Categories
Announcements Collaborations Papers

best paper award at AINTEC 2016

Best paper award to Shah, Fontugne, and Papadopoulos at AINTEC 2016

Congratulations to Anant Shah, Christos Papadopoulos (Colorado State University) and Romain Fontugne (Internet Initiative Japan) for the award of  best paper at AINTEC 2016 to their paper “Towards Characterizing International Routing Detours”.

See our prior blog post for more information about the paper and its data, and the APNIC blog post about this paper.

Categories
Papers Publications

new conference paper “Towards Characterizing International Routing Detours” in AINTEC 2016

The paper “Towards Characterizing International Routing Detours” appeared in the 12th Asian Internet Engineering Conference on Dec 1, 2016 in Bangkok, Thailand and is available at http://dl.acm.org/citation.cfm?id=3012698. The datasets are available at http://geoinfo.bgpmon.io.

From the abstract:

There are currently no requirements (technical or otherwise) that routing paths must be contained within national boundaries. Indeed, some paths experience international detours, i.e., originate in one country, cross international boundaries and return to the same country. In most cases these are sensible traffic engineering or peering decisions at ISPs that serve multiple countries. In some cases such detours may be suspicious. Characterizing international detours is useful to a number of players: (a) network engineers trying to diagnose persistent problems, (b) policy makers aiming at adhering to certain national communication policies, (c) entrepreneurs looking for opportunities to deploy new networks, or (d) privacy-conscious states trying to minimize the amount of internal communication traversing different jurisdictions.

In this paper we characterize international detours in the Internet during the month of January 2016. To detect detours we sample BGP RIBs every 8 hours from 461 RouteViews and RIPE RIS peers spanning 30 countries. We use geolocation of ASes which geolocates each BGP prefix announced by each AS, mapping its presence at IXPs and geolocation infrastructure IPs. Finally, we analyze each global BGP RIB entry looking for detours. Our analysis shows more than 5K unique BGP prefixes experienced a detour. 132 prefixes experienced more than 50% of the detours. We observe about 544K detours. Detours either last for a few days or persist the entire month. Out of all the detours, more than 90% were transient detours that lasted for 72 hours or less. We also show different countries experience different characteristics of detours.

This work won the Best Paper Award at AINTEC 2016. APNIC blog post on this paper can be found here.

The work in this paper is by Anant Shah, Christos Papadopoulos (Colorado State University) and Romain Fontugne (Internet Initiative Japan).

Categories
Papers Publications

new conference paper “Anycast Latency: How Many Sites Are Enough?” in PAM 2017

The paper “Anycast Latency: How Many Sites Are Enough?” will appear at PAM 2017, the Conference on Passive and Active Measurement in March 2017 in Sydney, Australia (available at http://www.isi.edu/~johnh/PAPERS/Schmidt17a.pdf)

Update 2017-03-31:  This paper was awarded Best Paper at PAM 2017.

Median RTT (with quartiles as error bars) for countries with at least 5 vantage points for L-Root in 2015. Even more than 100 anycast sites, L still has relatively high latency in some countries in Africa and Asia.

 

 

 

From the abstract:

Anycast is widely used today to provide important services such as DNS and Content Delivery Networks (CDNs). An anycast service uses multiple sites to provide high availability, capacity and redundancy. BGP routing associates users to sites, defining the catchment that each site serves. Although prior work has studied how users associate with anycast services informally, in this paper we examine the key question how many anycast sites are needed to provide good latency, and the worst case latencies that specific deployments see. To answer this question, we first define the optimal performance that is possible, then explore how routing, specific anycast policies, and site location affect performance. We develop a new method capable of determining optimal performance and use it to study four real-world anycast services operated by different organizations: C-, F-, K-, and L-Root, each part of the Root DNS service. We measure their performance from more than 7,900 vantage points (VPs) worldwide using RIPE Atlas. (Given the VPs uneven geographic distribution, we evaluate and control for potential bias.) Our key results show that a few sites can provide performance nearly as good as many, and that geographic location and good connectivity have a far stronger effect on latency than having many sites. We show how often users see the closest anycast site, and how strongly routing policy affects site selection.

This paper is joint work of  Ricardo de Oliveira Schmidt, John Heidemann (USC/ISI), and Jan Harm Kuipers (U. Twente).  Datasets in this paper are derived from RIPE Atlas and are available at http://traces.simpleweb.org/ and at https://ant.isi.edu/datasets/anycast/.

Categories
Papers Publications

new conference paper “Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event” in IMC 2016

The paper “Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event” will appear at ACM Internet Measurement Conference in November 2016 in Santa Monica, California, USA. (available at http://www.isi.edu/~weilan/PAPER/IMC2016camera.pdf)

From the abstract:

RIPE Atlas VPs going to different anycast sites when under stress. Colors indicate different sites, with black showing unsuccessful queries. [Moura16b, figure 11b]

Distributed Denial-of-Service (DDoS) attacks continue to be a major threat in the Internet today. DDoS attacks overwhelm target services with requests or other traffic, causing requests from legitimate users to be shut out. A common defense against DDoS is to replicate the service in multiple physical locations or sites. If all sites announce a common IP address, BGP will associate users around the Internet with a nearby site,defining the catchment of that site. Anycast addresses DDoS both by increasing capacity to the aggregate of many sites, and allowing each catchment to contain attack traffic leaving other sites unaffected. IP anycast is widely used for commercial CDNs and essential infrastructure such as DNS, but there is little evaluation of anycast under stress. This paper provides the first evaluation of several anycast services under stress with public data. Our subject is the Internet’s Root Domain Name Service, made up of 13 independently designed services (“letters”, 11 with IP anycast) running at more than 500 sites. Many of these services were stressed by sustained traffic at 100 times normal load on Nov.30 and Dec.1, 2015. We use public data for most of our analysis to examine how different services respond to the these events. We see how different anycast deployments respond to stress, and identify two policies: sites may absorb attack traffic, containing the damage but reducing service to some users, or they may withdraw routes to shift both good and bad traffic to other sites. We study how these deployments policies result in different levels of service to different users. We also show evidence of collateral damage on other services located near the attacks.

This IMC paper is joint work of  Giovane C. M. Moura, Moritz Müller, Cristian Hesselman (SIDN Labs), Ricardo de O. Schmidt, Wouter B. de Vries (U. Twente), John Heidemann, Lan Wei (USC/ISI). Datasets in this paper are derived from RIPE Atlas and are available at http://traces.simpleweb.org/ and at https://ant.isi.edu/datasets/anycast/.

Categories
Papers Publications

new workshop paper “Assessing Co-Locality of IP Blocks” in GI 2016

The paper “Assessing Co-Locality of IP Blocks” appeared in the 19th IEEE  Global Internet Symposium on April 11, 2016 in San Francisco, CA, USA and is available at (http://www.cs.colostate.edu/~manafgh/publications/Assessing-Co-Locality-of-IP-Block-GI2016.pdf). The datasets are available at (https://ant.isi.edu/datasets/geolocation/).

From the abstract:

isi_all_blocks_clustersCountMany IP Geolocation services and applications assume that all IP addresses within the same /24 IPv4 prefix (a /24 block) reside in close physical proximity. For blocks that contain addresses in very different locations (such as blocks identifying network backbones), this assumption can result in a large geolocation error. In this paper we evaluate the co-location assumption. We first develop and validate a hierarchical clustering method to find clusters of IP addresses with similar observed delay measurements within /24 blocks. We validate our methodology against two ground-truth datasets, confirming that 93% of the identified multi-cluster blocks are true positives with multiple physical locations and an upper bound for false positives of only about 5.4%. We then apply our methodology to a large dataset of 1.41M /24 blocks extracted from a delay-measurement study of the entire responsive IPv4 address space. We find that about 247K (17%) out of 1.41M blocks are not co-located, thus quantifying the error in the /24 block co-location assumption.

The work in this paper is by Manaf Gharaibeh, Han Zhang, Christos Papadopoulos (Colorado State University) and John Heidemann (USC/ISI).

Categories
Papers Publications

new workshop paper “BotDigger: Detecting DGA Bots in a Single Network” in TMA 2016

The paper “BotDigger: Detecting DGA Bots in a Single Network” has appeared at the TMA Workshop on April 8, 2016 in Louvain La Neuve, Belgium (available at http://www.cs.colostate.edu/~hanzhang/papers/BotDigger-TMA16.pdf).

The code of BotDigger is available on GitHub at: https://github.com/hanzhang0116/BotDigger

From the abstract:

To improve the resiliency of communication between bots and C&C servers, bot masters began utilizing Domain Generation Algorithms (DGA) in recent years. Many systems have been introduced to detect DGA-based botnets. However, they suffer from several limitations, such as requiring DNS traffic collected across many networks, the presence of multiple bots from the same botnet, and so forth. These limitations mBotDiggerOverviewake it very hard to detect individual bots when using traffic collected from a single network. In this paper, we introduce BotDigger, a system that detects DGA-based bots using DNS traffic without a priori knowledge of the domain generation algorithm. BotDigger utilizes a chain of evidence, including quantity, temporal and linguistic evidence to detect an individual bot by only monitoring traffic at the DNS servers of a single network. We evaluate BotDigger’s performance using traces from two DGA-based botnets: Kraken and Conflicker. Our results show that BotDigger detects all the Kraken bots and 99.8% of Conficker bots. A one-week DNS trace captured from our university and three traces collected from our research lab are used to evaluate false positives. The results show that the false positive rates are 0.05% and 0.39% for these two groups of background traces, respectively.

The work in this paper is by Han Zhang, Manaf Gharaibeh, Spiros Thanasoulas, and Christos Papadopoulos (Colorado State University).

Categories
Papers Publications

new workshop paper “AuntieTuna: Personalized Content-based Phishing Detection” in USEC 2016

The paper “AuntieTuna: Personalized Content-based Phishing Detection” will appear at the NDSS Usable Security Workshop on February 21, 2016 in San Diego, CA, USA (available at https://www.isi.edu/~calvin/papers/Ardi16a.pdf).

From the abstract:

Implementation diagram of the AuntieTuna anti-phishing plugin.Phishing sites masquerade as copies of legitimate sites (“targets”) to fool people into sharing sensitive information that can then be used for fraud. Current phishing defenses can be ineffective, with training ignored, blacklists of discovered, bad sites too slow to pick up new threats, and whitelists of known-good sites too limiting. We have developed a new technique that automatically builds personalized lists of target sites (candidates that may be copied by phish) and then tests sites as a user browses them. Our approach uses cryptographic hashing of each page’s rendered Document Object Model (DOM), providing a zero false positive rate and identifying more than half of detectable phish in a controlled study. Since each user develops a customized list of target sites, our approach presents a diverse defense against phishers. We have prototyped our approach as a Chrome browser plugin called AuntieTuna, emphasizing usability through automated and simple manual addition of target sites and clean reports of potential phish that include context about the targeted site. AuntieTuna does not slow web browsing time and presents alerts on phishing pages before users can divulge information. Our plugin is open-source and has been in use by a few users for months.

The work in this paper is by Calvin Ardi (USC/ISI) and John Heidemann (USC/ISI).

Categories
Papers Publications

new conference paper “Measuring the Latency and Pervasiveness of TLS Certificate Revocation” in PAM 2016

The paper “Measuring the Latency and Pervasiveness of TLS Certificate Revocation” will appear at Passive and Active Measurements Conference in March 2016 in Heraklion, Crete, Greece  (available at http://www.isi.edu/~liangzhu/papers/Zhu16a.pdf)

From the abstract:

Today, Transport-Layer Security (TLS) is the bedrock of Internet security for the web and web-derived applications. TLS depends on the X.509 Public Key Infrastructure (PKI) to authenticate endpoint
identity. An essential part of a PKI is the ability to quickly revoke certificates, for example, after a key compromise. Today the Online Certificate Status Protocol (OCSP) is the most common way to quickly distribute revocation information. However, prior and current concerns about OCSP latency and privacy raise questions about its use. We examine OCSP using passive network monitoring of live traffic at the Internet uplink of a large research university and verify the results using active scans. Our measurements show that the median latency of OCSP queries is quite good: only 20 ms today, much less than the 291 ms observed in 2012. This improvement is because content delivery networks (CDNs) serve most OCSP traffic today; our measurements show 94% of queries are served by CDNs. We also show that OCSP use is ubiquitous today: it is used by all popular web browsers, as well as important non-web applications such as MS-Windows code signing.

The work in the paper is by Liang Zhu (USC/ISI), Johanna Amann (ICSI) and John Heidemann (USC/ISI). The active probe dataset in this paper is available upon request.

Categories
Papers Publications

new conference paper “Detecting Malicious Activity with DNS Backscatter”

The paper “Detecting Malicious Activity with DNS Backscatter” will appear at the ACM Internet Measurements Conference in October 2015 in Tokyo, Japan.  A copy is available at http://www.isi.edu/~johnh/PAPERS/Fukuda15a.pdf).

How newtork activity generates DNS backscatter that is visible at authority servers. (Figure 1 from [Fukuda15a]).
How newtork activity generates DNS backscatter that is visible at authority servers. (Figure 1 from [Fukuda15a]).
From the abstract:

Network-wide activity is when one computer (the originator) touches many others (the targets). Motives for activity may be benign (mailing lists, CDNs, and research scanning), malicious (spammers and scanners for security vulnerabilities), or perhaps indeterminate (ad trackers). Knowledge of malicious activity may help anticipate attacks, and understanding benign activity may set a baseline or characterize growth. This paper identifies DNS backscatter as a new source of information about network-wide activity. Backscatter is the reverse DNS queries caused when targets or middleboxes automatically look up the domain name of the originator. Queries are visible to the authoritative DNS servers that handle reverse DNS. While the fraction of backscatter they see depends on the server’s location in the DNS hierarchy, we show that activity that touches many targets appear even in sampled observations. We use information about the queriers to classify originator activity using machine-learning. Our algorithm has reasonable precision (70-80%) as shown by data from three different organizations operating DNS servers at the root or country-level. Using this technique we examine nine months of activity from one authority to identify trends in scanning, identifying bursts corresponding to Heartbleed and broad and continuous scanning of ssh.

The work in this paper is by Kensuke Fukuda (NII/Sokendai) and John Heidemann (USC/ISI) and was begun when Fukuda-san was a visiting scholar at USC/ISI.  Kensuke Fukuda’s work in this paper is partially funded by Young Researcher Overseas Visit Program by Sokendai, JSPS Kakenhi, and the Strategic International Collaborative R&D Promotion Project of the Ministry of Internal Affairs and Communication in Japan, and by the European Union Seventh Framework Programme.  John Heidemann’s work is partially supported by US DHS S&T, Cyber Security division.

Some of the datasets in this paper are available to researchers, either from the authors or through DNS-OARC.  We list DNS backscatter datasets and methods to obtain them at https://ant.isi.edu/datasets/dns_backscatter/index.html.

 

Categories
Papers Publications

new conference paper “Connection-Oriented DNS to Improve Privacy and Security” in Oakland 2015

The paper “Connection-Oriented DNS to Improve Privacy and Security” will appear at the 36th IEEE Symposium on Security and Privacy in May 2015 in San Jose, CA, USA  (available at http://www.isi.edu/~liangzhu/papers/Zhu15b.pdf)

From the abstract:end_to_end_model_n_7

The Domain Name System (DNS) seems ideal for connectionless UDP, yet this choice results in challenges of eavesdropping that compromises privacy, source-address spoofing that simplifies denial-of-service (DoS) attacks on the server and third parties, injection attacks that exploit fragmentation, and reply-size limits that constrain key sizes and policy choices. We propose T-DNS to address these problems. It uses TCP to smoothly support large payloads and to mitigate spoofing and amplification for DoS. T-DNS uses transport-layer security (TLS) to provide privacy from users to their DNS resolvers and optionally to authoritative servers. TCP and TLS are hardly novel, and expectations about DNS suggest connections will balloon client latency and overwhelm server with state. Our contribution is to show that T-DNS significantly improves security and privacy: TCP prevents denial-of-service (DoS) amplification against others, reduces the effects of DoS on the server, and simplifies policy choices about key size. TLS protects against eavesdroppers to the recursive resolver. Our second contribution is to show that with careful implementation choices, these benefits come at only modest cost: end-to-end latency from TLS to the recursive resolver is only about 9% slower when UDP is used to the authoritative server, and 22% slower with TCP to the authoritative. With diverse traces we show that connection reuse can be frequent (60–95% for stub and recursive resolvers, although half that for authoritative servers), and after connection establishment, experiments show that TCP and TLS latency is equivalent to UDP. With conservative timeouts (20 s at authoritative servers and 60 s elsewhere) and estimated per-connection memory, we show that server memory requirements match current hardware: a large recursive resolver may have 24k active connections requiring about 3.6 GB additional RAM. Good performance requires key design and implementation decisions we identify: query pipelining, out-of-order responses, TCP fast-open and TLS connection resumption, and plausible timeouts.

The work in the paper is by Liang Zhu, Zi Hu and John Heidemann (USC/ISI), Duane Wessels and Allison Mankin (both of Verisign Labs), and Nikita Somaiya (USC/ISI).  Earlier versions of this paper were released as ISI-TR-688 and ISI-TR-693; this paper adds results and supercedes that work.

The data in this paper is available to researchers at no cost on request. Please see T-DNS-experiments-20140324 at dataset page.