Categories
Students

congratulations to Xun Fan for his new PhD

I would like to congratulate Dr. Xun Fan for defending his PhD in May 2015 and completing his doctoral dissertation “Enabling Efficient Service Enumeration Through Smart Selection of Measurements” in July 2015.

Xun Fan (left) and John Heidemann, after Xun's PhD defense.
Xun Fan (left) and John Heidemann, after Xun’s PhD defense.

From the abstract:

The Internet is becoming more and more important in our daily lives. Both the government and industry invest in the growth of the Internet, bringing more users to the world of networks. As the Internet grows, researchers and operators need to track and understand the behavior of global Internet services to achieve smooth operation. Active measurements are often used to study behavior of large Internet service, and efficient service enumeration is required. For example, studies of Internet topology may need active probing to all visible network prefixes; monitoring large replicated service requires periodical enumeration of all service replicas. To achieve efficient service enumeration, it is important to select probing sources and destinations wisely. However, there are challenges for making smart selection of probing sources and destinations. Prior methods to select probing destinations are either inefficient or hard to maintain. Enumerating replicas of large Internet services often requires many widely distributed probing sources. Current measurement platforms don’t have enough probing sources to approach complete enumeration of large services.

This dissertation makes the thesis statement that smart selection of probing sources and destinations enables efficient enumeration of global Internet services to track and understand their behavior. We present three studies to demonstrate this thesis statement. First, we propose new automated approach to generate a list of destination IP addresses that enables efficient enumeration of Internet edge links. Second, we show that using large number of widely distributed open resolvers enables efficient enumeration of anycast nodes which helps study abnormal behavior of anycast DNS services. In our last study, we efficiently enumerate Front-End (FE) Clusters of Content Delivery Networks (CDNs) and use the efficient enumeration to track and understand the dynamics of user-to-FE Cluster mapping of large CDNs. We achieve the efficient enumeration of CDN FE Clusters by selecting probing sources from a large set of open resolvers. Our selected probing sources have smaller number of open resolvers but provide same coverage on CDN FE Cluster as the larger set.

In addition to our direct results, our work has also been used by several published studies to track and understand the behavior of Internet and large network services. These studies not only support our thesis as additional examples but also suggest this thesis can further benefit many other studies that need efficient service enumeration to track and understand behavior of global Internet services.

Categories
Papers Publications

new conference paper “Connection-Oriented DNS to Improve Privacy and Security” in Oakland 2015

The paper “Connection-Oriented DNS to Improve Privacy and Security” will appear at the 36th IEEE Symposium on Security and Privacy in May 2015 in San Jose, CA, USA  (available at http://www.isi.edu/~liangzhu/papers/Zhu15b.pdf)

From the abstract:end_to_end_model_n_7

The Domain Name System (DNS) seems ideal for connectionless UDP, yet this choice results in challenges of eavesdropping that compromises privacy, source-address spoofing that simplifies denial-of-service (DoS) attacks on the server and third parties, injection attacks that exploit fragmentation, and reply-size limits that constrain key sizes and policy choices. We propose T-DNS to address these problems. It uses TCP to smoothly support large payloads and to mitigate spoofing and amplification for DoS. T-DNS uses transport-layer security (TLS) to provide privacy from users to their DNS resolvers and optionally to authoritative servers. TCP and TLS are hardly novel, and expectations about DNS suggest connections will balloon client latency and overwhelm server with state. Our contribution is to show that T-DNS significantly improves security and privacy: TCP prevents denial-of-service (DoS) amplification against others, reduces the effects of DoS on the server, and simplifies policy choices about key size. TLS protects against eavesdroppers to the recursive resolver. Our second contribution is to show that with careful implementation choices, these benefits come at only modest cost: end-to-end latency from TLS to the recursive resolver is only about 9% slower when UDP is used to the authoritative server, and 22% slower with TCP to the authoritative. With diverse traces we show that connection reuse can be frequent (60–95% for stub and recursive resolvers, although half that for authoritative servers), and after connection establishment, experiments show that TCP and TLS latency is equivalent to UDP. With conservative timeouts (20 s at authoritative servers and 60 s elsewhere) and estimated per-connection memory, we show that server memory requirements match current hardware: a large recursive resolver may have 24k active connections requiring about 3.6 GB additional RAM. Good performance requires key design and implementation decisions we identify: query pipelining, out-of-order responses, TCP fast-open and TLS connection resumption, and plausible timeouts.

The work in the paper is by Liang Zhu, Zi Hu and John Heidemann (USC/ISI), Duane Wessels and Allison Mankin (both of Verisign Labs), and Nikita Somaiya (USC/ISI).  Earlier versions of this paper were released as ISI-TR-688 and ISI-TR-693; this paper adds results and supercedes that work.

The data in this paper is available to researchers at no cost on request. Please see T-DNS-experiments-20140324 at dataset page.

Categories
Papers Publications

new workshop paper “Assessing Affinity Between Users and CDN Sites” in TMA 2015

The paper “Assessing Affinity Between Users and CDN Sites” (available at http://www.isi.edu/~xunfan/research/Fan15a.pdf) will appear at the Traffic Monitoring and Analysis Workshop in April 2015 in Barcelona, Spain.

From the abstract:

count_cid_per_clientLarge web services employ CDNs to improve user performance. CDNs improve performance by serving users from nearby FrontEnd (FE) Clusters. They also spread users across FE Clusters when one is overloaded or unavailable and others have unused capacity. Our paper is the first to study the dynamics of the user-to-FE Cluster mapping for Google and Akamai from a large range of client prefixes. We measure how 32,000 prefixes associate with FE Clusters in their CDNs every 15 minutes for more than a month. We study geographic and latency effects of mapping changes, showing that 50–70% of prefixes switch between FE Clusters that are very distant from each other (more than 1,000 km), and that these shifts sometimes (28–40% of the time) result in large latency shifts (100 ms or more). Most prefixes see large latencies only briefly, but a few (2–5%) see high latency much of the time. We also find that many prefixes are directed to several countries over the course of a month, complicating questions of jurisdiction.

Citation: Xun Fan, Ethan Katz-Bassett and John Heidemann.Assessing Affinity Between Users and CDN Sites. To appear in Traffic Monitoring and Analysis Workshop. Barcelona, Spain. April, 2015.

All data in this paper is available to researchers at no cost on request. Please see our CDN affinity dataset webpage.

This research is partially sponsored by the Department of Homeland Security (DHS) Science and Technology Directorate, HSARPA, Cyber Security Division, BAA 11-01-RIKA and Air Force Re-search Laboratory, Information Directorate under agreement number FA8750-12-2-0344, NSF CNS-1351100, and via SPAWAR Systems Center Pacific under Contract No. N66001-13-C-3001. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-standing any copyright notation thereon. The views contained herein are those of the authors and
do not necessarily represent those of DHS or the U.S. Government.

 

Categories
Presentations

new animation: the August 2014 Time Warner outage

Global network outages on 2014-08-27 during the Time Warner event in the U.S.
Global network outages on 2014-08-27 during the Time Warner event in the U.S.

On August 27, 2014, Time Warner suffered a network outage that affected about 11 million customers for more than two hours (making national news). We have observing global network outages since December 2013, including this outage.

We recently animated this August Time Warner outage.

We see that the Time Warner outage lasted about two hours and affected a good swath of the United States. We caution that all large network operators have occasional outages–this animation is not intended to complain about Time Warner, but to illustrate the need to have tools that can detect and visualize national-level outages.  It also puts the outage into context: we can see a few other outages in Uruguay, Brazil, and Saudi Arabia.

This analysis uses dataset usc-lander /internet_outage_adaptive_a17all-20140701, available for research use from PREDICT, or by request from us if PREDICT access is not possible.

This animation was first shown at the Dec. 2014 DHS Cyber Security Division R&D Showcase and Technical Workshop as part of the talk “Towards Understanding Internet Reliability” given by John Heidemann. This work was supported by DHS, most recently through the LACREND project.

Categories
Presentations

new animation: a sample of U.S. networks, before and after Hurricane Sandy

In October 2012, Hurricane Sandy made landfall on the U.S. East Coast causing widespread power outages. We were able to see the effects of Hurricane Sandy by analyzing active probing of the Internet. We first reported this work in a technical report and then with more refined analysis in a peer-reviewed paper.

Network outages for a sample of U.s. East Coast networks on the day after Hurricane Sandy made landfall.
Network outages for a sample of U.s. East Coast networks on the day after Hurricane Sandy made landfall.

We recently animated our data showing Hurricane Sandy landfall.

These 4 days before landfall and 7 after show some intersting results: On the day of landfall we see about three-times the number of outages relative to “typical” U.S. networks. Finally, we see it takes about four days to recover back to typical conditions.

This analysis uses dataset usc-lander / internet_address_survey_reprobing_it50j, available for research use from PREDICT, or by request from us if PREDICT access is not possible.

This animation was first shown at the Dec. 2014 DHS Cyber Security Division R&D Showcase and Technical Workshop as part of the talk “Towards Understanding Internet Reliability” given by John Heidemann. This work was supported by DHS, most recently through the LACREND project.

Categories
Papers Publications

new conference paper “BotTalker: Generating Encrypted, Customizable C&C Traces” in HST 2015

The paper “BotTalker: Generating Encrypted, Customizable C&C Traces” will appear at the 14th annual IEEE Symposium on Technologies for Homeland Security (HST ’15) in April 2015 (available at http://www.cs.colostate.edu/~zhang/papers/BotTalker.pdf)

From the abstract:

Encrypted botnets have seen an increasingalerts-types-breakdown-originaluse  in recent years. To enable research in detecting encrypted botnets researchers need samples of encrypted botnet traces with ground truth, which are very hard to get. Traces that are available are not customizable, which prevents testing under various controlled scenarios. To address this problem we introduce BotTalker, a tool that can be used to generate customized encrypted botnet communication traffic. BotTalker emulates the actions a bot would take to encrypt communication. It includes a highly configurable encrypted-traffic converter along with real, non- encrypted bot traces and background traffic. The converter is able to convert non-encrypted botnet traces into encrypted ones by providing customization along three dimensions: (a) selection of real encryption algorithm, (b) flow or packet level conversion, SSL emulation and (c) IP address substitution. To the best of our knowledge, BotTalk is the first work that provides users customized encrypted botnet traffic. In the paper we also apply BotTalker to evaluate the damage result from encrypted botnet traffic on a widely used botnet detection system – BotHunter and two IDS’ – Snort and Suricata. The results show that encrypted botnet traffic foils bot detection in these systems.

This work is advised by Christos Papadopoulos and supported by LACREND.

Categories
Presentations

new animation: eight years of Internet IPv4 Censuses

We’ve been taking Internet IPv4 censuses regularly since 2006.  In each census, we probe the entire allocated IPv4 address space.  You may browse 8 years of data at our IPv4 address browser.

A still image from our animation of 8 years of IPv4 censuses.
A still image from our animation of 8 years of IPv4 censuses.

We recently put together an animation showing 8 years of IPv4 censuses, from 2006 through 2014.

These eight years show some interesting events, from an early “open” Internet in 2006, to full allocation of IPv4 by ICANN in 2011, to higher utilization in 2014.

All data shown here can be browsed at our website.
Data is available for research use from PREDICT or by request from us if PREDICT access is not possible.

This animation was first shown at the Dec. 2014 DHS Cyber Security Division R&D Showcase and Technical Workshop as part of the talk “Towards Understanding Internet Reliability” given by John Heidemann.  This work was supported by DHS, most recently through the LACREND project.

Categories
Presentations

new talk “Internet Populations (Good and Bad): Measurement, Estimation, and Correlation” at the ICERM Workshop on Cybersecurity

John Heidemann gave the talk “Internet Populations (Good and Bad): Measurement, Estimation, and Correlation” at the ICERM Workshop on Cybersecurity at Brown University, Providence, Rhode Island on October 22, 2014. Slides are available at http://www.isi.edu/~johnh/PAPERS/Heidemann14e/.

Can we improve the mathematical tools we use to measure and understand the Internet?
Can we improve the mathematical tools we use to measure and understand the Internet?

From the abstract:

Our research studies the Internet’s public face. Since 2006 we have been taking censuses of the Internet address space (pinging all IPv4 addresses) every 3 months. Since 2012 we have studied network outages and events like Hurricane Sandy, using probes of much of the Internet every 11 minutes. Most recently we have evaluated the diurnal Internet, finding countries where most people turn off their computers at night. Finally, we have looked at network reputation, identifying how spam generation correlates with network location, and others have studies multiple measurements of “network reputation”.

A common theme across this work is one must estimate characteristics of the edge of the Internet in spite of noisy measurements and a underlying changes. One also need to compare and correlate these imperfect measurements with other factors (from GDP to telecommunications policies).

How do these applications relate to the mathematics of census taking and measurement, estimation, and correlation? Are there tools we should be using that we aren’t? Do the properties of the Internet suggest new approaches (for example where rapid full enumeration is possible)? Does correlation and estimates of network “badness” help us improve cybersecurity by treating different parts of the network differently?

Categories
Presentations

new animation “Watching the Internet Sleep”

Does the Internet sleep? Yes, and we have the video!

We have recently put together a video showing 35 days of Internet address usage as observed from Trinocular, our outage detection system.

The Internet sleeps: address use in South America is low (blue) in the early morning, while India is high (red) in afternoon.
The Internet sleeps: address use in South America is low (blue) in the early morning, while India is high (red) in afternoon.

The Internet sleeps: address use in South America is low (blue) in the early morning, while India is high (red) in afternoon.  When we look at address usage over time, we see that some parts of the globe have daily swings of +/-10% to 20% in the number of active addresses. In China, India, eastern Europe and much of South America, the Internet sleeps.

Understanding when the Internet sleeps is important to understand how different country’s network policies affect use, it is part of outage detection, and it is a piece of improving our long-term goal of understanding exactly how big the Internet is.

See http://www.isi.edu/ant/diurnal/ for the video, or read our technical paper “When the Internet Sleeps: Correlating Diurnal Networks With External Factors” by Quan, Heidemann, and Pradkin, to appear at ACM IMC, Nov. 2014.

Datasets (listed here) used in generating this video are available.

This work is partly supported by DHS S&T, Cyber Security division, agreement FA8750-12-2-0344 (under AFRL) and N66001-13-C-3001 (under SPAWAR).  The views contained
herein are those of the authors and do not necessarily represent those of DHS or the U.S. Government.  This work was classified by USC’s IRB as non-human subjects research (IIR00001648).

Categories
Announcements Collaborations Data Internet Outages

welcoming Greece to the ANT Internet Census

We’re happy to welcome Greece to our browsable Internet map at http://www.isi.edu/ant/address/browse/ !  Of course Greece has always been in our Internet censuses, but George Xylomenos and George Polyzos of the Athens University of Economics and Business (their lab) helped set up a new observation site.  Greece now provides a new vantage point for Internet censuses.

The differences in the census are small, as one would hope, since it’s a global Internet.  However, when we look at latency (the time it takes for an IP address to reply to our requests), Greece gives us a European view.

Compare the lower-left corner of the Internet, since that is European IPv4 address space:

it61g RTTs
Round-trip times from our Greek vantage point (in AUEB.gr) to the world. Observe that European IP addresses in the lower left corner are nearby (light colored).
it61w RTTs
Round-trip times from our Los Angeles-based vantage point (at isi.edu) to the world. Observe that European IP addresses in the lower left corner are distant (darker gray).

In addition to big thanks to George Xylomenos and George Polyzos of AUEB (σας ευχαριστώ!) and AUEB for institutional funding for this work.  We also thank Christos Papadopoulos (Colorado State) for helping with many details, and Colin Perkins (U. Glasgow) for discussions about potential European hosts.

Data from our Greece census is available to researchers at no cost on the same terms as our existing census data.  See our datasets page for details. Greek data starts with it61 as of 2014-08-29.