traces from I root are fully anonymized, so we did not
use them. Traces from B root are partially anonymized, but only at
the /24 level. Our analysis does not rely on addresses more specific
than /24, so we use all data from B root and all other roots except
G and I. Although the 2018 DITL is older than the most recently
available, it is significantly more complete than recent DITLs; in
Appendix B.3 we conduct analysis on the 2020 DITL and find none
of our main conclusions change.

Since we aim to understand in part how root DNS latency affects
users, we filter queries in DITL that do not affect user latency and
queries generated by recursives about which we have no user data.
We describe this pre-processing of DITL and subsequent joining of
root query volumes with Microsoft’s CDN user population counts.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Of the 51.9 billion daily queries to all roots, we discard 31 billion
queries to non-existing domain names and 2 billion PTR queries.
About 28% of non-existing domain name queries are NXDomain
hijacking detection from Chromium-based browsers [4, 34, 73], and
so involve machine startup and not browsing latency. Prior work
suggests the remainder are generated by other malfunctioning,
automated software [28]. Similarly, while PTR queries have some
uses (traceroutes and confirming hostnames during authentication),
they are not part of typical user web latency. In Appendix B.1,
we find that including invalid TLD queries significantly changes
the conclusions we can draw about how users interact with the
root DNS, and we provide more justification for this step. We next
remove queries from prefixes in private IP space [38] (7% of all
queries). Finally, we analyze only IPv4 data and exclude IPv6 traffic
(12% of queries) because we lack v6 user data.

Sources of DNS queries in DITL are typically recursive resolvers,
so the captures alone provide no information about how many
DNS queries each user makes. To estimate per-user latency, we
augment these traces with the approximate number of Microsoft
users of each recursive, gathered in 2019 (the oldest user data we
have). This user data is from Microsoft DNS data, which counts
unique IP addresses as “users”. This definition undercounts multiple
human users that use a single IP address with Network Address
Translation. Microsoft maps recursives to user IP addresses with an
existing technique that instruments users to request DNS records
for domains Microsoft controls when users fetch content [17, 53].

We join the DITL captures and Microsoft user counts by the
recursive resolver /24, aggregating DITL query volumes and Mi-
crosoft user IP counts, each grouped by /24 prefix1 to increase the
amount of recursives for which we have user data. This aggregation
is justified since many organizations use colocated servers within
the same /24 as recursives [31, 63]. Prior work has also found that
up to 80% of /24’s are collocated [29]. We provide additional justifi-
cation for this preprocessing step in Appendix B.2, by showing all
addresses in a /24 in DITL are almost always routed to the same
anycast site. For simplicity, we henceforth refer to these /24’s as
recursives, even though each /24 may contain several recursives.
We call this joined dataset of query volumes and user counts by
recursive DITL∩CDN.

In an effort to make our results more reproducible, and as a point
of comparison, we also use public Internet population user count
data from APNIC to amortize root DNS queries [37] (i.e., instead
of using proprietary Microsoft data). APNIC obtains these AS user
population estimates by first gathering lists of IP addresses from
Google’s Ad delivery network, separated by country. APNIC con-
verts this distribution of IP addresses to a distribution of ASNs,
normalized by country Internet-user populations. We use the Team-
Cymru IP to ASN mapping to map IP addresses seen in the DITL
captures to their respective ASes [25] and accumulate queries by
ASN. We were able to map 99.4% of DITL IP addresses to an ASN,
representing 98.6% of DITL query volume. The assumption that
recursives are in the same AS as the users they serve is obviously
incorrect for public DNS services, but we do not make an effort to
correct for these cases. Overall, we believe Microsoft user counts

1We aggregate user IP addresses by recursive /24 before counting to ensure we do not
double-count users.

R28
R47
R74
R95
R110

Figure 1:Microsoft’s CDN rings and user populations. Sites in smaller

rings are also in larger rings, and the legend indicates the number of

sites in that ring. We do not show some front-ends too close to each

other to improve readability. User populations are shown as circles,

with the radius of the circle proportional to the number of users in

that region, demonstrating that Microsoft has deployed front-ends

in areas of user concentration.

are more accurate, but APNIC data is more accessible to other
researchers and so provides a useful comparison.

2.2 Microsoft’s CDN

We also analyze Microsoft’s large anycast CDN that serves web
content to over a billion users from more than 100 sites. Traffic des-
tined for Microsoft’s CDN enters its network at a point of presence
(PoP) and is routed to one of the anycast sites serving the content
(front-ends). Microsoft organizes its deployment into groups of
sites, called rings, that conform to varying degrees of regulatory
restrictions (e.g., ISO 9001, HIPAA), each with its own anycast ad-
dress. The rings have the property that a site in a smaller ring is
also in all larger rings. Other CDNs have to work with similar reg-
ulatory restrictions [2]. Hence, traffic from a user prefix destined
for Microsoft’s CDN may end up at different front-ends (depending
on which ring the application uses), but often will ingress into the
network at the same PoP. Users are routed to rings via anycast and
fetch web content from a front-end via its anycast address. Users
are always routed to the largest allowed ring given the application’s
regulatory restrictions (performance differences among rings are
not taken into account).

Microsoft’s anycast rings provide different size anycast deploy-
ments for study. In Figure 1 we show Microsoft’s front-ends and
user concentrations. Rings are named according to the number of
front-ends they contain, and front-ends are labeled according to
the smallest ring to which they belong (or else all front-ends would
be labelled as R110). We do not show some front-ends too close to
each other to improve readability. Circles are average user locations,
where the radius of the circle is proportional to the population of
users in that region. Figure 1 suggests that front-end locations tend
to be near large populations, providing at least one low latency
option to most users. Appendix F illustrates latency differences by
region.

User locations are aggregated by region, a geographic area used
internally by Microsoft to break the world into regions that generate
similar amounts of traffic and so contain similar numbers of users.
A region often corresponds to a large metropolitan area. We refer to
users at the ⟨region, AS⟩ granularity, because users in the same
⟨region, AS⟩ location are often routed to the same front-ends and
so (generally) experience similar latency. There are 508 regions in

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

total: 135 in Europe, 62 in Africa, 102 in Asia, 2 in Antarctica, 137
in North America, 41 in South America, and 29 in Oceania.

To study performance inMicrosoft’s CDN, we use twomajor data
sources: server-side logs and client-side measurements. Server-side
logs at front-ends collect information about user TCP connections,
including the user IP address and TCP handshake RTT. Using these
RTTs as latency measurements, we compute median latencies from
users in a ⟨region, AS⟩ location to each front-end that serves
them.2 Microsoft determines the location and AS of users using
internal databases.

Client-side measurements come from a measurement system
operated by Microsoft [17]. Latency measurements are the time it
takes for Microsoft users to fetch a small image via HTTP.3 The
measurement system instructs clients using CDN services to issue
measurements to multiple rings, which enables us to remove biases
in latency patterns due to services hosted on different rings having
different client footprints (e.g., enterprise versus residential traffic).
Microsoft collects latencies of users populations, noting the location
and AS of the user. Since these measurements come directly from
end-users, we do not know which front-end the user hit. For both
client-side measurements and server-side logs, we collect statistics
for over a billion users across 15,000 ⟨region, AS⟩ locations.

We also use RIPE Atlas to ping anycast rings, because we cannot
share absolute latency numbers. We calibrate these results versus
our (private) data measuring latency for CDN users. In total, we
collect 7,000 ping measurements to rings from 1,000 RIPE Atlas
probes in more than 500 ASes to augment CDN latency measure-
ments. (Probes were selected randomly, and measured three times
to each ring.)

3 ROUTES TO ROOT DNS ARE INFLATED

Earlier work has found query distance to the root DNS is often
significantly inflated [13, 23, 51, 67, 69]. Similar to this work, we
find that queries often travel to distant sites despite the presence
of a geographically closer site. We extend this understanding in a
number of ways. While previous work considered only subsets of
root DNS activity and focused on geographic inflation for recursives
rather than users, we calculate inflation for nearly all root letters,
and place inflation in the context of users, rather than recursive
resolvers. These contributions are significant for several reasons.
First, considering more root letters allows us to evaluate inflation
in different deployments, and with most letters we can evaluate
the root DNS system. Since a recursive makes queries to many root
letters, favoring those with low latency [60], system performance
and inflation can (and does) differ from component performance.
Second, we weight recursive resolvers by the number of users,
which allows us to see how users are affected by inflation. Finally,
we extend prior work by conducting an analysis of latency (as
opposed to geographic) inflation with large coverage.

Previous studies of anycast have separated inflation into two
types, unicast and anycast, in an attempt to tease out how much la-
tency anycast specifically adds to queries [13, 16, 51, 69]. For several
reasons, we choose to consider inflation relative to the deployment,

2We also looked at other percentiles (e.g., 95th) and found the qualitative results to be
similar.
3DNS resolution and TCP connection time are factored out.

rather than try to infer which inflation would exist in an equivalent
unicast deployment. First, coverage of measurement platforms used
to determine unicast inflation such as RIPE Atlas (vantage points
for anycast studies [51, 69]) is not representative [10]. Second, cal-
culating unicast inflation requires knowledge of the best unicast
alternative from every recursive seen in DITL to every root letter,
something that would be difficult to approximate with RIPE Atlas
because some letters do not publish their unicast addresses. Third,
we find it valuable to compare latency to a theoretical lower bound,
since user routes to the best unicast alternative may still be inflated.

We measure two types of inflation for the root DNS, by looking
at which sites recursive resolvers are directed to. DITL captures are
a rich source of data because they provide us with a global view
of which recursives access which locations (§2.1). Our inflation
analysis covers 224 countries/regions and 22,243 ASes (Atlas covers
about 3,700 ASes as of July 2021).

We calculate the first type of inflation – geographic inflation
(Eq. (1)) – over 10 of the 13 root letters, omitting G which does not
provide data, H which only had one site in 2018 (and so has zero in-
flation), and I, where anonymization prevents analysis. Geographic
inflation measures, at a high level, how users are routed to sites
compared to the closest front-end (i.e., efficiency)4.

We calculate the second type of inflation – latency inflation
(Eq. (2)) – over the root letters mentioned above by looking at
the subset of DNS queries that use TCP, using the handshake
to capture RTT [57]. Our latency inflation analysis further ex-
cludes D and L root, due to malformed DITL PCAPs. Latency infla-
tion uses measured latencies to determine inflation, so it reflects
constraints due to physical rights-of-way and connectivity, bad
routing, and peering choices. We calculate median latency over
each ⟨root, resolver /24, anycast site⟩ for which we have
at least 10 measurements, providing us latencies for resolvers rep-
resenting 40% of DITL query volume to these roots.

3.1 Methodology

To calculate geographic inflation, we first geolocate all recursives
in our DITL∩CDN dataset using MaxMind [41], following prior
methodology which affirmed MaxMind to be suitably accurate for
geolocating recursive resolvers in order to assess inflation [51]. We
then compute geographic inflation (scaled by the speed of light in
fiber) for each recursive sending queries to root server 𝑗 as

GI (𝑅, 𝑗) = 2
𝑐 𝑓

(
∑︁
𝑖

𝑁 (𝑅, 𝑗𝑖)𝑑 (𝑅, 𝑗𝑖)
𝑁 (𝑅, 𝑗) −min

𝑘
𝑑 (𝑅, 𝑗𝑘)) (1)

where 𝑁 (𝑅, 𝑗𝑖) is the number of queries to site 𝑗𝑖 by recursive 𝑅,
𝑁 (𝑅, 𝑗) = ∑

𝑖 𝑁 (𝑅, 𝑗𝑖) is the total number of queries to all sites 𝑗𝑖
in root 𝑗 by recursive 𝑅, 𝑐 𝑓 is the speed of light in fiber, the factor
of 2 accounts for the round trip latency, 𝑑 (𝑅, 𝑗𝑘) is the distance
between the recursive resolver and site 𝑗𝑘 , and both the summation
and minimization are over the global sites in this letter deployment
(see Section 2.1 for the distinction between local and global). We
only consider global sites, since we do not know which recursives
can reach local sites. For recursives which can reach a local site
4It would be interesting to measure topological inflation (extra distance traveled on the
Internet topology, beyond shortest-path propagation-delay), but it would be difficult
to do so using existing methods without sacrificing significant coverage.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

but instead reach a global site, Equation (1) (and Equation (2)) may
underestimate actual inflation.

GI (𝑅, 𝑗) is an approximation of the inflation one would expect
to experience when executing a single query to root deployment 𝑗
from recursive 𝑅, averaged over all sites. The overall geographic
inflation of a recursive is then the empirical mean over all roots.
Even though queries from the same recursive /24 are usually routed
together, they may be routed to different sites due to load balancing
in intermediate ASes (see Appendix B.2 for measures of how often
this occurs), so we average geographic inflation across sites for
a recursive. Geographic inflation is useful to investigate since it
shows how our results compare with prior work, how many users
are being inflated, and it gives us a measure of "efficiency" (§7.2) .

We also calculate latency inflation, again considering recursive
querying patterns seen in DITL. We calculate latency inflation
LI (𝑅, 𝑗) for users of recursive 𝑅 to root 𝑗 as

LI (𝑅, 𝑗) =
∑︁
𝑖

𝑁 (𝑅, 𝑗𝑖)𝑙 (𝑅, 𝑗𝑖)
𝑁 (𝑅, 𝑗) − 3 × 2

2𝑐 𝑓
min
𝑘

𝑑 (𝑅, 𝑗𝑘) (2)

where 𝑙 (𝑅, 𝑗𝑖) is the median latency of recursive 𝑅 towards root
site 𝑗𝑖 and the other variables are as in Equation (1). Prior work
notes that routes rarely achieve a latency of less than the great circle
distance between the endpoints divided by 2𝑐 𝑓

3 [46], so we use 2𝑐 𝑓
3

to lower bound the best latency recursives could achieve. Latency
inflation is a measure of potential performance improvement users
could see due to changes in routing or expanding the physical
Internet (e.g., laying fiber).

One limitation is that we do not account for the fact that the
source addresses of some queries in the DITL traces may be spoofed.
Spoofing is more likely to make our calculated inflation larger,
especially in cases where the spoofer is far away from the physical
interface it is spoofing (i.e., from our perspective, the route looks
inflated when actually the source address was spoofed). We do
not attempt to correct for these cases since it would be difficult to
distinguish between legitimately poor routing and spoofed traffic.

3.2 Results

Figure 2a demonstrates that the likelihood of a root DNS query
experiencing any geographic inflation (Eq. (1)) roughly grows with
deployment size (y-axis intercept), expanding on results in prior
work which presented an orthogonal, aggregated view [51]. The
All Roots line takes into account that each recursive spreads
its queries across different roots. It has the lowest y-intercept of
any line in Figure 2a, which implies that nearly every recursive
experiences some inflation to at least one root and that the set of
inflated recursives varies across roots. Hence, our analysis shows
that nearly every user will (on average) experience inflation when
querying the root DNS, and 10.8% of users are likely to be inflated
by more than 2,000 km (20 ms).

Figure 2b shows that queries to these roots experience frequent
latency inflation (Eq. (2)), with between 20% and 40% of users expe-
riencing greater than 100 ms of inflation (B root is a clear exception,
but only had 2 sites, so inflation is less meaningful). Latency infla-
tion starts at approximately zero, which follows from our choice
of “optimal” latency (Eq. (2)). Compared to geographic inflation,
latency inflation is particularly larger in the tail. For example, at

0 20 40 60 80 100 120 140
Geographic Inflation per Root Query (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 U

se
rs

B - 2
A - 5
M - 5
C - 10
E - 15
D - 20
K - 52
J - 68
F - 94
L - 138
All Roots

(a)

0 25 50 75 100 125 150 175 200
Latency Inflation per Root Query (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 U

se
rs

B - 2
A - 5
M - 5
C - 10
E - 15
K - 52
J - 68
F - 94
All Roots

(b)

Figure 2: Inflation measured using geographic information (2a) and

TCP RTT estimates (2b). Generally, larger deployments are more

likely to inflate paths, and inflation in the roots is quite large. The

legends indicate the number of global sites per letter during the 2018

DITL.

the 95𝑡ℎ percentile C root has 240 ms of latency inflation but
only 70 ms of geographic inflation. However, inflation for the root
DNS as a whole is not as bad as individual root letters as shown
by lines All Roots , which take into account that recursives can
preferentially query low latency root servers [60].

Our latency inflation metric shows C root is more inflated than
previously thought, inflating 35% of users by more than 100 ms com-
pared to 20% reported in prior work [51] (although the comparison
to prior work is not perfect since what was measure is different).
Other prior work found significant inflation in the roots, but it is
difficult to directly compare results since inflation was presented
in different ways [23, 69].

Clearly, routing to individual root letters often is inflated, with
many queries traveling thousands more kilometers than needed,
and being inflated by hundreds of milliseconds for some users.

4 ROOT DNS LATENCY AND INFLATION

HARDLY MATTER

With a richer understanding of inflation in the root DNS, one might
wonder why inflation in root letters is large given growing deploy-
ments and root DNS’s importance in the Internet. We now show
that root DNS inflation does not result in much user-visible latency.

4.1 Measuring Root DNS Latency Matters

The root DNS servers host records for TLDs (e.g., COM, ORG).
There are approximately one thousand TLDs, and nearly all of the

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

corresponding DNS records have a TTL of two days. Hence, due to
shared caches at local resolvers, one might think root DNS latency
trivially does not matter for users. Recent work even suggests the
root DNS can be done away with entirely [5] or largely replaced
by preemptive caching in recursives [48]. We offer several reasons
why we found it necessary to explicitly measure root DNS latency’s
impact on users, rather than use intuition.

First, there is a lot of attention being placed on the root DNS
in the professional and research communities. For example, some
experts have asked us in conversation why CDNs use anycast, when
anycast inflates latencies in the root DNS so much. The SIGCOMM
2018 paper “Internet Anycast: Performance, Problems, & Potential”
has drawn attention to the fact that anycast can inflate latency to
the root DNS by hundreds of milliseconds [51]. Blog posts from the
root letters discuss latency improvements and inflation reductions
[3, 14, 61, 79] – why does latency matter to roots? Moreover, over
the past 5 years the number of root DNS sites has steadily increased
to more than double, from 516 to 1367. Why is there so much
investment in more sites?

Second, there is value in quantitatively analyzing systems, espe-
cially global systems that operate at scale, even if we can intuitively,
qualitatively reason about these systems without conducting anal-
ysis. We conduct analysis using data from eleven of thirteen root
letters, giving us a truly global view of how users interact with the
root DNS. We are aware of only one other study which looked at
how caching affects root DNS queries [44], but that study is old, is
limited to one recursive resolver, and does not place DNS queries
in the context of user experience.

Third, although TTLs of TLD records are two days, recursive
resolver implementations can be buggy. We noticed millions of
queries per day for TLD records being sent to the root letters by
some recursives (§4.3), and found a bug in the popular BIND recur-
sive resolver software that causes unnecessary queries to the roots
(Appendix E). Hence, making arguments about root DNS latency
requires careful analysis.

4.2 HowWe Measure Root DNS

Measuring how root DNS latency affects users poses several chal-
lenges. To put root DNS latency into context we must understand
(1) how user-application performance is affected when applications
make root queries, (2) how often end-hosts and recursive resolvers
interact with root DNS, given their caches, (3) what the latency is
from the anycast deployment, and (4) how these effects vary by loca-
tion and root letter. These challenges both motivate our subsequent
analyses and also highlight the limitations of prior work which do
not capture these subtleties of root DNS latency [23, 51, 58, 69].

Therefore, precisely determining how root DNS latency affects
users would require global, OS-level control to select recursives
and view OS DNS caches; global application-level data to see when
DNS queries are made and how this latency affects application-
performance; global recursive data to see caches, root queries, and
their latencies; and global root traces to see how queries to the
roots are routed. As of July 2021, only Google might have this data,
and assembling it would be daunting.

To overcome these challenges we take two perspectives of root
DNS interactions: local (close to the user) and global (across more

than a billion users). Our local perspective precisely measures how
root DNS queries are amortized over users browsing sessions, while
our global analysis estimates the number of queries users worldwide
execute to the roots.

4.3 Root DNS Latency Hardly Matter

Local Perspective: To obtain a precise measure of how root DNS
queries are amortized over a small population, we use packet cap-
tures of a recursive resolver at ISI (§2.1). We also measure from two
authors’ computers to observe how an individual user interacts
with the root servers (with no shared cache), since ISI traces do
not give us context about user experience. Data from two users
is limited, which is a reflection of the challenges we identified in
Section 4.2. However, these experiments offer precise measures of
how these authors interact with root DNS (which no prior work has
investigated), supplementing the global-scale data used for most of
the paper.

Using traces gathered at ISI, we calculate the number of queries
to any root server as a fraction of user requests to the recursive
resolver. We call this metric the root cache miss rate, as it approx-
imates how often a TLD record is not found in the cache of the
recursive in the event of a user query. It is approximate because
the resolver may have sent multiple root requests per user query,
and some root requests may not be triggered by a user query. The
daily root cache miss rates of the resolver range from 0.1% to 2.5%
(not shown), with a median value of 0.5%. The overall cache miss
rate across 2018 was also 0.5%. The particular cache miss rate may
vary depending on user querying behavior and recursive resolver
software, but clearly the miss rate is small, due to shared caches.
Appendix D shows the minimal impact root DNS latency has on
users of ISI and a CDF of DNS latency experienced by users at ISI.

Since the measurements at ISI can only tell us how often root
DNS queries are generated, we next look at how root DNS latency
compares to end-user application latency. On two authors’ work
computers (in separate locations), we direct all DNS traffic to local,
non-forwarding, caching recursive resolvers running BIND 9.16.5
and capture all DNS traffic between the user and the resolver, and
between the resolver and the Internet.

We run the experiment for four weeks and observe a median
daily root cache miss rate of 1.5% – similar to but larger than the
cache miss rate at ISI. The larger cache miss rate makes sense,
given the local users do not benefit from shared caches. We also
use browser plugins to measure median daily active browsing time
and median daily cumulative page load time, so we can place DNS
latency into perspective. Active browsing time is defined as the
amount of time a user spends interacting with the page (with a 30
second timeout), whereas page load time is defined as the time until
the window.onLoad event. Median daily root DNS latency is 1.6%
of median daily page load time and 0.05% of median daily active
browsing time, meaning that root DNS latency is barely perceptible
to these users when loading web pages, even without shared caches.
In general, we overestimate the impact of DNS and root DNS latency
since DNS queries can occur as a result of any application running
on the authors’ machines (not just browsing).

Global Perspective: Towards obtaining a global view of how
users interact with the root DNS, we next look at global querying

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

10−3 10−2 10−1 100 101 102 103

Queries per User per Day

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 U

se
rs

Ideal
CDN
APNIC

Figure 3: A CDF of the number of queries each user executes to the

roots per day. The CDN and APNIC lines represent different user-

count datasets. The Ideal line presents an idealized assumption

about recursive query behavior. Most users wait for less than one

query to the roots per day, regardless of which user data we use.

behavior of recursives. As discussed in Section 4.2, it is difficult to
model caching at resolvers and how caching saves users latency,
since caching hides user query patterns (by design) and differs with
recursive implementation. To overcome this challenge, we use a new
methodology that amortizes queries over large user populations,
by joining DNS query patterns with user data.

Given query volumes towards root servers from recursives and
user counts using each recursive from the DITL captures (§2.1),
we estimate the number of queries to the roots that users wait for
per day. Figure 3 is a CDF of the expected number of queries per
user per day, where lines CDN and APNIC use a different user-
count dataset (§2.1), and line Ideal uses hypothetical assumptions
which we describe below. Figure 3 demonstrates that most users
wait for no more than one query to the roots per day, regardless of
which user data we use.

To generate each line in Figure 3, we divide (i.e., amortize) the
number of queries to the root servers made by each recursive by the
number of users that recursive represents. We weight this quotient
(i.e., daily queries per user) by user count and calculate the resulting
CDF. We calculate the number of queries per day each recursive
makes from DITL by first calculating daily query rates at each site
(i.e., total queries divided by total capture time) and subsequently
summing these rates across sites. We include nearly every root
query captured across the root servers, so Figure 3 provides a truly
global view of how users interact with the root DNS.

The two lines CDN and APNIC correspond to amortizing DITL
queries over Microsoft and APNIC user counts, respectively. Hence,
the set of ‘users’ each line represents is technically different, but we
place them on the same graph for comparison. Even though the two
methodologies of estimating user counts behind root queries are
very different (CDN uses an internal measurement system, while
APNIC uses Internet population estimates by country), amortizing
queries over these sets of users still yields the same high level
conclusions about how users interact with the root DNS, suggesting
that our methodology and conclusions are sound – users rarely
interact with the root DNS executing about one query per day at
the median. Users in the tail are likely either spammers, have buggy
recursive software, or represent recursives with more users than
DITL∩CDN suggests (e.g., cellular networks). APNIC user estimates
are not affected by NATs, and APNIC has a smaller tail.

The line labeled Ideal does not use DITL query volumes to
calculate daily user query counts, but instead represents a hypothet-
ical scenario in which each recursive queries for all TLD records
exactly once per TTL, and amortizes these queries uniformly over
their respective user populations (we use Microsoft user counts for
Ideal). The resulting hypothetical median daily query count of
0.007 could represent a future in which caching works at recursives
optimally – not querying the roots when not necessary. Ideal
also demonstrates the degree to which the assumption that recur-
sives only query once per TTL underestimates the latency users
experience due to the root DNS (§4.2) – the assumption is orders of
magnitude off from reality.

We have shown root DNS latency, and therefore inflated routes
to the roots, makes no difference to most users. This result raises
the question – are paths to the roots inflated because anycast intrin-
sically results in inflation? Or rather, does latency not mattering in
this setting lead to anycast deployments that are not optimized for
latency and hence tend to have inflated routes? To answer these
questions, we turn to a new system using anycast to serve latency-
sensitive content – Microsoft’s CDN.

5 LATENCY MATTERS FOR MICROSOFT’S

CDN

We demonstrate that latency (and hence inflation) does matter for
Microsoft users when fetching web content, unlike for most users
in the root DNS, principally due to the number of RTTs users incur
when fetching web content.

5.1 RTTs in a Page Load

To estimate the latency a user experiences when interacting with
Microsoft’s CDN (§5.2), we first estimate the number of RTTs re-
quired to load a typical web page hosted by Microsoft’s CDN.

The number of RTTs in a page load depends on a variety of
factors, so we aim to lower bound the number. We lower bound the
number of RTTs since a lower bound is a conservative measure of
the impact of CDN inflation, as the latency inflation accumulates
with each additional RTT, and larger pages (more RTTs) would
be impacted more. We provide an estimate of this lower bound
based on modeling and evaluation of a set of web pages hosted by
Microsoft’s CDN using Selenium (a headless web browser), finding
that 10 RTTs is a reasonable estimate. Due to length restrictions,
we include the full details of our measurements and methodology
in Appendix C.

5.2 Microsoft’s CDN User Latency

We now measure how users are impacted by latency of Microsoft’s
CDN. First, using measurements from RIPE Atlas probes, we demon-
strate that CDN latency results in significant delay to users when
fetching web content. Then, using both client-side measurements
and server-side logs, we also show that latency usually decreases
with more sites. Consequently, Microsoft has a major incentive to
limit inflation experienced by users, and investments in more any-
cast sites positively affect user experience much more in the case
of Microsoft’s CDN than in the roots. The positive effect on user
experience has been a major reason for recent expansion (§7.3).

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0 200 400 600 800 1000 1200
CDN Latency per Web Page Load (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 R

IP
E

Pr
ob

es

R47

R28
R110

R95

R74

R28
R47
R74
R95
R110

0 20 40 60 80 100 120
CDN Latency per RTT (ms)

(a)

−100 0 100 200 300 400
Latency Change per Page Load (Smaller Ring - Bigger Ring) (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 (R

eg
io

n,
 A

S)
 L

oc
at

io
ns

R28 - R47
R47 - R74
R74 - R95
R95 - R110

−10 0 10 20 30 40
Latency Change per RTT (Smaller Ring - Bigger Ring) (ms)

(b)

Figure 4: RTTs and latencies per web page load from RIPE probes to

CDN rings (4a), and change in median latency for Microsoft users

in ⟨region, AS⟩ locations when transitioning rings (4b). Axes with

per-RTT latencies are blue, while axes with per-page-load latencies

are red. Latencies per page load can be significant, so Microsoft has

an incentive to reduce inflation.

Microsoft’s CDN has groups of sites called rings (§2.2). Each
larger ring adds some sites to those of the smaller ring. Each ring
provides an IP anycast CDN, so we report results for each of the
rings individually. Different ring sizes reflect some of the benefit of
additional anycast locations, but a user’s traffic usually ingresses
to Microsoft’s network at the same PoP regardless of ring, since
all routers announce all rings. Users experience latency from Mi-
crosoft’s as they retrieve web objects (e.g., web pages or supporting
data) hosted by Microsoft’s CDN. Hence, in order to assess how
Microsoft users experience latency, we must measure what the RTT
is from users to front-ends and how many RTTs are incurred when
fetching web content. We use our estimate from Section 5.1 that
users incur at least 10 RTTs in a page load. To obtain per-page-load
latency, we scale anycast latency by the number of RTTs.

In Figure 4a, we show latencies to rings. Figure 4a uses laten-
cies measured from RIPE Atlas probes (§2.2), as we cannot share
absolute latencies from Microsoft measurements since Microsoft
considers this data proprietary. Although RIPE Atlas has limited
coverage [10], we compare (but cannot share) to CDN measure-
ments, which contain latencies from all ⟨region, AS⟩ locations
to all rings. We observed that the distribution of RIPE Atlas probe
latencies is overall somewhat lower than that of Microsoft’s users

globally (not shown in figure), so Figure 4a likely underestimates
the latency users typically experience.

Users can experience up to 1,000 ms in anycast latency per page
load, and, for large deployments (e.g., R95), half of RIPE Atlas
probes experience approximately 100 ms of latency per page load
(Fig. 4a). Therefore, unsurprisingly, latency to Microsoft’s CDN
factors into user experience, and so Microsoft has an incentive to
decrease latency for users. The difference in median latency per
page load between R28 and R110 is approximately 100ms, which
is a measure of how investments in more front-ends can help users.
Similarly, a root deployment with more sites tends to have lower
latency than a root deployment with fewer sites (§7.2), but such
reductions in latency hardly affect user experience (§4).

Latency benefits with more sites are not uniform, and perfor-
mance falls into one of two “groups” – R28 and R47 have similar
aggregate performance, as do R74 , R95 , and R110 . This group-
ing corresponds to the way rings “cover” users – R74 provides a
significant additional number of Microsoft users with a geographi-
cally close front-end over R47 (§7.2).

To show how adding front-ends tends to help individual
⟨region, AS⟩ locations (in addition to aggregate perfor-
mance), Figure 4b shows the difference in median latency for
a ⟨region, AS⟩ location from one ring to the next larger ring,
calculated using CDN measurements (as opposed to RIPE Atlas
probes). Most ⟨region, AS⟩ locations experience either equal or
better latency to the next largest ring, with diminishing returns as
more front-ends are added. A small fraction of users experience
small increases in latency when moving to larger rings – 90% of
users experience a decrease of at most a few millisecond increase
and 99% experience less than a 10 ms increase. Hence, Microsoft
does not sacrifice fairness for performance improvements.

We next investigate if Microsoft’s clear incentive to reduce la-
tency (and therefore inflation) translates to lower inflation from
users to Microsoft’s CDN than from users to the root DNS.

6 ANYCAST INFLATION CAN BE SMALL

We next investigate whether Microsoft’s incentive to reduce infla-
tion translates to an anycast deployment with less inflation than in
the roots, representing the study of anycast CDN inflation with the
best coverage to date – measurements are from billions of users in
hundreds of countries/regions and 59,000 ASes. Critically, we are
able to directly compare inflation between root DNS andMicrosoft’s
CDN, since we use the same methodology with broad coverage.

To measure anycast inflation for Microsoft’s CDN we use geo-
graphic information and server-side measurements (§2.2). Server-
side logs give us a global view of which clients hit which front-ends
and the latencies they achieved. Latency is measured via server-side
logging of TCP round-trip times. Front-ends act as TCP proxies for
fetching un-cached content from data centers. Routing over the
global WAN is near optimal [36], so measuring inflation using la-
tency to front-ends (as opposed to measuring inflation using end to
end latency) captures all routing inefficiency. We also use Microsoft
user locations, which are determined using an internal database.

As in Section 3, we calculate both geographic and latency infla-
tion. We calculate geographic inflation as in Equation (1), except all
users in a ⟨region, AS⟩ location are assigned the mean location

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0 5 10 15 20 25 30 35 40
Geographic Inflation per RTT (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 U

se
rs

R28
R47
R74
R95
R110
Root DNS

(a)

0 25 50 75 100 125 150 175 200
Latency Inflation per RTT (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 U

se
rs

R28
R47
R74
R95
R110
Root DNS

(b)

Figure 5: Inflation measured using geographic information (5a) and

CDN server side logs (5b). Inflation is more prevalent for larger

deployments but is still small for most users.

of users in the ⟨region, AS⟩ location. Anycast inflation results in
extra latency for every packet (and corresponding ACK) exchanged
between a client and an anycasted service, resulting in a per RTT
cost, so we refer to inflation as “per RTT”. Application-layer inter-
actions may incur this cost multiple times (as in the case of loading
a large web object from a CDN) or a single time (as in the case of
typical DNS request/response over UDP).

Microsoft users usually experience no geographic inflation
(Fig. 5a, y-axis intercepts), and 85% of users experience less than
10 ms (1, 000 𝑘𝑚) of geographic inflation per RTT for all rings.
Conversely, 97% of root DNS users experience some geographic
inflation, and 25% of users experience geographic inflation more
than 10 ms (1, 000 𝑘𝑚) per RTT. The fact that geographic inflation
is larger and more prevalent in the roots than in Microsoft’s CDN
(at every percentile) suggests Microsoft optimizes its deployment
to control it (§7).

We next calculate latency inflation for each ring as in Equa-
tion (2). We calculate median latencies over user populations
within a ⟨region, AS⟩ location hitting a front-end in a given ring,
the assumption being that measurements from some users in a
⟨region, AS⟩ location hitting the same site are representative of
all users in that ⟨region, AS⟩ location hitting that site. More than
83% of such medians were taken over more than 500 measurements,
so our observations should be robust. There is roughly constant
latency inflation as the number of front-ends grows (Fig. 5b),

which highlights that even though users have more low latency
options (front-ends), they can still take circuitous routes to close
front-ends. However, Microsoft is able to keep latency inflation
below 30 ms for 70% of users in all rings and below 60 ms for 90%
of users. In Microsoft’s CDN, 99% of users experience less than 100
ms of inflation, but 10% experience more than 100 ms to the roots.

An interesting takeaway from Figure 5b is that system-wide
per-query root DNS inflation is quite similar to CDN inflation, a
fact that is not clear from prior work [16, 51] since prior work used
different methodology and looked at fewer root letters. However,
inflation in individual root letters is quite worse than in Microsoft’s
CDN (Fig. 2b). Although inflation in the roots does not matter to
most users (§4.3), it is still interesting to see how recursive resolvers
can take advantage of the thirteen independent deployments of
root letters, and choose which letter is the best for them, in a way
that is not possible in Microsoft’s CDN.

Compared to prior work which also studied inflation in Mi-
crosoft’s CDN [16], we find an improvement – 95% of users experi-
ence inflation under 80 ms now compared to 85% 5 years ago. This
improvement (representing millions of users) is despite the fact
that Microsoft’s CDN has more than doubled in size and that we
use a stricter measure of inflation, and is evidence that expansion
reduces efficiency (in terms of % of users at their closest site) but
inflation can be kept low through careful deployment (§7.2). Fig-
ure 5b also offers a complementary view of inflation compared to
prior work [16], which does not take into account that routing from
a ⟨region, AS⟩ location to all front-ends might be sub-optimal.

Compared to Figure 5a, Figure 5b demonstrates there is room
for improvement – at least half of users visit their closest front-end,
but those users might take circuitous routes to those front-end as
shown by the low y-axis intercepts in Figure 5b. There is still room
for latency optimization in anycast deployments, which is an active
area of research [43, 47, 82].

7 INCENTIVES AND INVESTMENT SHAPE

DEPLOYMENTS AND PATHS

We have definitively answered the questions regarding inflation
that we posed at the end of Section 4.3. We now investigate why
inflation is so different in root DNS andMicrosoft’s CDN by looking
at path lengths (§7.1), investigate how geographical differences in
deployments affect inflation (§7.2), and present reasons behind the
expansion of both root DNS and CDNs (§7.3).

7.1 Microsoft’s CDN Has Shorter AS Paths, and

Short AS Paths are More Direct

CDNs have a financial incentive to keep latency low for users and
have the resources to build efficient systems. Microsoft deploys
state-of-the-art network routing automation [68, 80], a global SDN
WAN [36, 42], and expensive peering agreements when they make
economic sense and/or help user experience. These strategies result
in short, low latency routes between users and Microsoft.

We can capture some of these engineering efforts by measuring
how Microsoft connects to users. CDNs peer widely with end-user
networks and so have direct paths to many users [54, 78]. With
fewer BGP decision points, paths are often less inflated [70]. This
intuition motivates the following investigation of AS path lengths

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

CDN All
Roots

L F J K D E C M A B0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t o

f P
at

hs

2 ASes 3 ASes 4 ASes 5+ ASes

(a)

CDN All
Roots

F J K D E C A B0

20

40

60

80

Ge
og

ra
ph

ic
In

fla
tio

n
(m

s)

2 ASes
3 ASes
4+ ASes

(b)

Figure 6: Distribution of the number of ASes traversed to reach

various destinations (6a) and the correlation between the AS path

length towards a destination and geographic inflation (6b). Microsoft

is closely connected to many eyeball ASes, and this connectivity

correlates with lower inflation. We group paths towards roots and

Microsoft by ⟨region, AS⟩ locations, except for ‘All Roots’ which

groups paths by ⟨region, AS, root⟩ locations.

towards roots and Microsoft and of how path lengths relate to infla-
tion, which is summarized by Figure 6. Figure 6 quantifies one key
difference between root DNS and CDN deployments, but publicly
available data cannot capture all of Microsoft’s optimizations.

To quantify differences in AS path length between Microsoft and
roots, Figure 6a shows AS path lengths to roots and Microsoft from
RIPE Atlas probes. We use the maximum number of active RIPE
Atlas probes for which we can calculate AS paths to all destinations,
amounting to 7,200 RIPE Atlas probes in 158 countries/regions and
2,400 ASes. Although RIPE Atlas probes do not have representative
coverage [10], it is the best publicly available system, and we are
only interested in qualitative, comparative conclusions.

Lengths towards Microsoft’s CDN are based on traceroutes from
active Atlas probes in August 2020, whereas lengths towards the
roots are based on traceroutes from RIPE Atlas probes in April
2018 (the time of DITL).5 We perform IP to AS mapping using
Team Cymru [25], removing IP addresses that are private, asso-
ciated with IXPs, or not announced publicly by any ASes. We
merge AS siblings together into one ‘organization’. We derive sib-
ling data from CAIDA’s AS to organization dataset [15]. We group
paths by ⟨region, AS⟩ location, except for ‘All Roots’, for which
we group paths by ⟨region, AS, root⟩ location. We assign each
⟨region, AS⟩ location equal weight; when a given ⟨region, AS⟩
location hosts multiple RIPE Atlas probes that measure different
path lengths to a given destination, the location’s weight is split
evenly across the measured lengths.

5We use AS path lengths from traceroutes towards the roots measured in 2018 in
Figure 6, so that we can pair AS path length directly with 2018 DITL inflation data.

Figure 6a shows shorter paths to Microsoft than to the roots.
(Weighting by traffic volumes yielded similar results.) 69% of all
paths to Microsoft only traverse two ASes (direct from RIPE Atlas
probe AS to destination AS), and only 5% of paths to Microsoft
traverse four or more ASes. Conversely, between 5% and 44% paths
to root letters only traverse two ASes, and between 12% and 63% of
paths to roots traverse four or more ASes.

To demonstrate how short AS paths tend to have lower infla-
tion, Figure 6b shows the correlation between AS path length and
geographic inflation6. We compare to geographic (as opposed to
latency) inflation since we are able to calculate it for more root let-
ters. For the inflation towards destinations in Figure 6b, we use the
geographic inflation associated with that ⟨region, AS⟩ location
calculated for Figure 2 and Figure 5a. The AS path length towards
each destination is the most common AS path length measured
across RIPE Atlas probes in the same ⟨region, AS⟩ location. Fig-
ure 6b demonstrates that paths that traverse fewer ASes tend to
be inflated less. All Roots shows that this is true globally, across
root letters, and the results for each individual root letter shows
geographic inflation is less for paths traversing 2 ASes than it is for
paths traversing more (except for B and E root). The relationship
between inflation and AS path length is very different across root
letters, which is evidence of different deployment strategies.

Overall, our results demonstrate that shorter paths tend to have
less inflation, users have shorter paths toMicrosoft than towards the
roots, and Microsoft tends to have less inflation across path lengths.
We believe these observations are a result of strategic business
investments that Microsoft puts toward peering and optimizing its
routing and infrastructure. In addition to shorter AS paths generally
being less inflated [70], direct paths toMicrosoft’s CDN in particular
sidestep the challenges of BGP by aligning the best performing
paths with the BGP decision process [20]. Direct paths will usually
be preferred according to BGP’s top criteria, local preference and
AS path length (because by definition they are the shortest and
from a peer, and ASes usually set local preference to prefer peer
routes in the absence of customer routes, which for Microsoft will
only exist during a route leak/hijack). Among the multiple direct
paths to Microsoft that a router may learn when its AS connects
to Microsoft in different locations, the decision will usually fall
to lowest IGP cost, choosing the nearest egress into Microsoft.
Microsoft collocates anycast sites with all its peering locations, and
so the nearest egress will often (and, in the case of the largest ring,
always) be collocated with the nearest anycast site, aligning early
exit routing with global optimization in a way that is impossible in
the general case or with longer AS paths [70]. At smaller ring sizes,
Microsoft can use traffic engineering (for example, not announcing
to particular ASes at particular peering points) when it observes
an AS making poor routing decisions.

7.2 Larger Deployments are Less Efficient but

Have Lower Latency

CDN latency in Figure 4a and inflation in Figure 5 reveal a rela-
tionship that some may find non-intuitive – as deployment size

6The plot is a box-and-whisker, with the 5 horizontal lines from bottom to top for
each ⟨deployment, AS path length⟩ representing minimum, first quartile, median,
third quartile, and maximum values.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0 50 100
Number of Global Sites

20

40

60

80

100

120

140

160

M
ed

ia
n

La
te

nc
y

(m
s)

R28 R47
R74 R95 R110

A

B

C D
E F

H

IJK L

M

0 50 100
Number of Global Sites

0.3

0.4

0.5

0.6

Ef
fic

ie
nc

y
(%

 o
f U

se
rs

)

R28

R47
R74

R95 R110B

A

M

CE

D

K

J

F

L

(a)

250 500 750 1000 1250 1500 1750 2000
Coverage Radius of Site (km)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
t o

f U
se

r P
op

ul
at

io
n All Roots

R110
L - 138
R95
F - 94
R74
J - 68
R47
K - 52
R28
D - 20

(b)

Figure 7: Larger deployments lead to lower latency (Fig. 7a-left) since

they offermore low-latency options to users (Fig. 7b). However, fewer

users visit their closest site (Fig. 7a-right) leading to more inflation.

increases, inflation increases (less efficiency) but median latency
decreases. We observe a similar effect in Figure 2 – larger root
deployments tend to have more inflation but have lower latency.
Intuitively, larger deployments are less efficient since BGP will
make "wrong" decisions about which routes to export more often,
and have lower latency since there are more low-latency options
available to users. These results suggest efficiency may not be a
useful metric for assessing performance.

We make these relationships explicit in Figure 7a which shows
median latency and efficiency for each root letter andMicrosoft ring.
We define efficiency as the percentage of users with zero geographic
inflation (i.e., y-axis intercepts in Figure 2a and Figure 5a) since
it is a rough measure of how optimal routing is (routing may not
actually be optimal even if there is zero geographic inflation if users
take a circuitous route to their closest site). Latency to root letters in
Figure 7a is the median latency across all RIPE Atlas probes over an
hour in 2018 (time of DITL) (i.e., median per probe, then a median
across probes), and latencies to rings are medians in Figure 4a.

The trend that efficiency decreases with deployment size is less
clear in the root DNS than in Microsoft’s CDN, likely since the
root letters are run by different organizations and so have different
deployment strategies which also impact latency and inflation. A
counterexample to the trend is F root which had the lowest median
latency (15 ms) in 2018 and good efficiency (39%). F root likely
bucks the trend since F root partners with Cloudflare (a global
CDN) and so benefits from a deployment tuned to lowering user
latency. It is interesting that R95 and F root have similar number of

Table 1: Survey results from root DNS operators. Most root letters

indicate DDoS resilience and (surprisingly) latency have been major

factors for growth, and that future growth will likely slow.

Past Future

Reason for Growth Number of Orgs Future Growth Trend Number of Orgs

Latency 8 Acceleration of Growth 1
DDoS Resilience 9 Decceleration of Growth 4
ISP Resilience 5 Maintain Growth Rate 4

Other 3 Cannot Share 1

sites and (low) median latency (approximately 15 ms), but that F
root has considerably lower efficiency; hence, low efficiency is not
necessarily bad. Conversely, high efficiency does not result in low
latency; for example, 49% of users reach their closest B root site,
but users still experience a high median latency to B root of 160 ms.
Prior work looked at similar metrics to those in Figure 7a (right) for
root letters using data from RIPE Atlas and arrived at very different
conclusions [51], possibly since RIPE Atlas has limited coverage.

Part of what contributes to low latency is that organizations place
sites close to users. Figure 7b shows what percent of Microsoft users
are "covered" by a site in each ring and in a root letter of similar
size, where "covered" means the closest site is within 𝑋 km of
users (x-axis). Hence, coverage implies there is a reasonably low
latency option for users. Figure 7b is quite surprising – first, the
root DNS as a whole (All Roots) has impressive coverage – 91% of
Microsoft users are within 500 km of a root site (not even counting
local sites!). Moreover, individual root letters can have even better
coverage of Microsoft users than rings (L root has 94% of users
within 1,000 km whereas R110 has 90%), which is interesting since
L root, unlike R110, was not deployed specifically for Microsoft
users. Figure 7b also demonstrates that approximating root DNS
users with Microsoft users (Fig. 2) was fair, since root letters have
decent coverage of Microsoft users. An exception is D root which
did not have global sites in India at the time, where Microsoft has
both anycast sites and a large user population to serve.

7.3 Differing Incentives Lead to Different

Investments and Outcomes

We now discuss how incentives have shaped deployments and how
our findings may extend to other anycast deployments.

7.3.1 Drivers for Growth. We reached out to operators of both root
DNS and Microsoft asking what fueled their recent growth and
whether they think it will continue. Of the twelve organizations
running a root DNS letter, 11 responded, and we summarize the
main reasons root DNS letters expand in Table 1. Principally, roots
grew to reduce latency and improve DDoS resilience.

Over the past 5 years the number of root DNS sites has more
than doubled from 516 to 1367, steadily increasing. Surprisingly,
Table 1 demonstrates latency was a primary reason for expansion
for nearly all root letters. Our results suggest this reasoning does
not stem from caring about user experience (§4.3) but perhaps from
establishing a competitive benchmark with other root letters.

Root operators also indicated growth was driven to improve
resilience in two dimensions: DDoS and "ISP" resilience. DDoS
resilience refers to increasing overall capacity so root letters can
provide service in the face of DDoS attacks. ISP resilience refers to
offering root sites in certain locations and networks so that service
can still be offered even if connectivity to the rest of the Internet is

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

severed. According to both operator responses and publicly avail-
able sources, growth additionally stems from open hosting policies
[40, 62, 74] (almost any AS can volunteer to host a new site) and
from teaming up with large CDNs like Cloudflare. Root operator
responses about future plans for growth suggest that the increase
of root DNS sites will slow in the coming years.

With such decentralized deployment (in part by design to pro-
mote resilience), coordinated optimization of root DNS latency is
difficult, even if latency optimization were a goal. By contrast, Mi-
crosoft’s CDN is latency-sensitive and is centrally run. Operators
optimize and monitor latency, thereby minimizing inflation (§6)
with direct paths to many users (§7.1). Unlike some root letters,
Microsoft does not (externally) compare latency with other CDNs,
considering latency proprietary. Construction of new front-ends
often follows business needs to support new markets. These com-
mercial motivations contrast with the above root DNS reasons for
expansion, yet the number of front-ends for Microsoft’s CDN has
more than doubled in the past five years.

7.3.2 Other Anycast Systems. A key takeaway from our results
is that one cannot generalize our results to other systems using
anycast. Anycast must be assessed in the context of the system in
which it resides. Prior work took the results of one system (root
DNS) and assumed it applied generally to a technique (anycast)
which resulted in misleading conclusions [51]. It would be difficult
to even extend our results to systems with similar deployments,
since the degree to which performance improvements are due to
the deployment and the degree to which they are due to tuning of
route configurations is unknown [9].

Other systems using anycast include Akamai DNS authoritative
resolvers [1], Google Cloud VMs [32], and Google Public DNS
[31]. All of these services have different performance requirements
for users; i.e., they all want inflation to be "low" but how "low"
it needs to be depends on the application. For example, Google
Cloud VMs can host game engines which have much stricter latency
requirements than fetching HTTP objects. We hope future work
will take these considerations into account when assessing anycast.

8 RELATEDWORK

Root DNS Anycast. Many prior studies look at latency and in-
flation performance in the root DNS [13, 51, 52, 67, 69]. Our work
builds on these studies, conducting analysis for nearly every root
letter and calculating inflation for millions of recursives in 35,000
ASes. These larger scale measurements offer broad coverage, en-
able comparisons among root letter deployments, and allow us to
assess inflation in the root DNS system as a whole. We also cal-
culate latency inflation differently than in prior work, which we
believe offers a useful, orthogonal picture of inflation, and calculate
inflation using the same methodology for both Microsoft’s and
root DNS, which allows us to compare inflation directly between
Microsoft’s CDN and root DNS (not possible with prior studies).
Finally, we place latency and inflation in the context of user experi-
ence, while prior work on the root DNS does not. Other prior work
looks at anycast’s ability defend against DDoS attacks [58, 67]; we
do not consider anycast’s performance in this context. Other prior
work discussed how ad-hoc anycast deployments can lead to poor
performance and load balancing and is an early study of inflation

in the root DNS [13]. Our work supports these conclusions and
uses them in a larger conversation about anycast in the context
of applications. We also confirm observations in prior work that
anycast site affinity is high [12], at least over the duration of DITL.

CDN Anycast. Some CDNs use IP anycast [16, 21, 30, 65, 75].
Some prior work looked at inflation in CDNs [16], finding it to
be similarly low. Our work presents a much larger study of la-
tency and inflation (more than twice as many front-ends, orders
of magnitude more users and measurements), updating the numer-
ical results and lending confidence to the result that inflation is
low; places performance metrics in the context of user experience;
compares performance to other systems that use anycast; and pro-
vides some evidence of how CDNs can keep inflation low. Other
prior work looked at how prefix announcement configurations
can impact the performance of an anycast CDN [54]. More recent
work has investigated how to diagnose and improve anycast perfor-
mance through measurements in production systems [17, 43, 76].
Concurrent work examined addressing challenges faced by CDNs,
proposing a scheme to decouple addressing from services that is
compatible with anycast [27]. Our work characterizes, rather than
changes, anycast CDN performance.

Recursive Resolvers, The Benefits of Caching, andWeb Performance.
Prior work has looked at statistics and latency implications of local
resolvers [18, 44]. We calculate similar statistics using recent data.
Some previous work looked at certain pathological behaviors of
popular recursives and the implications these behaviors have on
root DNS load times [34, 49, 73, 81]. We present additional patho-
logical behavior of a popular recursive in Appendix E. Many studies
characterize web performance and consider DNS’s role in a page
load [8, 11, 72], although none consider how root DNS specifically
contributes to page load time and how this relates to user experi-
ence. Recent work considers placing DNS in the context of other
applications but does not look at root DNS latency in particular [6].

9 CONCLUSION

While anycast performance is interesting in its own right, prior
studies have drawn conclusions primarily from anycast for root
DNS [51].We have shown that anycast operates differently in CDNs,
with less inflation. Differences stem from the impact the anycast
service’s latency and inflation has on user-perceived latency. Our
results show the importance of considering multiple subjects in
measurement studies and suggest why anycast continues to see
wide, growing deployment.

Acknowledgements. This paper has been partially funded by
NSF CNS-1835253 and NSF CNS-1836872. John Heidemann’s work
was supported in part by NSF CNS-1925737 and OAC-1739034. We
would like to thank our shepherd Xiaowei Yang and the anonymous
reviewers for their insightful comments, root DNS operators for
their feedback on our analysis, and Dave Levin and Marcel Flores
for their detailed feedback on an early draft of the paper.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES

[1] Akamai. 2020. Designing DNS for Availability and Resilience Against DDoS
Attacks. akamai.com/us/en/multimedia/documents/white-paper/akamai-
designing-dns-for-availability-and-resilience-against-ddos-attacks.pdf

[2] Akamai. 2021. Akamai Compliance Programs. akamai.com/us/en/about/
compliance/

[3] Mehmet Akcin. 2015. Comparing Root Server Performance Around the World.
thousandeyes.com/blog/comparing-dns-root-server-performance

[4] Adiel Akplogan, Roy Arends, David Conrad, Alain Durand, Paul Hoffman, David
Huberman, Matt Larson, Sion Lloyd, Terry Manderson, David Soltero, Samaneh
Tajalizadehkhoob, and Mauricio Vergara Ereche. 2020. Analysis of the Effects
of COVID-19-Related Lockdowns on IMRS Traffic. (April 2020). icann.org/en/
system/files/files/octo-008-en.pdf

[5] Mark Allman. 2019. On Eliminating Root Nameservers from the DNS. In Proceed-
ings of the 18𝑡ℎ ACM Workshop on Hot Topics in Networks (HOTNETS) (Princeton,
NJ, USA). ACM.

[6] Mark Allman. 2020. Putting DNS in Context. In Proceedings of the 2020 Internet
Measurement Conference (IMC) (Online). ACM.

[7] Amazon. 2020. Amazon Route 53 FAQs. aws.amazon.com/route53/faqs/
[8] Internet Archive. 2020. The HTTP Archive Project. httparchive.org/
[9] Todd Arnold, Matt Calder, Italo Cunha, Arpit Gupta, Harsha V. Madhyastha,

Michael Schapira, and Ethan Katz-Bassett. 2019. Beating BGP is Harder than we
Thought. In Proceedings of the 18𝑡ℎ ACM Workshop on Hot Topics in Networks
(HOTNETS) (Princeton, NJ, USA). ACM.

[10] ToddArnold, Ege Gürmeriçliler, Georgia Essig, Arpit Gupta,Matt Calder, Vasileios
Giotsas, and Ethan Katz-Bassett. 2020. (HowMuch) Does a Private WAN Improve
Cloud Performance? In INFOCOM (Online). IEEE.

[11] Alemnew Sheferaw Asrese, Pasi Sarolahti, Magnus Boye, and Jorg Ott. 2016.
WePR: A Tool for Automated Web Performance Measurement. In 2016 IEEE
Globecom Workshops (Washington D.C., USA). IEEE.

[12] Hitesh Ballani and Paul Francis. 2005. Towards a Global IP Anycast Service.
In Proceedings of the 2005 ACM SIGCOMM Conference (Philadelphia, PA, USA).
ACM.

[13] Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. 2006. A Measurement-
Based Deployment Proposal for IP Anycast. In Proceedings of the 2006 Internet
Measurement Conference (IMC) (Rio de Janeiro, Brazil). ACM.

[14] Ray Bellis. 2015. Researching F-root Anycast Placement Using RIPE At-
las. labs.ripe.net/author/ray_bellis/researching-f-root-anycast-placement-
using-ripe-atlas/

[15] CAIDA. 2020. Inferred AS to Organization Mapping Dataset. caida.org/data/as-
organizations/

[16] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the 2015 Internet Measurement Conference (IMC) (Tokyo, Japan). ACM.

[17] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. 2018. Odin: Mi-
crosoft’s Scalable Fault-Tolerant CDN Measurement System. In 15𝑡ℎ USENIX
Symposium on Networked Systems Design and Implementation (NSDI) (Renton,
WA, USA). USENIX.

[18] Thomas Callahan, Mark Allman, and Michael Rabinovich. 2013. On Modern DNS
Behavior and Properties. ACM SIGCOMM Computer Communication Review (July
2013).

[19] Neal Cardwell, Stefan Savage, and Tom Anderson. 2000. Modelling TCP Latency.
In INFOCOM (Tel-Aviv, Israel). IEEE.

[20] Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakrishnan, Ethan Katz-
Bassett, and Ramesh Govindan. 2015. Are We One Hop Away from a Better
Internet? In Proceedings of the 2015 Internet Measurement Conference (IMC) (Tokyo,
Japan). ACM.

[21] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and Dario Rossi.
2015. Characterizing IPv4 Anycast Adoption and Deployment. In Proceedings of
the 11𝑡ℎ ACM Conference on Emerging Networking Experiments and Technologies
(CoNEXT) (Heidelberg, Germany). ACM.

[22] Cloudflare. 2020. What is DNS? cloudflare.com/learning/dns/what-is-dns/
[23] Lorenzo Colitti, Erik Romijn, Henk Uijterwaal, and Andrei Robachevsky. 2006.

Evaluating the Effects of Anycast on DNS Root Name Servers. RIPE Document
RIPE-393 (Oct. 2006).

[24] Gerald Combs. 2020. Tshark. wireshark.org/docs/man-pages/tshark.html
[25] Team Cymru. 2020. IP to ASN Mapping Service. team-cymru.com/community-

services/ip-asn-mapping/
[26] DNS-OARC. 2018. A Day in the Life of the Internet. dns-oarc.net/oarc/data/

ditl/2018
[27] Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski,

Pavel Odinstov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove,
Christopher A.Wood, and Nick Sullivan. 2021. The Ties that un-Bind: Decoupling
IP from Web Services and Sockets for Robust Addressing Agility at CDN-Scale.
In Proceedings of the 2021 ACM SIGCOMM Conference (Online). ACM.

[28] Hongyu Gao, Vinod Yegneswaran, Jian Jiang, Yan Chen, Phillip Porras, Shalini
Ghosh, and Haixin Duan. 2014. Reexamining DNS from a Global Recursive

Resolver Perspective. IEEE/ACM Transactions on Networking (Oct. 2014).
[29] Manaf Gharaibeh, Han Zhang, Christos Papadopoulos, and John Heidemann.

2016. Assessing Co-locality of IP Blocks. In Proceedings of 19𝑡ℎ IEEE Global
Internet Symposium (San Francisco, CA, USA). IEEE.

[30] Danilo Giordano, Danilo Cicalese, Alessandro Finamore, Marco Mellia, Maurizio
Munafò, Diana Zeaiter Joumblatt, and Dario Rossi. 2016. A First Characterization
of Anycast Traffic from Passive Traces. In Network Traffic Measurement and
Analysis Conference (TMA) (Louvain la Neuve, Belgium). IFIP/ACM.

[31] Google. 2020. Google Public DNS. developers.google.com/speed/public-dns
[32] Google. 2021. Cloud Load Balancing. cloud.google.com/load-balancing
[33] GTmetrix. 2019. The Top 1,000 Sites on the Internet. gtmetrix.com/top1000.html
[34] Wes Hardaker. 2020. What’s in a Name? blog.apnic.net/2020/04/13/whats-in-a-

name/
[35] John Heidemann, Katia Obraczka, and Joe Touch. 1997. Modelling the Perfor-

mance of HTTP Over Several Transport Protocols. ACM/IEEE Transactions on
Networking (Oct. 1997).

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and RogerWattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. In Proceedings of the 2013 ACM SIGCOMM Conference (Hong Kong).
ACM.

[37] Geoff Huston. 2014. How Big is that Network? labs.apnic.net/?p=526
[38] IANA. 2020. IANA IPv4 Special-Purpose Address Registry. iana.org/assignments/

iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
[39] IANA. 2020. Root Servers. root-servers.org
[40] ICANN. 2020. Packet Clearing House. icannwiki.org/Packet_Clearing_House
[41] MaxMind Inc. 2020. IP Geolocation. maxmind.com/en/geoip2-databases
[42] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, and Min Zhu. 2013. B4:
Experience with a Globally-Deployed Software Defined WAN. In Proceedings of
the 2013 ACM SIGCOMM Conference (Hong Kong). ACM.

[43] Yuchen Jin, Sundararajan Renganathan, Ganesh Ananthanarayanan, Junchen
Jiang, Venkata N Padmanabhan, Manuel Schroder, Matt Calder, and Arvind
Krishnamurthy. 2019. Zooming in on Wide-Area Latencies to a Global Cloud
Provider. In Proceedings of the 2019 ACM SIGCOMM Conference. ACM.

[44] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2002. DNS Perfor-
mance and the Effectiveness of Caching. IEEE/ACM Transactions on networking
(Feb. 2002).

[45] Dina Katabi and John Wroclawski. 2000. A Framework for Global IP-Anycast
(GIA). In Proceedings of the 2000 ACM SIGCOMM Conference (Stockholm, Sweden).
ACM.

[46] Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. 2006. Towards IP Geolocation Using De-
lay and Topology Measurements. In Proceedings of the 2006 Internet Measurement
Conference (IMC) (Rio de Janeiro, Brazil). ACM.

[47] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. 2009. Moving Beyond End-to-
End Path Information to Optimize CDN Performance. In Proceedings of the 2009
Internet Measurement Conference (IMC) (Chicago, IL, USA). ACM.

[48] W. Kumari and P. Hoffman. 2020. Running a Root Server Local to a Resolver.
Technical Report 8806. Internet Request For Comments. www.rfc-editor.org/
rfc/rfc8806.txt

[49] Matthew Lentz, Dave Levin, Jason Castonguay, Neil Spring, and Bobby Bhat-
tacharjee. 2013. D-mystifying the D-root Address Change. In Proceedings of the
2013 Internet Measurement Conference (IMC) (Barcelona, Spain). ACM.

[50] Zhihao Li. 2019. Diagnosing and Improving the Performance of Internet Anycast.
Ph.D. Dissertation. University of Maryland, College Park.

[51] Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet
Anycast: Performance, Problems, & Potential. In Proceedings of the 2018 ACM
SIGCOMM Conference (Budapest, Hungary). ACM.

[52] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, and Jianping Wu. 2013. Measuring
Query Latency of Top Level DNS Servers. In International Conference on Passive
and Active Network Measurement (PAM) (Hong Kong). Springer.

[53] Zhuoqing Morley Mao, Charles Cranor, Fred Douglis, Michael Rabinovich, Oliver
Spatscheck, and Jia Wang. 2002. A Precise and Efficient Evaluation of the Prox-
imity Between Web Clients and their Local DNS Servers. In USENIX Annual
Technical Conference (Monterey, CA, USA). USENIX.

[54] Stephen McQuistin, Sree Priyanka Uppu, and Marcel Flores. 2019. Taming Any-
cast in the Wild Internet. In Proceedings of the 2019 Internet Measurement Confer-
ence (IMC) (Amsterdam, Netherlands). ACM.

[55] Christopher Metz. 2002. IP Anycast Point-To-(Any) Point Communication. IEEE
Internet Computing (Aug. 2002).

[56] P. Mockapetris. 1987. Domain Names - Implementation and Specification. ietf.
org/rfc/rfc1035.txt

[57] Giovane C. M. Moura, John Heidemann,Wes Hardaker, Jeroen Bulten, Joao Ceron,
and Cristian Hesselman. 2020. Old But Gold: Prospecting TCP to Engineer DNS
Anycast (extended). ISI-TR-740, USC/Information Sciences Institute, Tech. Report
(2020).

akamai.com/us/en/multimedia/documents/white-paper/akamai-designing-dns-for-availability-and-resilience-against-ddos-attacks.pdf
akamai.com/us/en/multimedia/documents/white-paper/akamai-designing-dns-for-availability-and-resilience-against-ddos-attacks.pdf
akamai.com/us/en/about/compliance/
akamai.com/us/en/about/compliance/
thousandeyes.com/blog/comparing-dns-root-server-performance
icann.org/en/system/files/files/octo-008-en.pdf
icann.org/en/system/files/files/octo-008-en.pdf
aws.amazon.com/route53/faqs/
httparchive.org/
labs.ripe.net/author/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas/
labs.ripe.net/author/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas/
caida.org/data/as-organizations/
caida.org/data/as-organizations/
cloudflare.com/learning/dns/what-is-dns/
wireshark.org/docs/man-pages/tshark.html
team-cymru.com/community-services/ip-asn-mapping/
team-cymru.com/community-services/ip-asn-mapping/
dns-oarc.net/oarc/data/ditl/2018
dns-oarc.net/oarc/data/ditl/2018
developers.google.com/speed/public-dns
cloud.google.com/load-balancing
gtmetrix.com/top1000.html
blog.apnic.net/2020/04/13/whats-in-a-name/
blog.apnic.net/2020/04/13/whats-in-a-name/
labs.apnic.net/?p=526
iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
root-servers.org
icannwiki.org/Packet_Clearing_House
maxmind.com/en/geoip2-databases
www.rfc-editor.org/rfc/rfc8806.txt
www.rfc-editor.org/rfc/rfc8806.txt
ietf.org/rfc/rfc1035.txt
ietf.org/rfc/rfc1035.txt

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

[58] Giovane C. M. Moura, Ricardo de Oliveira Schmidt, John Heidemann, Wouter B.
de Vries, Moritz Muller, Lan Wei, and Cristian Hesselman. 2016. Anycast vs.
DDoS: Evaluating the November 2015 Root DNS Event. In Proceedings of the 2016
Internet Measurement Conference (IMC) (Santa Monica, CA, USA). ACM.

[59] Mozilla. 2020. Window: Load Event. developer.mozilla.org/en-US/docs/Web/
API/Window/load_event

[60] Moritz Müller, Giovane C. M. Moura, Ricardo de Oliveira Schmidt, and John
Heidemann. 2017. Recursives in theWild: Engineering Authoritative DNS Servers.
In Proceedings of the 2017 Internet Measurement Conference (IMC) (London, United
Kingdom). ACM.

[61] RIPE NCC. 2006. Evaluating The Effects Of Anycast On DNS Root Nameservers.
ripe.net/publications/docs/ripe-393#efficiency

[62] RIPE NCC. 2018. Hosting a K-root Node. ripe.net/analyse/dns/k-root/hosting-
a-k-root-node

[63] OpenDNS. 2020. Data Center Locations. opendns.com/data-center-locations/
[64] Craig Partridge, Trevor Mendez, and Walter Milliken. 1993. Host Anycasting

Service. tools.ietf.org/html/rfc1546
[65] Matthew Prince. 2013. Load Balancing without Load Balancers. blog.cloudflare.

com/cloudflares-architecture-eliminating-single-p/
[66] Jan Rüth, Christian Bormann, and Oliver Hohlfeld. 2017. Large-Scale Scanning of

TCP’s Initial Window. In Proceedings of the 2017 Internet Measurement Conference
(IMC) (London, United Kingdom).

[67] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. 2006. On the Use of Anycast
in DNS. In Proceedings of the ACM SIGMETRICS Conference (Banff, Canada). ACM.

[68] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to
the World. In Proceedings of the 2017 ACM SIGCOMM Conference (Los Angeles,
CA, USA). ACM.

[69] Ricardo de Oliveira Schmidt, John Heidemann, and Jan Harm Kuipers. 2017.
Anycast Latency: How Many Sites Are Enough? In International Conference on
Passive and Active Network Measurement (PAM) (Sydney, Australia). Springer.

[70] Neil Spring, Ratul Mahajan, and Thomas Anderson. 2003. The Causes of Path
Inflation. In Proceedings of the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications (Karlsruhe, Germany).

ACM.
[71] RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network.

Internet Protocol Journal (2015).
[72] Srikanth Sundaresan, NazaninMagharei, Nick Feamster, Renata Teixeira, and Sam

Crawford. 2013. Web Performance Bottlenecks in Broadband Access Networks.
In Proceedings of the ACM SIGMETRICS Conference (Pittsburgh, PA, USA). ACM.

[73] Matthew Thomas. 2020. Chromium’s Impact on Root DNS Traffic. blog.apnic.
net/2020/08/21/chromiums-impact-on-root-dns-traffic

[74] Verisign. 2021. FAQ on RIRS Node Hosting. verisign.com/en_US/domain-
names/internet-resolution/node-hosting/index.xhtml

[75] Verizon. 2020. verizondigitalmedia.com/media-platform/delivery/network/
[76] Lan Wei, Marcel Flores, Harkeerat Bedi, and John Heidemann. 2020. Bidirec-

tional Anycast/Unicast Probing (BAUP): Optimizing CDN Anycast. In Network
Operations and Management Symposium (Online). IEEE/IFIP.

[77] Lan Wei and John Heidemann. 2017. Does Anycast Hang Up on You? In Network
Traffic Measurement and Analysis Conference (TMA) (Dublin, Ireland). IFIP/ACM.

[78] Florian Wohlfart, Nikolaos Chatzis, Caglar Dabanoglu, Georg Carle, and Walter
Willinger. 2018. Leveraging Interconnections for Performance: The Serving In-
frastructure of a Large CDN. In Proceedings of the 2018 ACM SIGCOMMConference
(Budapest, Hungary). ACM.

[79] Young Xu. 2017. 2017 Update: Comparing Root Server Performance Glob-
ally. thousandeyes.com/blog/2017-update-comparing-root-server-performance-
globally/

[80] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. 2017. Taking the Edge off with Espresso: Scale, Reliability and Programma-
bility for Global Internet Peering. In Proceedings of the 2017 ACM SIGCOMM
Conference (Los Angeles, CA, USA). ACM.

[81] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority Server
Selection in DNS Caching Resolvers. ACM SIGCOMM Computer Communication
Review (April 2012).

[82] Yaping Zhu, Benjamin Helsley, Jennifer Rexford, Aspi Siganporia, and Sridhar
Srinivasan. 2012. LatLong: Diagnosing Wide-Area Latency Changes for CDNs.
IEEE Transactions on Network and Service Management (2012).

developer.mozilla.org/en-US/docs/Web/API/Window/load_event
developer.mozilla.org/en-US/docs/Web/API/Window/load_event
ripe.net/publications/docs/ripe-393#efficiency
ripe.net/analyse/dns/k-root/hosting-a-k-root-node
ripe.net/analyse/dns/k-root/hosting-a-k-root-node
opendns.com/data-center-locations/
tools.ietf.org/html/rfc1546
blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
blog.apnic.net/2020/08/21/chromiums-impact-on-root-dns-traffic
blog.apnic.net/2020/08/21/chromiums-impact-on-root-dns-traffic
verisign.com/en_US/domain-names/internet-resolution/node-hosting/index.xhtml
verisign.com/en_US/domain-names/internet-resolution/node-hosting/index.xhtml
verizondigitalmedia.com/media-platform/delivery/network/
thousandeyes.com/blog/2017-update-comparing-root-server-performance-globally/
thousandeyes.com/blog/2017-update-comparing-root-server-performance-globally/

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

10−3 10−2 10−1 100 101 102 103

Queries per User per Day

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 U

se
rs

Ideal
CDN
APNIC

Figure 8: Daily queries by users to the root DNS, calculated by amor-

tizing root DNS requests over user populations, when including or

excluding queries for invalid TLDs. Counting invalid queries dras-

tically increases median daily query counts to 22 (CDN), a 20-fold

increase, or to 6 (APNIC), a 6-fold increase, depending on which user

data we use.

Appendices are supporting material that has not been peer-
reviewed.

A SUMMARY OF DATA

We use a myriad of datasets in the work, which is a result of our
presenting answers to the questions we pose in several different
ways (each with strengths and weaknesses). This approach allows
us to overcome the limitations of individual datasets, by combining
multiple views with different tradeoffs. To aid in comprehensibility,
we summarize each of our datasets in Table 2 and Table 3.

As an example of how we use multiple views with different
tradeoffs, consider the differences between the DITL packet traces
(containing 51.9 billion queries across 50,000 ASes) and our local
DNS / activity measurements (10 thousand measurements, 2 users).
DITL allows us to see, globally, how recursive resolvers interact
with the root DNS, allowing us to make definitive statements about
global inflation and query volumes. However, DITL does not tell
us how individual users interact with the root DNS, and translat-
ing DITL queries to user experience requires heuristic arguments
about caching (§4.3). Our local DNS and activity measurements,
although limited, give us precise reference points for how root DNS
factors into everyday Internet browsing experience, which we find
valuable.

B QUANTIFYING THE IMPACT OF

METHODOLOGICAL DECISIONS

When analyzing latency and inflation, we often make assumptions
or choose to conduct analysis a certain way. In what follows, we jus-
tify our various assumptions and pre-processing steps, and analyze
the effects of these assumptions on our results.

B.1 Effect of Removing Invalid TLD Queries

In Section 4 we estimate the number of queries users experience
due to the root DNS by amortizing queries over user populations.
Out of 51.9 billion daily requests to all roots, we observe 31 billion
daily requests for bogus domain names and 2 billion daily requests
for PTR records. We choose to not count these towards user query
counts, because we believe many of these queries do not lie on the
critical path of user applications and so do not cause user-facing

latency. This decision has a significant effect on conclusions we can
draw, decreasing daily query counts to root DNS resolution by 20×.

We base this decision on prior work which investigated the
nature of queries with invalid TLDs landing at the roots. ICANN
has found that 28% of queries for non-existent domains at L root
result from captive-portal detection algorithms in Chromium-based
browsers [4]. Researchers at USC have found that more than 90% of
single-string (not separated by dots) queries at the root match the
Chromium captive-portal pattern [34]. We remove captive-portal
detection queries from consideration since they occur on browser
startup and network reconnect, not during regular browsing, and
they can occur in parallel with browsing.

Some might argue that queries for invalid TLDs are associated
with user latency because typos for URLs (when typing into a
browser search bar, for example) cause users to generate a query
to the root servers. However, typos only generate a query to the
root server if the TLD is misspelled (as opposed to the hostname).
Hence typos, in general, cause users latency, but only specific typos
will cause users root latency. Moreover, prior work has found that
approximately 60% of queries for invalid TLDs reaching root servers
are for domains such as local, no_dot, belkin, and corp [28]. It is
unlikely these queries are caused by typos, since they are actual (as
opposed to misspelled) words and resemble domains often seen in
software or in corporate networks. Chromium queries and queries
for a certain set of invalid TLDs therefore account for around 86%
of all queries for invalid TLDs at the roots, suggesting the vast
majority of queries we exclude are not directly associated with user
latency.

Nevertheless, it is still valuable to assess how including these
queries for invalid TLDs changes the conclusions we can make
about root DNS latency experienced by users. Figure 8 shows daily
user latencies due to root DNS resolution when we include requests
for invalid TLDs and PTR records in daily query volumes. Using
CDN user counts, users experience a median of 22 queries to the
root DNS each day – about 20×more thanwhenwe exclude requests
for invalid queries (§4). This drastic 20-fold increase is surprising
given we only (roughly) double the amount of queries by including
invalid queries. The difference is best explained by the fact that
a majority of invalid queries are generated by /24s with a large
number of users. Since the y-axis of Figure 8 is the number of users
(not /24s), counting invalid queries shifts the graph far to the right.
Hence, counting invalid queries drastically affects the conclusions
we can draw. There is a less severe 6-fold increase in the number
of queries per user per data calculated using APNIC data. Overall,
including invalid TLD queries drastically changes our quantitative
conclusions about user interaction with the root DNS but may not
change our qualitative conclusions, since 20 queries a day to the
roots is still small.

B.2 Representativeness of Daily Root Latency

Analysis

In Section 4 we estimate the number of queries users experience due
to the root DNS by amortizing queries over user populations. To
obtain estimates of user populations, we obtain counts of Microsoft
users who use recursives (§2.1). Naturally recursives used by Mi-
crosoft users and recursives seen in DITL do not overlap perfectly.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Table 2: Summary of Datasets

Dataset

of

Measurements
Duration Year

of

ASes
Technology/Format

Sampled CDN Server-Side Logs (§6) 11.0 ×109 1 week 2019 59 000 Windows TCP/IP, HTTPService (TCP RTT)
Sampled CDN Client-Side Measurements (§5.2) 50.0 ×107 1 week 2019 10 600 Odin [17] (HTTP GET)
CDN User Counts (§4.3) — 1 month 2019 39 000 Custom URL DNS Requests
APNIC User Counts (§4.3) — updated daily 2019 23 000 Google Ad Delivery Network
DITL Packet Traces (§2.1) 51.9 ×109 2 days 2018 50 300 Packet Traces
DITL ∩ CDN (§3, §4.3, §7) 18.6 ×109 — 2018–2019 35 500 Root DNS query and user counts
RIPE Atlas (§5.2, §7.1) 10.0 ×103 1 hour Various 3 300 ping, traceroute
USC/ISI (§4.3) 10.0 ×107 1 year 2018 1 Packet Traces
Local DNS / Activity Measurements (§4.3) 68.0 ×104 1 month 2020 2 Packet Traces, Chrome Webtime Tracker

Table 3: Strengths and Weaknesses of Datasets

Dataset Strengths Weaknesses

Sampled CDN Server-Side Logs (§6) Has client to front-end mappings, global coverage Cannot hold user population fixed across rings
Sampled CDN Client-Side Measurements (§5.2) Can hold user population fixed across rings, global coverage Do not know which front-end the client reached, smaller scale
CDN User Counts (§4.3) Precise estimates of user counts, global coverage Under estimates user counts
APNIC User Counts (§4.3) Global coverage, publicly accessible Not validated, coarse granularity
DITL Packet Traces (§2.1) Global coverage Noisy, only above the recursive resolver
DITL ∩ CDN (§3, §4.3, §7) Global coverage, attributes queries to users Excludes v6
RIPE Atlas (§5.2, §7.1) Historic data, reproducibility Limited coverage
USC/ISI (§4.3) Precise, below the recursive, Limited coverage, no information about users
Local DNS / Activity Measurements (§4.3) Precise, at the end user Limited coverage, small scale

10−3 10−2 10−1 100 101 102 103

Queries per User per Day

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 U

se
rs

Ideal
CDN
APNIC

Figure 9: A CDF of the number of queries Microsoft users experience

due to root DNS resolution, per day, without joining recursives by

/24 in DITL with recursives seen by Microsoft (CDN). This unrep-

resentative analysis yields an estimate of daily user queries far, far

lower than in Section 4.3.

Table 4: Statistics displaying the extent to which the recursives of

users in Microsoft’s CDN overlap recursives seen in the 2018 DITL

captures without users and volumes by /24. Also shown in paren-

theses are corresponding statistics when joining by /24. Joining the

datasets by /24 increases most measures of representation by tens of

percents, with some measures increased by up to 64%.

dataset Statistic Percent Overlap (by /24)

DITL ∩ CDN

DITL Recursives 2.45% (29.3%) of DITL Recursives
DITL Volume 8.4% (72.2%) of DITL Query Volume
CDN Recursives 41.9% (78.8%) of CDN Recursives
CDN Volume 47.05% (88.1%) of CDN Query Volume

To increase the representativeness of our analysis, we aggregate
Microsoft user counts and DITL query volumes by resolver /24,
and join the two datasets on /24 to create the DITL∩CDN dataset.
The intuition behind this preprocessing step is that IP addresses in
the same /24 are likely colocated, owned by the same organization,

and act as recursives for similar sets of users. We now justify this
decision and discuss the implications of this preprocessing step on
the results presented in Section 4.3.

In Table 4 we summarize the extent to which the recursives
seen by Microsoft are representative of the recursives seen in DITL,
and vice-versa, without aggregating by /24. We also display cor-
responding statistics when aggregating by /24 for comparison in
parentheses. Clearly joining by /24 makes a significant difference,
increasing various measures of overlap by tens of percents and in
certain cases by up to 64%.

As an analogy to Figure 3, in Figure 9 we show the number of
queries each Microsoft user executes to the roots per day without
aggregating query and user statistics by /24 (CDN). We also show
APNIC as in Figure 3 for comparison, even though APNIC is not
affected by /24 volume aggregation. Users of CDN only send 0.036
queries to the roots each day at the median – roughly one 30𝑡ℎ of
the estimate obtained when aggregating statistics by /24. This small
daily user latency makes sense, given that we only capture 8.4% of
DITL volume without joining the datasets by /24 (Table 4).

Table 4 and Figure 9, demonstrate that the decision to aggregate
statistics and join DITL captures with Microsoft user counts by /24
led to both much greater representativeness of the analysis and very
different conclusions about user interactions with the root DNS.
We would now like to justify this decision using measurements. If,
as we assume, IP addresses in the same /24 are colocated, they are
probably routed similarly. Prior work has shown that only a small
fraction of anycast paths are unstable [77], and so we expect that,
over the course of DITL, IP addresses in the same /24 reach the
same anycast sites.

As a way of quantifying routing similarity in a /24, in Figure 10
we show the percent of queries from each /24 in DITL that do not
reach the most “popular” anycast site for each /24 in each root
deployment. We label root letters alongside the total number of

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0.0 0.2 0.4 0.6 0.8
Fraction of Queries Generated by /24 That Did Not Go To Favorite Site

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 /2

4s

B Root (2G 2T)
A Root (5G 5T)
M Root (5G 6T)
C Root (10G 10T)
E Root (15G 85T)
D Root (20G 117T)
K Root (52G 53T)
J Root (68G 110T)
F Root (94G 141T)
L Root (138G 138T)

Figure 10: Fractions of queries generated by /24s that do not hit the

most popular site for each /24 and for each root letter in question.

The legend indicates the number of global sites (G) and total (global

and local) sites (T). For all root letters, more than 80% of /24s have

all queries visit the most popular site, suggesting queries from the

same /24 are usually routed similarly.

sites (local and global) that they had during the 2018 DITL. For each
root letter and for each /24 that queried that root letter in DITL, we
look at how queries from the /24 are distributed among sites.

Let 𝑞𝑘
𝑖 𝑗
be the number of daily queries from IP 𝑖 in /24 𝑘 toward

anycast site 𝑗 . We then calculate the fraction of queries that do not
visit the most “popular” site as

𝑓 𝑘 = 1 −
∑︁
𝑖

𝑞𝑘
𝑖 𝑗𝐹

𝑄𝑘
(3)

where 𝑗𝐹 is the favorite site for /24 𝑘 (i.e., the site the /24 queries
the most), and𝑄𝑘 is the total number of queries from /24 𝑘 . We plot
these fractions for all /24s in DITL, and for each root deployment.
(We do not include /24s that had only one IP from the /24 visit the
root letter in question.)

For more than 80% of /24s, all queries visit only one site per root
letter, suggesting that queries from the same /24 are routed similarly.
This analysis is slightly biased by the size of the root deployment.
For example, two IP addresses selected at random querying B root
would hit the same site half the time, on average. However, even
for L root, with 138 sites, more than 90% of /24s direct all queries to
the most popular site. We believe Figure 10 provides evidence that
recursives within the same /24 prefix are located near each other,
and hence serve similar sets of users.

Even queries from a single IP address within a /24 may reach
multiple sites for a single root over the course of the DITL cap-
tures. Such instability can make routing look less coherent across
IP addresses in a /24, even if they are all routed the same way. Con-
trolling for cases of changing paths for the same IP makes intra-/24
routing even more coherent. If we let the distribution of queries
generated by an IP address to a root be a point mass, with all the
queries concentrated at that IP addresses’ favorite site, all queries
from more than 90% of all /24s to all roots are routed to the same
site (not shown).

B.3 Implications of Using the 2018 DITL

At the time of writing, the 2020 DITL was available to use in the
study, but we chose to use the 2018 study since the 2018 study
had better coverage of root letters. (Neither has perfect coverage –

for both 2018 and 2020 DITLs, G root is not included and I root is
completely anonymized.)

10−3 10−2 10−1 100 101 102 103

Queries per User per Day

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 U

se
rs

Ideal
CDN
APNIC

(a)

0 20 40 60 80 100 120 140
Geographic Inflation per Root Query (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 U

se
rs M - 8

H - 8
C - 10
D - 23
A - 51
K - 75
J - 127
All Roots

(b)

Figure 11: Queries per user per day to the root DNS and inflation of

root letters calculated using the 2020 DITL. Our high level conclu-

sions about how much inflation is in the root DNS and the number

of queries users experience per day do not change depending on the

year.

For the 2020 DITL specifically, B root was not available at the
time of writing (but may be in the future), E root includes only one
site (out of 132), F root does not include any Cloudflare sites (more
than half the volume), and L root is completely anonymized (hence
unusable). The 2018 DITL has none of these limitations, and so our
results apply to more letters. Studying the root DNS system as a
whole is a key strength of our analysis compared to prior work, so
we feel coverage is more important than having the most up-to-date
results for only a subset of root letters.

For completeness, and to demonstrate that our larger takeaways
about root DNS latency and inflation do not change significantly
from year to year, we calculate queries per day (as in Figure 3) and
inflation (as in Figure 2) for the root letters for which we have data,
and the results are shown in Figure 11.

Our high level conclusions about root DNS latency do not change
when looking at the 2020 DITL – most users still experience about
one DNS query per day, and the number of root queries sent by
recursives is still far from the ‘ideal’ querying behavior of one
record per TTL. Inflation results are also similar – individual root
letters have less inflation (for example, D root improved). Average
geographic inflation is almost exactly the same as in 2018, with
approximately 10% of users experiencing more than 20 ms (2,000
km) of inflation.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

C NUMBER OF RTTS IN A PAGE LOAD

To estimate the latency a user experiences when interacting with
Microsoft’s CDN (§5.2), we first estimate the number of RTTs re-
quired to load a typical web page hosted by Microsoft’s CDN. The
number of RTTs in a page load depends on a variety of factors, so
we aim to find a reasonable lower bound on the number of RTTs
users incur for typical pages. A lower bound on the number of
RTTs to load pages is a conservative measure of the impact of
CDN inflation, as latency inflation accumulates with each addi-
tional RTT, and larger pages (more RTTs) would be impacted more.
We provide an estimate of this lower bound based on modeling
and evaluation of a set of web pages hosted by Microsoft’s CDN
using Selenium (a headless web browser), finding that 10 RTTs is
a reasonable estimate. We scale latency by the number of RTTs in
Section 5.2 to demonstrate how improvements in latency help users
(and, conversely, how inflation hurts users).

Users incur latency to Microsoft’s CDN when they download
web objects via HTTP. We calculate the number of RTTs required
to download objects in each connection separately, and sum RTTs
over connections while accounting for parallel connections. For
a single TCP connection, the number of RTTs during a page load
depends on the size of files being downloaded. This relationship is
approximated by

𝑁 =
⌈
𝑙𝑜𝑔2

𝐷

𝑊

⌉
(4)

where 𝑁 is the number of RTTs, 𝐷 is the total number of bytes
sent by the TCP connection from the server to the user, and𝑊 is
the initial congestion window size in bytes [19, 35]. Although𝑊
is set by the server, Microsoft and a majority of web pages [66]
set this value to approximately 15 kB so we use this value. We
do not consider QUIC or persistent connections across pages in
detail here, but larger initial windows will result in fewer RTTs.
We test mostly landing pages, for which persistent connections
are uncommon. Moreover, such considerations likely would not
change our qualitative conclusions about how users experience
CDN latency.

We make the following assumptions to establish a lower bound
on 𝑁 : (1) we do not account for connections limited by the receive
window or the application, as the RTT-based congestion window
limitation we calculate is still a lower bound, (2) TCP is always in
slow start mode, which implies the window size doubles each RTT
and serves as a lower bound on the actual behavior of Microsoft’s
standard CUBIC implementation, and (3) all TCP and TLS hand-
shakes after the first do not incur additional RTTs (i.e., they are
executed in parallel to other requests).

Modern browsers can open many TCP connections in parallel,
to speed up page loads. Summing up RTTs across parallel connec-
tions could therefore drastically overestimate the number of RTTs
experienced users. To determine the connections over which to
accumulate RTTs, we first start by only considering the connec-
tion with the most data. We then iteratively add connections in
size-order (largest to smallest) that do not overlap temporally with
other connections for which we have accumulated RTTs. The ‘data
size’ of a connection may represent one or more application-layer
objects.

We load nine web pages owned by Microsoft, twenty times for
each page. We choose popular pages hosted on Microsoft’s CDN

with dynamic content suggested to us by a CDN operator. We use
Selenium and Chrome to open web pages and use Tshark [24] to
capture TCP packets during the page load. When the browser’s
loadEventEnd event fires, the whole page has loaded, including
all dependent resources such as stylesheets and images [59]. So, to
calculate the total data size for each connection, we use the ACK
value in the last packet sent to the server before loadEventEnd
minus the SEQ value in the first packet received from the server.
We then calculate the number of RTTs using Equation (4), and add
a final two RTTs for TCP and TLS handshakes. We find only a few
percent of CDN web pages are loaded within 10 RTTs, and 90% of
all page loads are loaded within 20 RTTs, so 10 RTTs is a reasonable
lower bound.

D LATENCY MEASUREMENTS AT A

RECURSIVE RESOLVER

To obtain a local perspective of how users experience root DNS
latency, we use packet traces from ISI. Here, we characterize DNS
and root DNS latencies users experience at the resolver, along with
a useful visualization of how inconsequential root DNS latency is
for users at this resolver. This analysis complements our global
view of how users interact with the root DNS in Section 4.3, as it
demonstrates how often everyday users might send queries to the
root relative to other DNS queries.

10−2 10−1 100 101 102 103 104 105

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 Q

ue
rie

s

Figure 12: CDF of user DNS query latencies seen at a recursive resolve

at ISI, over the course of one year. Latencies are measured from the

timestamp when the recursive resolver receives a client query to the

timestamp when the recursive sends a response to that client query.

The sub-millisecond latency for more than half of queries suggests

most queries to this recursive are served by the local cache.

Figure 12 shows the latencies of all queries seen at the recur-
sive resolver over one year, where latencies are measured from the
timestampwhen the recursive resolver receives a client query to the
timestamp when the recursive sends a response to that client query.
Latencies are divided into (roughly) 3 regions: sub-millisecond la-
tency, low latency (millisecond - tens of milliseconds), and high
latency (hundreds of milliseconds). The first region corresponds to
cached queries, so roughly half of queries are (probably) cached.
The second region corresponds to DNS resolutions for which the
resolving server was geographically close. Finally, the third region
likely corresponds to queries that had to travel to distant servers,
or required a few rounds of recursion to fully resolve the domain.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0 50 100 150 200 250 300 350
Root DNS Latency (ms)

0.0

0.9

0.99

0.999

0.9999

0.99999

0.999999

CD
F

of
 Q

ue
rie

s

Figure 13: RootDNS latency for queriesmade by users of ISI recursive

resolver during 2018. This plot demonstrates the benefits of caching

and high TTLs of TLD records – fewer than 1% of queries generate a

root request, and fewer than 0.1% incur latencies greater than 100 ms.
User queries that did not generate a query to a root server were given

a latency of 0.

The sub-millisecond latency for more than half of queries suggests
most queries to this recursive are served by the local cache. These
latencies are similar to those presented in previous work that also
studied a recursive resolver serving a small user population [18].
Queries in the second and third regions include queries that did
not query the root (since those records were cached) but did query
other parts of the DNS hierarchy.

As discussed in Section 4, root DNS queries make up a small
fraction of all queries shown in Figure 12. To visualize just how
small this fraction is, Figure 13 shows a CDF of root DNS latency
experienced for queries over 2018. Requests that do not generate
a query to a root server are counted as having a root latency of
0. Figure 13 demonstrates the benefits of shared caches and high
TTLs of TLD records – fewer than 1% of queries generate a root
request, and fewer than 0.1% incur latencies greater than 100 ms.

E CASE STUDY: REDUNDANT ROOT DNS

QUERIES

When we investigate the traffic from a recursive resolver to the
root servers in Section 4, we see as many as 900 queries to the root
server in a day for the COM NS record. Given the 2 day TTL of
this record, this query frequency is unexpectedly large. This large
frequency motivated us to analyze why these requests to roots
occurred. We consider a request to the root to be redundant if a
query for the same record occurred less than 1 TTL ago. Prior work
has investigated redundant requests to root servers as well, and
our analysis can be considered complementary since we discover
different reasons for redundant requests [28].

To observe these redundant requests in a controlled environment,
we deploy a BIND instance (the resolver in Section 2.1 runs BIND
v9.11.17) locally and enable cache and recursion. We do not actually
look up the cache of the local BIND instance to see which records
are in it. Instead, we save the TTL of the record and the timestamp
at which we receive the record to know if the record should be in
BIND’s cache. We use BIND version 9.11.18 and 9.16.1. Because
9.16.1 is one of the newest releases and 9.11.18 is a release from
several years ago, we can assume that pathological behavior is
common in all versions between these two releases. After deploying
the instance, we simulate user behavior by opening the top-1000
web pages according to GTmetrix [33] using Selenium and headless

Chrome. While loading web pages, we collect network packets on
port 53 using Tshark [24].

For these page loads, we observe 69,215 DNS A & AAAA-type
requests generated by the recursive resolver. 3,137 of these requests
are sent to root servers, and 2,950 of these root DNS queries are
redundant. Over 70% of redundant requests are AAAA-type. After
investigating the cause of these redundant queries, we find over 90%
of these redundant requests follow a similar pattern. This pattern
is illustrated by the example in Table 5.

In Table 5, we show queries the recursive resolver makes when
a user queries for the A record of bidder.criteo.com. In step 1, the
recursive resolver receives a DNS query from a client. According
to TTL heuristics, the COM A record is in the cache. In step 3, the
TLD server responds with records of authoritative nameservers for
“criteo.com”. Then, the recursive chooses one of them to issue the
following request to. However, for some reason (e.g., packet loss),
the recursive resolver does not get a response from the nameserver
in step 4. Hence, the resolver uses another nameserver in step 5,
which it learned in step 3. At the same time, as seen in step 6 to
11, the recursive sends (redundant) DNS requests to root servers,
querying the AAAA-type records for these nameservers. These re-
quests are redundant since the AAAA record for COMwas received
less than two days ago.

From the pattern demonstrated in Table 5, we hypothesize that
redundant requests to the root servers will be generated for certain
records when the following conditions are met.

(1) A query from the recursive resolver to an authoritative name-
server times-out.

(2) The record queried for by the resolver to the root DNS server
was not included in the Additional Records section of the
TLD’s response.

The second condition is also why we were seeing more AAAA-
type redundant requests, because usually there are more A-type
records in the Additional Records section than AAAA-type records.

To see how much traffic is caused by our hypothesis in a real
scenario, we analyze packet captures on a recursive resolver (BIND
9.11.17) serving users at ISI. To keep consistent with the other
analysis we do on this dataset (§4), we use packet captures from
2018. 79.8% of requests to roots are redundant and in the pattern
we described. The other 20.2% consists of necessary requests and
requests for which we have no hypothesis as to how they were
generated. We contacted developers at BIND, who said this may be
a bug.

Software behavior as described here can lead to orders of magni-
tude more root DNS requests than would be necessary if recursives
queried for the record once per TTL. As demonstrated in Figure 3,
focusing on reducing the number of these queries could both im-
prove user experience and reduce load on the root server.

F VISUALIZATION OF MICROSOFT CDN

PERFORMANCE

In Section 2.2 we show the rings of a large anycast CDN and how
users are distributed with respect to those rings. This visualization
does not include any information about latency, so we provide one
here. In Figure 14 we show front-ends in R110, and associated la-
tency users experience to R110 in each region. Transparent circles

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Table 5: Redundant root DNS requests. The last five requests to J root are redundant which may be caused by an unanswered request in step 4.

Step

Relative

Timestamp (second)

From To Query name Query type Response

1 0.00000 client resolver bidder.criteo.com A
2 0.01589 resolver 192.42.93.30 (g.gtld) bidder.criteo.com A

3 0.02366 192.42.93.30 (g.gtld) resolver bidder.criteo.com A
ns23.criteo.com ns22.criteo.com
ns25.criteo.com ns26.criteo.com
ns27.criteo.com ns28.criteo.com.

4 0.02387 resolver 74.119.119.1 (ns25.criteo.com) bidder.criteo.com A
5 0.82473 resolver 182.161.73.4 (ns28.criteo.com) bidder.criteo.com A
6 0.82555 resolver 192.58.128.30 (j.root) ns22.criteo.com AAAA
7 0.82563 resolver 192.58.128.30 (j.root) ns23.criteo.com AAAA
8 0.82577 resolver 192.58.128.30 (j.root) ns27.criteo.com AAAA
9 0.82584 resolver 192.58.128.30 (j.root) ns25.criteo.com AAAA
10 0.82592 resolver 192.58.128.30 (j.root) ns26.criteo.com AAAA
11 0.82620 resolver 192.58.128.30 (j.root) ns28.criteo.com AAAA

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(re
la

tiv
e)

Figure 14: A visualization of front-ends in R110 (purple Xs), and user populations (transparent circles). User populations are colored according

to the relative latency they experience and have size proportional to user population. Red corresponds to high latency, and green corresponds

to low latency. Latency generally gets lower the closer users are to a front-end, and front-ends are concentrated around large user populations.

represent user populations and their radii are proportional to the
user population. Population circles are colored according to average
median latency users in the metro experience to R110 – red indi-
cates higher latency while green indicates lower latency. Latency

generally gets lower the closer users are to a front-end. The CDN
has focused on deploying front-ends near large user populations,
which has driven latencies quite low for nearly all users.

	Abstract
	1 Introduction
	2 Methodology and Datasets
	2.1 Root DNS
	2.2 Microsoft's CDN

	3 Routes to Root DNS Are Inflated
	3.1 Methodology
	3.2 Results

	4 Root DNS Latency and Inflation Hardly Matter
	4.1 Measuring Root DNS Latency Matters
	4.2 How We Measure Root DNS
	4.3 Root DNS Latency Hardly Matter

	5 Latency Matters For Microsoft's CDN
	5.1 RTTs in a Page Load
	5.2 Microsoft's CDN User Latency

	6 Anycast Inflation Can Be Small
	7 Incentives and Investment Shape Deployments and Paths
	7.1 Microsoft's CDN Has Shorter AS Paths, and Short AS Paths are More Direct
	7.2 Larger Deployments are Less Efficient but Have Lower Latency
	7.3 Differing Incentives Lead to Different Investments and Outcomes

	8 Related Work
	9 Conclusion
	References
	A Summary of Data
	B Quantifying the Impact of Methodological Decisions
	B.1 Effect of Removing Invalid TLD Queries
	B.2 Representativeness of Daily Root Latency Analysis
	B.3 Implications of Using the 2018 DITL

	C Number of RTTs in a Page Load
	D Latency Measurements at a Recursive Resolver
	E Case Study: Redundant Root DNS Queries
	F Visualization of Microsoft CDN Performance

