Categories
Papers Publications

new conference paper “When the Internet Sleeps: Correlating Diurnal Networks With External Factors” in IMC 2014

The paper “When the Internet Sleeps: Correlating Diurnal Networks With External Factors” will appear at ACM Internet Measurements Conference 2014 in Vancouver, Canada (available at http://www.isi.edu/~johnh/PAPERS/Quan14c/ with cite and pdf, or direct pdf).

Predicting longitude from observed diurnal phase ([Quan14c], figure 14c)
Predicting longitude from observed diurnal phase for 287k geolocatable, diurnal blocks ([Quan14c], figure 14c)
From the abstract:

As the Internet matures, policy questions loom larger in its operation. When should an ISP, city, or government invest in infrastructure? How do their policies affect use? In this work, we develop a new approach to evaluate how policies, economic conditions and technology correlates with Internet use around the world. First, we develop an adaptive and accurate approach to estimate block availability, the fraction of active IP addresses in each /24 block over short timescales (every 11 minutes). Our estimator provides a new lens to interpret data taken from existing long-term outage measurements, thus requiring no additional traffic. (If new collection was required, it would be lightweight, since on average, outage detection requires less than 20 probes per hour per /24 block; less than 1% of background radiation.) Second, we show that spectral analysis of this measure can identify diurnal usage: blocks where addresses are regularly used during part of the day and idle in other times. Finally, we analyze data for the entire responsive Internet (3.7M /24 blocks) over 35 days. These global observations show when and where the Internet sleeps—networks are mostly always-on in the US and Western Europe, and diurnal in much of Asia, South America, and Eastern Europe. ANOVA (Analysis of Variance) testing shows that diurnal networks correlate negatively with country GDP and electrical consumption, quantifying that national policies and economics relate to networks.

Citation: Lin Quan, John Heidemann, and Yuri Pradkin. When the Internet Sleeps: Correlating Diurnal Networks With External Factors. In Proceedings of the ACM Internet Measurement Conference, p. to appear. Vancouver, BC, Canada, ACM. November, 2014.

All data in this paper is available to researchers at no cost, and source code to our analysis tools is available on request; see our diurnal datasets webpage.

This work is partly supported by DHS S&T, Cyber Security division, agreement FA8750-12-2-0344 (under AFRL) and N66001-13-C-3001 (under SPAWAR).  The views contained
herein are those of the authors and do not necessarily represent those of DHS or the U.S. Government.  This work was classified by USC’s IRB as non-human subjects research (IIR00001648).

Categories
Publications Technical Report

new technical report “Web-scale Content Reuse Detection (extended)”

We released a new technical report “Web-scale Content Reuse Detection (extended)”, ISI-TR-2014-692, available at http://www.isi.edu/publications/trpublic/files/tr-692.pdf.

From the abstract:

Discovering the amount of chunk-level duplication in Geocities (2008/2009, 97M chunks, Fig. 11).
Discovering the amount of chunk-level duplication in Geocities (2008/2009, 97M chunks, Fig. 11).

With the vast amount of accessible, online content, it is not surprising that unscrupulous entities “borrow” from the web to provide filler for advertisements, link farms, and spam and make a quick profit. Our insight is that cryptographic hashing and fingerprinting can efficiently identify content reuse for web-size corpora. We develop two related algorithms, one to automatically discover previously unknown duplicate content in the web, and the second to detect copies of discovered or manually identified content in the web. Our detection can also bad neighborhoods, clusters of pages where copied content is frequent. We verify our approach with controlled experiments with two large datasets: a Common Crawl subset the web, and a copy of Geocities, an older set of user-provided web content. We then demonstrate that we can discover otherwise unknown examples of duplication for spam, and detect both discovered and expert-identified content in these large datasets. Utilizing an original copy of Wikipedia as identified content, we find 40 sites that reuse this content, 86% for commercial benefit.

Categories
Publications Technical Report

new technical report “When the Internet Sleeps: Correlating Diurnal Networks With External Factors (extended)”

We released a new technical report “When the Internet Sleeps: Correlating Diurnal Networks With External Factors (extended)”, ISI-TR-2014-691, by Lin Quan, John Heidemann, and Yuri Pradkin, available as http://www.isi.edu/~johnh/PAPERS/Quan14b.
pdf

Comparing observed diurnal phase and geolocation longitude for 287k geolocatable, diurnal blocks ([Quan14b], figure 14b)
Comparing observed diurnal phase and geolocation longitude for 287k geolocatable, diurnal blocks ([Quan14b], figure 14b)
From the abstract:

As the Internet matures, policy questions loom larger in its operation. When should an ISP, city, or government invest in infrastructure? How do their policies affect use? In this work, we develop a new approach to evaluate how policies, economic conditions and technology correlates with Internet use around the world. First, we develop an adaptive and accurate approach to estimate block availability, the fraction of active IP addresses in each /24 block over short timescales (every 11 minutes). Our estimator provides a new lens to interpret data taken from existing long-term outage measurements, this requiring no no additional traffic. (If new collection was required, it would be lightweight, since on average, outage detection requires less than 20 probes per hour per /24 block; less than 1% of background radiation.) Second, we show that spectral analysis of this measure can identify diurnal usage: blocks where addresses are regularly used during part of the day and idle in other times. Finally, we analyze data for the entire responsive Internet (3.7M /24 blocks) over 35 days. These global observations show when and where the Internet sleeps—networks are mostly always-on in the US and Western Europe, and diurnal in much of Asia, South America, and Eastern Europe. ANOVA testing shows that diurnal networks correlate negatively with country GDP and electrical consumption, quantifying that national policies and economics relate to networks.

Data from this paper is available from http://www.isi.edu/ant/traces/internet_otuages/index.html, and from http://www.predict.org as dataset internet_outage_adaptive_a12w-20130424.

Categories
Presentations

new video “A Retrospective on an Australian Routing Event”

On 2012-02-23, hardware problems in an Australian ISP (Dodo) router caused it to announce many global routes to their ISP (Telstra), and from there to others.

The result: for 45 minutes, millions of Australians lost international Internet connectivity.

While this problem was detected and corrected in less than an hour, this kind of problem can reoccur.

In this video we show the Internet address space (IPv4) from Sydney, Australia.   Colors show estimated physical location (blue: North America, Red: Europe, Green: Asia).   Addresses map to a Hilbert Curve, and nearby addresses form squares.  White boxes show routing changes, with bursts after 02:40 UTC.

In the visualization we see there are many, many routing changes for much of Internet (the many white boxes)–evidence of routing instability in Sydney.

A copy of this video is also available at Vimeo (some system may have problems viewing the above embedded video, but Vimeo is a good alternative).

This video was made by Kaustubh Gadkari, John Heidemann, Cathie Olschanowsky, Christos Papadopoulos, Yuri Pradkin, and Lawrence Weikum at University of Southern California/Information Sciences Institute (USC/ISI) and Colorado State University/Computer Science (CSU).

This video uses software developed at USC/ISI and CSU:  Retro-future Time Travel, the LANDER IPv4 Web Address Browser, and BGPMon, the BGP logging and monitor.  Data from this video is available from BGPMon and PREDICT (or the authors).

This work was supported by DHS S&T (BGPMon, contract N66001-08-C-2028; LANDER, contract D08PC75599, admin. by SPAWAR; LACREND, contract FA8750-12-2-0344, admin. by AFRL; Retro-future, contract N66001-13-C-3001, admin. by SPAWAR), and NSF/CISE (BGPMon, grant CNS-1305404).  Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of funding and administrative agencies.

Categories
Presentations

keynote “Sharing Network Data: Bright Gray Days Ahead” given at Passive and Active Measurement Conference

I’m honored to have been invited to give the keynote talk “Sharing Network Data: Bright Gray Days Ahead” at the Passive and  Active Measurement Conference 2014 in Marina del Rey.

A copy of the talk slides are at http://www.isi.edu/~johnh/PAPERS/Heidemann14b (pdf)

some brighter alternatives
Some alternatives, perhaps brighter than the gray of standard anonymization.

From the talk’s abstract:

Sharing data is what we expect as a community. From the IMC best paper award requiring a public dataset to NSF data management plans, we know that data is crucial to reproducible science. Yet privacy concerns today make data acquisition difficult and sharing harder still. AOL and Netflix have released anonymized datasets that leaked customer information, at least for a few customers and with some effort. With the EU suggesting that IP addresses are personally identifiable information, are we doomed to IP-address free “Internet” datasets?
In this talk I will explore the issues in data sharing, suggesting that we need to move beyond black and white definitions of private and public datasets, to embrace the gray shades of data sharing in our future. Gray need not be gloomy. I will discuss some new ideas in sharing that suggest that, if we move beyond “anonymous ftp” as our definition, the future may be gray but bright.

This talk did not generate new datasets, but it grows out of our experiences distributing data through several research projects (such as LANDER and LACREND, both part of the DHS PREDICT program) mentioned in the talk with data available http://www.isi.edu/ant/traces/.  This talk represents my on opinions, not those of these projects or their sponsors.

Categories
Students

congratulations to Xue Cai for her new PhD

I would like to congratulate Dr. Xue Cai for defending her PhD and filing her doctoral disseration “Global Analysis and Modeling on Decentralized Internet” in Dec. 2013.

Xue Cai (left) and John Heidemann, after her PhD defense.
Xue Cai (left) and John Heidemann, after her PhD defense.

From the abstract:

Better understanding about Internet infrastructure is crucial to improve the reliability, performance, and security of web services. The need for this understanding then drives research in network measurements. Internet measurements explore a variety of data related to a specific topic and then develop approaches to transform data into useful understanding about the topic. This process is not straightforward since available data often only contains indirect information that may appear to have limited connection to the topic.
This body of work asserts that systematic approaches can overcome data limitations to improve understanding about important aspects of the Internet infrastructure. We demonstrate the validity of our thesis statement by providing three specific examples that develop novel approaches and provide novel understanding compared to prior work. In particular, we employ four systematic approaches—statistical, clustering, modeling, and what-if approach—to understand three important aspects of the Internet: the efficiency and management of IPv4 addresses, the ownership of Autonomous Systems (ASes), and the robustness of web services when facing critical facility disruption. These approaches have addressed a variety of challenges posed by indirect, incomplete, over-fit, noisy and unknown data; they in turn enable us to improve understanding about the Internet.
Each of our three studies explores a different area of the problem space and opens a much larger area of opportunity. The data limitations addressed by our approaches also occur in many other problems. We believe our approaches can inspire future work to solve these problems and in turn provide more useful understanding about the Internet.

Categories
Publications Technical Report

new technical report “A Holistic Framework for Bridging Regional Threats to User QoE”

We just released a new technical report “A Holistic Framework for Bridging Regional Threats to User QoE”, ISI-TR-2013-687, available as https://www.isi.edu/~johnh/PAPERS/Cai13c.pdf

Estimated impact on user QoE in four cable cut incidents (Figure 13 from [Cai13c])

From the abstract:

Submarine cable cuts have become increasingly common, with five incidents breaking more than ten cables in the last three years. Today, around~300 cables carry the majority of international Internet traffic, so a single cable cut can affect millions of users, and repairs to any cut are expensive and time consuming. Prior work has either measured the impact following incidents, or predicted the results of network changes to relatively abstract Internet topological models. In this paper, we develop a new approach to model cable cuts. Our approach differs by following problems drawn from real-world occurrences all the way to their impact on end-users. Because our approach spans many layers, no single organization can provide all the data needed to apply the model. We therefore perform what-if analysis to study a range of possibilities. With this approach we evaluate four incidents in 2012 and 2013; our analysis suggests general rules that assess the degree of a country’s vulnerability to a cut.

 

Categories
Papers Publications

new conference paper “Mapping the Expansion of Google’s Serving Infrastructure” in IMC 2013 and WSJ Blog

The paper “Mapping the Expansion of Google’s Serving Infrastructure” (by Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann and Ramesh Govindan) will appear in the 2013 ACM Internet Measurements Conference (IMC) in Barcelona, Spain in Oct. 2013.

This work was also featured today in Digits, the technology news and analysis blog from the Wall Street Journal, and at USC’s press room.

A copy of the paper is available at http://www.isi.edu/~johnh/PAPERS/Calder13a, and data from the work is available at http://mappinggoogle.cs.usc.edu, from http://www.isi.edu/ant/traces/mapping_google/index.html, and from http://www.predict.org.

[Calder13a] figure 5a
Growth of Google’s infrastructure, measured in IP addresses [Calder13a] figure 5a

From the paper’s abstract:

Modern content-distribution networks both provide bulk content and act as “serving infrastructure” for web services in order to reduce user-perceived latency. Serving infrastructures such as Google’s are now critical to the online economy, making it imperative to understand their size, geographic distribution, and growth strategies. To this end, we develop techniques that enumerate IP addresses of servers in these infrastructures, find their geographic location, and identify the association between clients and clusters of servers. While general techniques for server enumeration and geolocation can exhibit large error, our techniques exploit the design and mechanisms of serving infrastructure to improve accuracy. We use the EDNS-client-subnet DNS extension to measure which clients a service maps to which of its serving sites. We devise a novel technique that uses this mapping to geolocate servers by combining noisy information about client locations with speed-of-light constraints. We demonstrate that this technique substantially improves geolocation accuracy relative to existing approaches. We also cluster server IP addresses into physical sites by measuring RTTs and adapting the cluster thresholds dynamically. Google’s serving infrastructure has grown dramatically in the ten months, and we use our methods to chart its growth and understand its content serving strategy. We find that the number of Google serving sites has increased more than sevenfold, and most of the growth has occurred by placing servers in large and small ISPs across the world, not by expanding Google’s backbone.

Categories
Publications Technical Report

new technical report “Mapping the Expansion of Google’s Serving Infrastructure”

We just released a new technical report “Mapping the Expansion of Google’s Serving Infrastructure”, available as https://www.isi.edu/~johnh/PAPERS/Calder13a.pdf

Growth of Google's serving network.
Growth of Google’s serving network (measured here in IP addresses).

From the abstract:

Modern content-distribution networks both provide bulk content and act as “serving infrastructure” for web services in order to reduce user-perceived latency. These serving infrastructures (such as Google’s) are now critical to the online economy, making it imperative to understand their size, geographic distribution, and growth strategies. To this end, we develop techniques that enumerate servers in these infrastructures, find their geographic location, and identify the association between clients and servers. While general techniques for server enumeration and geolocation can exhibit large error, our techniques exploit the design and mechanisms of serving infrastructure to improve accuracy. We use the EDNS-client-subnet extension to DNS to measure which clients a service maps to which of its servers. We devise a novel technique that uses this mapping to geolocate servers by combining noisy information about client locations with speed-of-light constraints. We demonstrate that this technique substantially improves geolocation accurate relative to existing approaches. We also cluster servers into physical sites by measuring RTTs and adapting the cluster thresholds dynamically. Google’s serving infrastructure has grown dramatically in the last six months, and we use our methods to chart its growth and understand its content serving strategy. We find that Google has almost doubled in size, and that most of the growth has occurred by placing servers in large and small ISPs across the world, not by expanding on Google’s backbone.

Datasets from this work will be available, please contact the authors at this time if you’re interested.