Categories
Papers Publications

new journal paper “Detecting IoT Devices in the Internet” in IEEE/ACM Transactions on Networking

We have published a new journal paper “Detecting IoT Devices in the Internet” in IEEE/ACM Transactions on Networking, available at https://www.isi.edu/~johnh/PAPERS/Guo20c.pdf

Figure 5 from [Guo20c] showing per-device-type AS penetrations from 2013 to 2018 for 16 of the 23 device types we studies (omitting 7 device types appearing in less than10 ASes)

From the abstract of our journal paper:

Distributed Denial-of-Service (DDoS) attacks launched from compromised Internet-of-Things (IoT) devices have shown how vulnerable the Internet is to largescale DDoS attacks. To understand the risks of these attacks requires learning about these IoT devices: where are they? how many are there? how are they changing? This paper describes three new methods to find IoT devices on the Internet: server IP addresses in traffic, server names in DNS queries, and manufacturer information in TLS certificates. Our primary methods (IP addresses and DNS names) use knowledge of servers run by the manufacturers of these devices. Our third method uses TLS certificates obtained by active scanning. We have applied our algorithms to a number of observations. With our IP-based algorithm, we report detections from a university campus over 4 months and from traffic transiting an IXP over 10 days. We apply our DNS-based algorithm to traffic from 8 root DNS servers from 2013 to 2018 to study AS-level IoT deployment. We find substantial growth (about 3.5×) in AS penetration for 23 types of IoT devices and modest increase in device type density for ASes detected with these device types (at most 2 device types in 80% of these ASes in 2018). DNS also shows substantial growth in IoT deployment in residential households from 2013 to 2017. Our certificate-based algorithm finds 254k IP cameras and network video recorders from 199 countries around the world.

We make operational traffic we captured from 10 IoT devices we own public at https://ant.isi.edu/datasets/iot/. We also use operational traffic of 21 IoT devices shared by University of New South Wales at http://149.171.189.1/.

This journal paper is joint work of Hang Guo and  John Heidemann from USC/ISI.

Categories
Publications Technical Report

new technical report: IoTSTEED: Bot-side Defense to IoT-based DDoS Attacks (Extended)

We have released a new technical report IoTSTEED: Bot-side Defense to IoT-based DDoS Attacks (Extended) as ISI-TR-738, available at https://www.isi.edu/~hangguo/papers/Guo20a.pdf.

From the abstract:

We show IoTSTEED runs
well on a commodity router: memory usage is small (4% of 512MB) and the router forwards traffic at full uplink rates despite about 50% of CPU usage.

We propose IoTSTEED, a system running in edge routers to defend against Distributed Denial-of-Service (DDoS) attacks launched from compromised Internet-of-Things (IoT) devices. IoTSTEED watches traffic that leaves and enters the home network, detecting IoT devices at home, learning the benign servers they talk to, and filtering their traffic to other servers as a potential DDoS attack. We validate IoTSTEED’s accuracy and false positives (FPs) at detecting devices, learning servers and filtering traffic with replay of 10 days of benign traffic captured from an IoT access network. We show IoTSTEED correctly detects all 14 IoT and 6 non-IoT devices in this network (100% accuracy) and maintains low false-positive rates when learning the servers IoT devices talk to (flagging 2% benign servers as suspicious) and filtering IoT traffic (dropping only 0.45% benign packets). We validate IoTSTEED’s true positives (TPs) and false negatives (FNs) in filtering attack traffic with replay of real-world DDoS traffic. Our experiments show IoTSTEED mitigates all typical attacks, regardless of the attacks’ traffic types, attacking devices and victims; an intelligent adversary can design to avoid detection in a few cases, but at the cost of a weaker attack. Lastly, we deploy IoTSTEED in NAT router of an IoT access network for 10 days, showing reasonable resource usage and verifying our testbed experiments for accuracy and learning in practice.

We share 10-day operational traffic captured from 14 IoT devices we own at https://ant.isi.edu/datasets/iot/ (see IoT_Operation_Traces-20200127) and release source code for IoTSTEED at https://ant.isi.edu/software/iotsteed/index.html.

This technical report is joint work of Hang Guo and John Heidemann from USC/ISI.

Categories
Students

congratulations to Hang Guo for his new PhD

I would like to congratulate Dr. Hang Guo for defending his PhD in April 2020 and completing his doctoral dissertation “Detecting and Characterizing Network Devices Using
Signatures of Traffic About End-Points” in May 2020.

Hang Guo and John Heidemann (inset), after Hang filed his PhD dissertation.

From the abstract:

The Internet has become an inseparable part of our society. Since the Internet is essentially a distributed system of billions of inter-connected, networked devices, learning about these devices is essential for better understanding, managing and securing the Internet. To study these network devices, without direct control over them or direct contact with their users, requires traffic-based methods for detecting devices. To identify target devices from traffic measurements, detection of network devices relies on signatures of traffic, mapping from certain characteristics of traffic to target devices. This dissertation focuses on device detection that use signatures of traffic about end-points: mapping from characteristics of traffic end-point, such as counts and identities, to target devices. The thesis of this dissertation is that new signatures of traffic about end-points enable detection and characterizations of new class of network devices. We support this thesis statement through three specific studies, each detecting and characterizing a new class of network devices with a new signature of traffic about end-points. In our first study, we present detection and characterization of network devices that rate limit ICMP traffic based on how they change the responsiveness of traffic end-points to active probings. In our second study, we demonstrate mapping identities of traffic end-points to a new class of network devices: Internet-of-Thing (IoT) devices. In our third study, we explore detecting compromised IoT devices by identifying IoT devices talking to suspicious end-points. Detection of these compromised IoT devices enables us to mitigate DDoS traffic between them and suspicious end-points.

Hang defend his PhD when USC was on work-from-home due to COVID-19, so he is the first ANT student with a fully on-line PhD defense.

Categories
Publications Technical Report

new technical report “Detecting IoT Devices in the Internet (Extended)”

We have released a new technical report “Detecting IoT Devices in the Internet (Extended)” as ISI-TR-726.

ISP-Level Deployment for  26 IoT Device Types. From Figure 2 of [Guo18c].
From the abstract of our technical report:

Distributed Denial-of-Service (DDoS) attacks launched from compromised Internet-of-Things (IoT) devices have shown how vulnerable the Internet is to large-scale DDoS attacks. To understand the risks of these attacks requires learning about these IoT devices: where are they? how many are there? how are they changing? This paper describes three new methods to find IoT devices on the Internet: server IP addresses in traffic, server names in DNS queries, and manufacturer information in TLS certificates. Our primary methods (IP addresses and DNS names) use knowledge of servers run by the manufacturers of these devices. We have developed these approaches with 10 device models from 7 vendors. Our third method uses TLS certificates obtained by active scanning. We have applied our algorithms to a number of observations. Our IP-based algorithms see at least 35 IoT devices on a college campus, and 122 IoT devices in customers of a regional IXP. We apply our DNSbased algorithm to traffic from 5 root DNS servers from 2013 to 2018, finding huge growth (about 7×) in ISPlevel deployment of 26 device types. DNS also shows similar growth in IoT deployment in residential households from 2013 to 2017. Our certificate-based algorithm finds 254k IP cameras and network video recorders from 199 countries around the world.

We make operational traffic we captured from 10 IoT devices we own public at https://ant.isi.edu/datasets/iot/. We also use operational traffic of 21 IoT devices shared by University of New South Wales at http://149.171.189.1/.

This technical report is joint work of Hang Guo and  John Heidemann from USC/ISI.

Categories
Papers Publications

New workshop paper “IP-Based IoT Device Detection”

We have published a new paper “IP-Based IoT Device Detection” in the Second ACM Workshop on Internet-of-Things Security and Privacy (IoTS&P 2018) in Budapest, Hungary, co-located with SIGCOMM 2018.

IoT devices we detect in use at a campus (Table 3 from [Guo18b])
From the abstract of our  paper:

Recent IoT-based DDoS attacks have exposed how vulnerable the Internet can be to millions of insufficiently secured IoT devices. To understand the risks of these attacks requires
learning about these IoT devices—where are they, how many are there, how are they changing? In this paper, we propose
a new method to find IoT devices in Internet to begin to assess this threat. Our approach requires observations of flow-level network traffic and knowledge of servers run by
the manufacturers of the IoT devices. We have developed our approach with 10 device models by 7 vendors and controlled
experiments. We apply our algorithm to observations from 6 days of Internet traffic at a college campus and partial traffic
from an IXP to detect IoT devices.

We make operational traffic we captured from 10 IoT devices we own public at https://ant.isi.edu/datasets/iot/. We also use operational traffic of 21 IoT devices shared by University of New South Wales at http://149.171.189.1/.

This paper is joint work of Hang Guo and  John Heidemann from USC/ISI.