Categories
Papers Publications

new workshop paper “BotDigger: Detecting DGA Bots in a Single Network” in TMA 2016

The paper “BotDigger: Detecting DGA Bots in a Single Network” has appeared at the TMA Workshop on April 8, 2016 in Louvain La Neuve, Belgium (available at http://www.cs.colostate.edu/~hanzhang/papers/BotDigger-TMA16.pdf).

The code of BotDigger is available on GitHub at: https://github.com/hanzhang0116/BotDigger

From the abstract:

To improve the resiliency of communication between bots and C&C servers, bot masters began utilizing Domain Generation Algorithms (DGA) in recent years. Many systems have been introduced to detect DGA-based botnets. However, they suffer from several limitations, such as requiring DNS traffic collected across many networks, the presence of multiple bots from the same botnet, and so forth. These limitations mBotDiggerOverviewake it very hard to detect individual bots when using traffic collected from a single network. In this paper, we introduce BotDigger, a system that detects DGA-based bots using DNS traffic without a priori knowledge of the domain generation algorithm. BotDigger utilizes a chain of evidence, including quantity, temporal and linguistic evidence to detect an individual bot by only monitoring traffic at the DNS servers of a single network. We evaluate BotDigger’s performance using traces from two DGA-based botnets: Kraken and Conflicker. Our results show that BotDigger detects all the Kraken bots and 99.8% of Conficker bots. A one-week DNS trace captured from our university and three traces collected from our research lab are used to evaluate false positives. The results show that the false positive rates are 0.05% and 0.39% for these two groups of background traces, respectively.

The work in this paper is by Han Zhang, Manaf Gharaibeh, Spiros Thanasoulas, and Christos Papadopoulos (Colorado State University).

Categories
Publications Technical Report

new technical report “BotDigger: Detecting DGA Bots in a Single Network”

We have released a new technical report “BotDigger: Detecting DGA Bots in a Single Network”, CS-16-101, available at http://www.cs.colostate.edu/~hanzhang/papers/BotDigger-techReport.pdf

The code of BotDigger is available on GitHub at: https://github.com/hanzhang0116/BotDigger

From the abstract:

To improve the resiliency of communication between bots and C&C servers, bot masters began utilizing Domain Generation Algorithms (DGA) in recent years. Many systems have been introduced to detect DGA-based botnets. However, they suffer from several limitations, such as requiring DNS traffic collected across many networks, the presence of multiple bots from the same botnet, and so forth. BotDiggerOverviewThese limitations make it very hard to detect individual bots when using traffic collected from a single network. In this paper, we introduce BotDigger, a system that detects DGA-based bots using DNS traffic without a priori knowledge of the domain generation algorithm. BotDigger utilizes a chain of evidence, including quantity, temporal and linguistic evidence
to detect an individual bot by only monitoring traffic at the DNS servers of a single network. We evaluate BotDigger’s performance using traces from two DGA-based botnets: Kraken and Conflicker. Our results show that BotDigger detects all the Kraken bots and 99.8% of Conficker bots. A one-week DNS trace captured from our university and three traces collected from our research lab are used to evaluate false positives. The results show that the false positive rates are 0.05% and 0.39% for these two groups of background traces, respectively.

This work is by Han Zhang, Manaf Gharaibeh, Spiros Thanasoulas and Christos Papadopoulos (Colorado State University).

Categories
Publications Technical Report

new technical report “Assessing Co-Locality of IP Blocks”

We have released a new technical report “Assessing Co-Locality of IP Blocks”, CSU TR15-103, available at http://www.cs.colostate.edu/TechReports/Reports/2015/tr15-103.pdf.

From the abstract:

isi_all_blocks_clustersCount_CDF
CDF of number of clusters per block, suggesting the number of potential multi-location blocks. (Figure 2 from [Gharaibeh15a].)

Many IP Geolocation services and applications assume that all IP addresses with the same /24 IPv4 prefix (a /24 block) are in the same location. For blocks that contain addresses in very different locations (such blocks identifying network backbones), this assumption can result in large geolocation error. This paper evaluates this assumption using a large dataset of 1.41M /24 blocks extracted from a delay measurements dataset for the entire
responsive IPv4 address space. We use hierarchal clustering to find clusters of IP addresses with similar observed delay measurements within /24 blocks. Blocks with multiple clusters often span different geographic locations. We evaluate this claim against two ground-truth datasets, confirming that 93% of identified multi-cluster blocks are true positives with multiple locations, while only 13% of blocks identified as single-cluster appear to be multi-location in ground truth. Applying the clustering process to the whole dataset suggests that about 17% (247K) of blocks are likely multi-location.

This work is by Manaf Gharaibeh, Han Zhang, Christos Papadopoulos (Colorado State University), and John Heidemann (USC/ISI). The datasets used in this work are new analysis of an existing geolocation dataset as collected by Hu et al. (http://www.isi.edu/~johnh/PAPERS/Hu12a.pdf).  These source datasets are available upon request from http://www.predict.org and via our website, and we expect trial datasets in our new work to also be available there and through PREDICT by the end of 2015.

Categories
Papers Publications

new conference paper “BotTalker: Generating Encrypted, Customizable C&C Traces” in HST 2015

The paper “BotTalker: Generating Encrypted, Customizable C&C Traces” will appear at the 14th annual IEEE Symposium on Technologies for Homeland Security (HST ’15) in April 2015 (available at http://www.cs.colostate.edu/~zhang/papers/BotTalker.pdf)

From the abstract:

Encrypted botnets have seen an increasingalerts-types-breakdown-originaluse  in recent years. To enable research in detecting encrypted botnets researchers need samples of encrypted botnet traces with ground truth, which are very hard to get. Traces that are available are not customizable, which prevents testing under various controlled scenarios. To address this problem we introduce BotTalker, a tool that can be used to generate customized encrypted botnet communication traffic. BotTalker emulates the actions a bot would take to encrypt communication. It includes a highly configurable encrypted-traffic converter along with real, non- encrypted bot traces and background traffic. The converter is able to convert non-encrypted botnet traces into encrypted ones by providing customization along three dimensions: (a) selection of real encryption algorithm, (b) flow or packet level conversion, SSL emulation and (c) IP address substitution. To the best of our knowledge, BotTalk is the first work that provides users customized encrypted botnet traffic. In the paper we also apply BotTalker to evaluate the damage result from encrypted botnet traffic on a widely used botnet detection system – BotHunter and two IDS’ – Snort and Suricata. The results show that encrypted botnet traffic foils bot detection in these systems.

This work is advised by Christos Papadopoulos and supported by LACREND.

Categories
Papers Publications

New conference paper “Detecting Encrypted Botnet Traffic” at Global Internet 2013

The paper “Detecting Encrypted Botnet Traffic” was accepted by Global Internet 2013 in Turin, Italy (available at http://www.netsec.colostate.edu/~zhang/DetectingEncryptedBotnetTraffic.pdf)

From the abstract:

Bot detection methods that rely on deep packet in- spection (DPI) can be foiled by encryption. Encryption, however, increases entropy. This paper investigates whether adding high- entropy detectors to an existing bot detection tool that uses DPI can restore some of the bot visibility. We present two high-entropy classifiers, and use one of them to enhance BotHunter. Our results show that while BotHunter misses about 50% of the bots when they employ encryption, our high-entropy classifier restores most of its ability to detect bots, even when they use encryption.

This work is advised by Christos Papadopolous and Dan Massey at Colorado State University.