Categories
Announcements Projects

new project “Measuring the Internet during Novel Coronavirus to Evaluate Quarantine” (MINCEQ)

We are happy to announce a new project “Measuring the Internet during Novel Coronavirus to Evaluate Quarantine” (MINCEQ).

Measuring the Internet during Novel Coronavirus to Evaluate Quarantine (RAPID-MINCEQ) is a project to measure changes in Internet use during the COVID-19 outbreak of 2020. As the world grapples with COVID-19, work-from-home and study-from-home are widely employed. Implementation of these policies varies across the U.S. and globally due to local circumstances. A common consequence is a huge shift in Internet use, with schools and workplaces emptying and home Internet use increasing. The goal of this project is to observe this shift, globally, through changes in Internet address usage, allowing observation of early reactions to COVID and, one hopes, a future shift back.

This project plans to develop two complementary methods of assessing Internet use by measuring address activity and how it changes relative to historical trends. The project will directly measure Internet address use globally based on continuous, ongoing measurements of more than 4 million IPv4 networks. The project will also directly measure Internet address use in network traffic at a regional Internet exchange point where multiple Internet providers interconnect. The first approach provides a global picture, while the second provides a more detailed but regional picture; together they will help evaluate measurement accuracy.

The project website is at https://ant.isi.edu/minceq/index.html. The PI is John Heidemann. This work is supported by NSF as a RAPID award in response to COVID-19, award NSF-2028279.

Categories
Social

group lunch in honor of a departure and two arrivals

On November 14 we had a group lunch near ISI to celebrate the completion of Joao Ceron’s visit from the University of Twente as a visiting scholar, to welcome Asma Enayet to the group as a new PhD student, and to welcome Hang Guo’s son into the world. (Hang was understandably not able to make the lunch.) Happy Thanksgiving to all!

A group lunch in honor of Asma (left) and Joao (6th left).
Categories
Papers Publications

new paper “Identifying Important Internet Outages” at the Sixth National Symposium for NSF REU Research in Data Science, Systems, and Security

We will publish a new paper “Identifying Important Internet Outages” by Ryan Bogutz, Yuri Pradkin, and John Heidemann, in the Sixth National Symposium for NSF REU Research in Data Science, Systems, and Security in Los Angeles, California, USA, on December 12, 2019.

From the abstract:

[Bogutz19a, figure 1]: Our sideboard showing important outages on 2019-03-08, including this outage in Venezuela.

Today, outage detection systems can track outages across the whole IPv4 Internet—millions of networks. However, it becomes difficult to find meaningful, interesting events in this huge dataset, since three months of data can easily include 660M observations and thousands of outage events. We propose an outage reporting system that sifts through this data to find the most interesting events. We explore multiple metrics to evaluate interesting”, reflecting the size and severity of outages. We show that defining interest as the product of size by severity works well, avoiding degenerate cases like complete outages affecting a few people, and apparently large outages that affect only a small fraction of people in an area. We have integrated outage reporting into our existing public website (https://outage.ant.isi.edu) with the goal of making near-real-time outage information accessible to the general public. Such data can help answer questions like “what are the most significant outages today?”, did Florida have major problems in an ongoing hurricane?”, and
“are there power outages in Venezuela?”.

The data from this paper is available publicly and in our website. The technical report ISI-TR-735 includes some additional data.

Categories
Papers Publications

new conference paper “Cache Me If You Can: Effects of DNS Time-to-Live” at ACM IMC 2019

We will publish a new paper “Cache Me If You Can: Effects of DNS Time-to-Live” by Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker, in the ACM Internet Measurements Conference (IMC 2019) in Amsterdam, the Netherlands.

From the abstract:

Figure 10a from [Moura19b], showing the distribution of latency with small TTLs before (right in blue) and with larger TTLs after (left in red) the .uy domain reviewed our work and lengthened their domain’s cache lifetimes to reduce latency to their customers.

DNS depends on extensive caching for good performance, and every DNS zone owner must set Time-to-Live (TTL) values to control their DNS caching. Today there is relatively little guidance backed by research about how to set TTLs, and operators must balance conflicting demands of caching against agility of configuration. Exactly how TTL value choices affect operational networks is quite challenging to understand due to interactions across the distributed DNS service, where resolvers receive TTLs in different ways (answers and hints), TTLs are specified in multiple places (zones and their parent’s glue), and while DNS resolution must be security-aware. This paper provides the first careful evaluation of how these multiple, interacting factors affect the effective cache lifetimes of DNS records, and provides recommendations for how to configure DNS TTLs based on our findings. We provide recommendations in TTL choice for different situations, and for where they must be configured. We show that longer TTLs have significant promise in reducing latency, reducing it from 183ms to 28.7ms for one country-code TLD.

We have also reported on this work at the RIPE and APNIC blogs.

Categories
Students

congratulations to Ryan Bogutz for his summer undergraduate internship

Ryan Bogutz completed his summer undergraduate research internship at ISI this summer, working with John Heidemann and Yuri Pradkin on his project “Identifying Interesting Outages”.

Ryan Bogutz with his poster at the ISI summer undergraduate research poster session.

In this project, Ryan examined Internet Outage data from Trinocular, developing an outage report that summarized the most “interesting” outages each day. Yuri integrated this report into our outage website where is available as a left side panel.

We hope Ryan’s new report makes it easier to evaluate Internet outages on a given day, and we look forward to continue to work with Ryan on this topic.

Ryan visited USC/ISI in summer 2019 as part of the (ISI Research Experiences for Undergraduates. We thank Jelena Mirkovic (PI) for coordinating the second year of this great program, and NSF for support through award #1659886.

See also ISI’s post about this summer undergradate program.

Categories
Announcements

reblogging: the diurnal Internet and DNS backscatter

We are happy to share that two of our older topics have appeared more recently in other venues.

Our animations of the diurnal Internet, originally seen in our 2014 ACM IMC paper and our blog posts, was noticed by Gerald Smith who used it to start a discussion with seventh-grade classes in Mahe, India and (I think) Indiana, USA as part of his Fullbright work. It’s great to see research work that useful to middle-schoolers!

Kensuke Fukuda recently posted about our work on identifying IPv6 scanning with DNS backscatter at the APNIC blog. This work was originally published at the 2018 ACM IMC and posted in our blog. It’s great to see that work get out to a new audience.

Categories
Social Students

graduation lunch in honor of Liang Zhu

In October we had a ANT research group lunch to celebrate the PhD graduation of Liang Zhu.  Congratulations on his accomplishments and we all enjoyed tasty dim sum.

A going-away lunch for Liang Zhu (on the left), celebrating his PhD graduation, with the ANT lab and family members.
A going-away lunch for Liang Zhu (on the left), celebrating his PhD graduation, with the ANT lab and family members.

Categories
Announcements Projects

new project “Plannning for Anycast as Anti-DDoS” (PAADDoS)

We are happy to announce a new project Plannning for Anycast as Anti-DDoS (PAADDoS).

The PAADDoS project’s goal is to defend against large-scale DDoS attacks by making anycast-based capacity more effective than it is today.

We will work toward this goal by (1) developing tools to map anycast catchments and baseline load, (2) develop methods to plan changes and their effects on catchments, (3) develop tools to estimate attack load and assist anycast reconfiguration during an attack. and (4) evaluate and integration of these tools with traditional DoS defenses.

We expect these innovations to improve service resilience in the face of DDoS attacks. Our tools will improve anycast agility during an attack, allowing capacity to be used effectively.

PAADDoS is a joint effort of the ANT Lab involving USC/ISI (PI: John Heidemann) and the Design and Analysis of Communication Systems group at the University of Twente (PI: Aiko Pras).

PAADDoS is supported by the DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I, and by NWO.

Categories
Announcements Projects

new project “Detecting, Interpreting, and Validating from Outside, In, and Control, Disruptive Events” (DIVOICE)

We are happy to announce a new project, Detecting, Interpreting, and Validating from Outside, In, and Control, Disruptive Events (DIVOICE).  

The DIVOICE project’s goal is to detect and understand Network/Internet Disruptive Events (NIDEs)—outages in the Internet.

We will work toward this goal by examining outages at multiple levels of the network: at the data plane, with tools such as Trinocular (developed at USC/ISI) and Disco (developed at IIJ); at the control plane, with tools such as BGPMon (developed at Colorado State University); and at the application layer.

We expect to improve methods of outage detection, validate the work against each other and external sources of information, and work towards attribution of outage root causes.

DIVOICE is a joint effort of the ANT Lab involving USC/ISI (PI: John Heidemann) and Colorado State University (PI: Craig Partridge).   DIVOICE builds on prior work on the LACANIC and Retro-Future Bridge and Outage projects.  DIVOICE is supported by the DHS HSARPA Cyber Security Division via contract number 70RSAT18CB0000014.

Categories
Announcements Projects

new project “Global Analysis of Weak Signals for Enterprise Event Detection” (GAWSEED)

We are happy to announce a new project, Global Analysis of Weak Signals for Enterprise Event Detection (GAWSEED).  GAWSEED project is studing weak signals across multiple large-enterprise datasets looking for signs of malicious activity so small they may be passed over by a single enterprise’s operational staff. More details are on the GAWSEED project web page.

GAWSEED is part of ANT Lab at USC/ISI (PIs: John Heidemann and Wes Hardaker in the networking division, and Aram Galystan from the AI division. It is joint work with researchers at PARSONS Corporation. It is supported by DARPA as part of the CHASE program.