In early December we had a ANT research group lunch to celebrate recent PhD defenses (Xue Cai and Lin Quan) and graduates (Chengjie Zhang). As a special treat alumnae Alefiya Hussain and and Genevieve Bartlett joined us. A yummy lunch and a great occasion!
Tag: usc
I would like to congratulate Dr. Xue Cai for defending her PhD and filing her doctoral disseration “Global Analysis and Modeling on Decentralized Internet” in Dec. 2013.
From the abstract:
Better understanding about Internet infrastructure is crucial to improve the reliability, performance, and security of web services. The need for this understanding then drives research in network measurements. Internet measurements explore a variety of data related to a specific topic and then develop approaches to transform data into useful understanding about the topic. This process is not straightforward since available data often only contains indirect information that may appear to have limited connection to the topic.
This body of work asserts that systematic approaches can overcome data limitations to improve understanding about important aspects of the Internet infrastructure. We demonstrate the validity of our thesis statement by providing three specific examples that develop novel approaches and provide novel understanding compared to prior work. In particular, we employ four systematic approaches—statistical, clustering, modeling, and what-if approach—to understand three important aspects of the Internet: the efficiency and management of IPv4 addresses, the ownership of Autonomous Systems (ASes), and the robustness of web services when facing critical facility disruption. These approaches have addressed a variety of challenges posed by indirect, incomplete, over-fit, noisy and unknown data; they in turn enable us to improve understanding about the Internet.
Each of our three studies explores a different area of the problem space and opens a much larger area of opportunity. The data limitations addressed by our approaches also occur in many other problems. We believe our approaches can inspire future work to solve these problems and in turn provide more useful understanding about the Internet.
We just released a new technical report “A Holistic Framework for Bridging Regional Threats to User QoE”, ISI-TR-2013-687, available as https://www.isi.edu/~johnh/PAPERS/Cai13c.pdf
From the abstract:
Submarine cable cuts have become increasingly common, with five incidents breaking more than ten cables in the last three years. Today, around~300 cables carry the majority of international Internet traffic, so a single cable cut can affect millions of users, and repairs to any cut are expensive and time consuming. Prior work has either measured the impact following incidents, or predicted the results of network changes to relatively abstract Internet topological models. In this paper, we develop a new approach to model cable cuts. Our approach differs by following problems drawn from real-world occurrences all the way to their impact on end-users. Because our approach spans many layers, no single organization can provide all the data needed to apply the model. We therefore perform what-if analysis to study a range of possibilities. With this approach we evaluate four incidents in 2012 and 2013; our analysis suggests general rules that assess the degree of a country’s vulnerability to a cut.
The paper “Replay of Malicious Traffic in Network Testbeds” (by Alefiya Hussain, Yuri Pradkin, and John Heidemann) will appear in the 3th IEEE Conference on Technologies for Homeland Security (HST) in Waltham, Mass. in Nov. 2013. The paper is available at http://www.isi.edu/~johnh/PAPERS/Hussain13a.
In this paper we present tools and methods to integrate attack measurements from the Internet with controlled experimentation on a network testbed. We show that this approach provides greater fidelity than synthetic models. We compare the statistical properties of real-world attacks with synthetically generated constant bit rate attacks on the testbed. Our results indicate that trace replay provides fine time-scale details that may be absent in constant bit rate attacks. Additionally, we demonstrate the effectiveness of our approach to study new and emerging attacks. We replay an Internet attack captured by the LANDER system on the DETERLab testbed within two hours.
Data from the paper is available as DoS_DNS_amplification-20130617 from the authors or http://www.predict.org, and the tools are at deterlab).
The paper “Trinocular: Understanding Internet Reliability Through Adaptive Probing” was accepted by SIGCOMM’13 in Hong Kong, China (available at http://www.isi.edu/~johnh/PAPERS/Quan13c with cite and pdf, or direct pdf).
From the abstract:
Natural and human factors cause Internet outages—from big events like Hurricane Sandy in 2012 and the Egyptian Internet shutdown in Jan. 2011 to small outages every day that go unpublicized. We describe Trinocular, an outage detection system that uses active probing to understand reliability of edge networks. Trinocular is principled: deriving a simple model of the Internet that captures the information pertinent to outages, and populating that model through long-term data, and learning current network state through ICMP probes. It is parsimonious, using Bayesian inference to determine how many probes are needed. On average, each Trinocular instance sends fewer than 20 probes per hour to each /24 network block under study, increasing Internet “background radiation” by less than 0.7%. Trinocular is also predictable and precise: we provide known precision in outage timing and duration. Probing in rounds of 11 minutes, we detect 100% of outages one round or longer, and estimate outage duration within one-half round. Since we require little traffic, a single machine can track 3.4M /24 IPv4 blocks, all of the Internet currently suitable for analysis. We show that our approach is significantly more accurate than the best current methods, with about one-third fewer false conclusions, and about 30% greater coverage at constant accuracy. We validate our approach using controlled experiments, use Trinocular to analyze two days of Internet outages observed from three sites, and re-analyze three years of existing data to develop trends for the Internet.
Citation: Lin Quan, John Heidemann and Yuri Pradkin. Trinocular: Understanding Internet Reliability Through Adaptive Probing. In Proceedings of the ACM SIGCOMM Conference. Hong Kong, China, ACM. August, 2013. <http://www.isi.edu/~johnh/PAPERS/Quan13c>.
Datasets (listed here) used in generating this paper are available or will be available before the conference presentation.
The paper “Evaluating Anycast in the Domain Name System” (available at http://www.isi.edu/~xunfan/research/Fan13a.pdf) was accepted to appear at the IEEE International Conference (INFOCOM) on Computer Communications 2013 in Turin, Italy.
IP anycast is a central part of production DNS. While prior work has explored proximity, affinity and load balancing for some anycast services, there has been little attention to third-party discovery and enumeration of components of an anycast service. Enumeration can reveal abnormal service configurations, benign masquerading or hostile hijacking of anycast services, and help characterize anycast deployment. In this paper, we discuss two methods to identify and characterize anycast nodes. The first uses an existing anycast diagnosis method based on CHAOS-class DNS records but augments it with traceroute to resolve ambiguities. The second proposes Internet-class DNS records which permit accurate discovery through the use of existing recursive DNS infrastructure. We validate these two methods against three widely-used anycast DNS services, using a very large number (60k and 300k) of vantage points, and show that they can provide excellent precision and recall. Finally, we use these methods to evaluate anycast deployments in top-level domains (TLDs), and find one case where a third-party operates a server masquerading as a root DNS anycast node as well as a noticeable proportion of unusual DNS proxies. We also show that, across all TLDs, up to 72% use anycast.
Citation: Xun Fan, John Heidemann and Ramesh Govindan. Evaluating Anycast in the Domain Name System. To appear in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM). Turin, Italy. April, 2013. http://www.isi.edu/~johnh/PAPERS/Fan13a.html
We recently finished the work of geolocating all IPv4 addresses and plotted a “complete IP geolocation map“.
This work is based on our previous IMC paper “Towards Geolocation of Millions of IP Addresses“, joint work of Zi Hu, John Heidemann, and Yuri Pradkin.
Processed data from this work is visible on our browsable web map. The raw data from this effort is available through PREDICT or from the authors.
John Heidemann gave the talk “Long-term Data Collection and Analysis of Outages at the Edge” at UCSD, San Diego, California on Feb. 8, 2013 as part of the CAIDA Active Internet Measurement Systems (AIMS) Workshop. Slides are available at http://www.isi.edu/~johnh/PAPERS/Heidemann13e.html.
This talk describes our analysis of outages in edge networks at the time of Hurricane Sandy, and how that work was enabled by long-term data collection. The analysis showed U.S. networks had double the outage rate (from 0.2% to 0.4%) on 2012-10-30, the day after Sandy landfall, and recovered after four days. We highlighted long-term data collection of Internet Surveys, a random sample of about 41,000 /24 blocks, and the characteristics that make that data suitable for re-analysis. The talk was part of the CAIDA Workshop on Active Internet Measurement Systems, hosted at UCSD.
This work is based on our recent technical report “A Preliminary Analysis of Network Outages During Hurricane Sandy“, joint work of John Heidemann, Lin Quan, and Yuri Pradkin.
We recently posted our abstract “Third-Party Measurement of Network Outages in Hurricane Sandy” at http://www.isi.edu/~johnh/PAPERS/Heidemann13c.html and the talk “Active Probing of Edge Networks: Hurricane Sandy and Beyond” at http://www.isi.edu/~johnh/PAPERS/Heidemann13d.html
These were part of the FCC Workshop on Network Resiliency at Brooklyn Law College, Brooklyn, NY on Feb. 6, 2013, chaired by Henning Schulzrinne.
Video from our talk and for the whole workshop is on YouTube.
A summary of the talk:
This talk summarized our analysis of outages in edge networks at the time of Hurricane Sandy. This analysis showed U.S. networks had double the outage rate (from 0.2% to 0.4%) on 2012-10-30, the day after Sandy landfall, and recovered after four days. It also describes our goal of tracking all outages in the Internet. The talk was part of the FCC workshop on Network Resiliency, hosted at Brooklyn Law College by Henning Schulzrinne.
This work is based on our recent technical report “A Preliminary Analysis of Network Outages During Hurricane Sandy“, joint work of John Heidemann, Lin Quan, and Yuri Pradkin.