Categories
Publications Technical Report

new technical report “Mapping the Expansion of Google’s Serving Infrastructure”

We just released a new technical report “Mapping the Expansion of Google’s Serving Infrastructure”, available as https://www.isi.edu/~johnh/PAPERS/Calder13a.pdf

Growth of Google's serving network.
Growth of Google’s serving network (measured here in IP addresses).

From the abstract:

Modern content-distribution networks both provide bulk content and act as “serving infrastructure” for web services in order to reduce user-perceived latency. These serving infrastructures (such as Google’s) are now critical to the online economy, making it imperative to understand their size, geographic distribution, and growth strategies. To this end, we develop techniques that enumerate servers in these infrastructures, find their geographic location, and identify the association between clients and servers. While general techniques for server enumeration and geolocation can exhibit large error, our techniques exploit the design and mechanisms of serving infrastructure to improve accuracy. We use the EDNS-client-subnet extension to DNS to measure which clients a service maps to which of its servers. We devise a novel technique that uses this mapping to geolocate servers by combining noisy information about client locations with speed-of-light constraints. We demonstrate that this technique substantially improves geolocation accurate relative to existing approaches. We also cluster servers into physical sites by measuring RTTs and adapting the cluster thresholds dynamically. Google’s serving infrastructure has grown dramatically in the last six months, and we use our methods to chart its growth and understand its content serving strategy. We find that Google has almost doubled in size, and that most of the growth has occurred by placing servers in large and small ISPs across the world, not by expanding on Google’s backbone.

Datasets from this work will be available, please contact the authors at this time if you’re interested.

Categories
Papers Publications

new conference paper “Trinocular: Understanding Internet Reliability Through Adaptive Probing” in SIGCOMM 2013

The paper “Trinocular: Understanding Internet Reliability Through Adaptive Probing” was accepted by SIGCOMM’13 in Hong Kong, China (available at http://www.isi.edu/~johnh/PAPERS/Quan13c with cite and pdf, or direct pdf).

100% detection of outages one round or longer
100% detection of outages one round or longer (figure 3 from the paper)

From the abstract:

Natural and human factors cause Internet outages—from big events like Hurricane Sandy in 2012 and the Egyptian Internet shutdown in Jan. 2011 to small outages every day that go unpublicized. We describe Trinocular, an outage detection system that uses active probing to understand reliability of edge networks. Trinocular is principled: deriving a simple model of the Internet that captures the information pertinent to outages, and populating that model through long-term data, and learning current network state through ICMP probes. It is parsimonious, using Bayesian inference to determine how many probes are needed. On average, each Trinocular instance sends fewer than 20 probes per hour to each /24 network block under study, increasing Internet “background radiation” by less than 0.7%. Trinocular is also predictable and precise: we provide known precision in outage timing and duration. Probing in rounds of 11 minutes, we detect 100% of outages one round or longer, and estimate outage duration within one-half round. Since we require little traffic, a single machine can track 3.4M /24 IPv4 blocks, all of the Internet currently suitable for analysis. We show that our approach is significantly more accurate than the best current methods, with about one-third fewer false conclusions, and about 30% greater coverage at constant accuracy. We validate our approach using controlled experiments, use Trinocular to analyze two days of Internet outages observed from three sites, and re-analyze three years of existing data to develop trends for the Internet.

Citation: Lin Quan, John Heidemann and Yuri Pradkin. Trinocular: Understanding Internet Reliability Through Adaptive Probing. In Proceedings of the ACM SIGCOMM Conference. Hong Kong, China, ACM. August, 2013. <http://www.isi.edu/~johnh/PAPERS/Quan13c>.

Datasets (listed here) used in generating this paper are available or will be available before the conference presentation.

Categories
Presentations

New Poster “Poster Abstract: Towards Active Measurements of Edge Network Outages” in PAM 2013

Lin Quan presented our outage work: “Poster Abstract: Towards Active Measurements of Edge Network Outages” at the PAM 2013 conference. Poster abstract is available at http://www.isi.edu/~johnh/PAPERS/Quan13a/index.html

pam_poster

End-to-end reachability is a fundamental service of the Internet. We study network outages caused by natural disasters, and political upheavals. We propose a new approach to outage detection using active probing. Like prior outage detection methods, our method uses ICMP echo requests (“pings”) to detect outages, but we probe with greater density and ner granularity, showing pings can detect outages without supplemental probing. The main contribution of our work is to de ne how to interpret pings as outages: defi ning an outage as a sharp change in block responsiveness relative to recent behavior. We also provide preliminary analysis of outage rate in the Internet edge. Space constrains this poster abstract to only sketches of our approach; details and validation are in our technical report. Our data is available at no charge, see http://www.isi.edu/ant/traces/internet_outages/.

This work is based on our technical report: http://www.isi.edu/~johnh/PAPERS/Quan12a/index.html, joint work by Lin Quan, John Heidemann and Yuri Pradkin.

Categories
Papers Publications

New conference paper “Towards Geolocation of Millions of IP Addresses” at IMC 2012

The paper “Towards Geolocation of Millions of IP Addresses” was accepted by IMC 2012 in Boston, MA (available at http://www.isi.edu/~johnh/PAPERS/Hu12a.html).

From the abstract:

Previous measurement-based IP geolocation algorithms have focused on accuracy, studying a few targets with increasingly sophisticated algorithms taking measurements from tens of vantage points (VPs). In this paper, we study how to scale up existing measurement-based geolocation algorithms like Shortest Ping and CBG to cover the whole Internet. We show that with many vantage points, VP proximity to the target is the most important factor affecting accuracy. This observation suggests our new algorithm that selects the best few VPs for each target from many candidates. This approach addresses the main bottleneck to geolocation scalability: minimizing traffic into each target (and also out of each VP) while maintaining accuracy. Using this approach we have currently geolocated about 35% of the allocated, unicast, IPv4 address-space (about 85% of the addresses in the Internet that can be directly geolocated). We visualize our geolocation results on a web-based address-space browser.

Citation: Zi Hu and John Heidemann and Yuri Pradkin. Towards Geolocation of Millions of IP Addresses. In Proceedings of the ACM Internet Measurement Conference, p. to appear. Boston, MA, USA, ACM. 2012. <http://www.isi.edu/~johnh/PAPERS/Hu12a.html>

 

Categories
Papers Publications

New Workshop paper “Visualizing Sparse Internet Events: Network Outages and Route Changes”


The paper “Visualizing Sparse Internet Events: Network Outages and Route Changes” was accepted by WIV’12 in Boston, MA (available at http://www.isi.edu/~johnh/PAPERS/Quan12b.html).

From the abstract:

To understand network behavior, researchers and enterprise network operators must interpret large amounts of network data. To understand and manage network events such as outages, route instability, and spam campaigns, they must interpret data that covers a range of networks and evolves over time. We propose a simple clustering algorithm that helps identify spatial clusters of network events based on correlations in event timing, producing 2-D visualizations. We show that these visualizations where they reveal the extent, timing, and dynamics of network outages such as January 2011 Egyptian change of government, and the March 2011 Japanese earthquake. We also show they reveal correlations in routing changes that are hidden from AS-path analysis.

Citation: Lin Quan and John Heidemann and Yuri Pradkin. Visualizing Sparse Internet Events: Network Outages and Route Changes. In Proceedings of the First ACM Workshop on Internet Visualization. Boston, MA. November, 2012. <http://www.isi.edu/~johnh/PAPERS/Quan12b.html>.

Categories
Publications Technical Report

New Tech Report “Towards Geolocation of Millions of IP Addresses”

We just published a new technical report “Towards Geolocation of Millions of IP Addresses”, available at ftp://ftp.isi.edu/isi-pubs/tr-680.pdf.

From the abstract:

Previous measurement-based IP geolocation algorithms have focused on accuracy, studying a few targets with increasingly sophisticated algorithms taking measurements from tens of vantage points (VPs). In this paper, we study how to scale up existing measurement-based geolocation algorithms like Shortest Ping and CBG to cover the whole Internet. We show that with many vantage points, VP proximity to the target is the most important factor affecting accuracy. This observation suggests our new algorithm that selects the best few VPs for each target from many candidates. This approach addresses the main bottleneck to geolocation scalability: minimizing traffic into each target (and also out of each VP) while maintaining accuracy. Using this approach we have currently geolocated about 24% of the allocated, unicast, IPv4 address-space (about 55% of the addresses in the Internet that can be directly geolocated).

Categories
Publications Technical Report

New Tech Report “Detecting Internet Outages with Precise Active Probing (extended)”

We just published a new technical report “Detecting Internet Outages with Precise Active Probing (extended)”, available at ftp://ftp.isi.edu/isi-pubs/tr-678b.pdf. This is an update of ISI-TR-678.

From the abstract:

Parts of the Internet are down every day, from the intentionalshutdown of the Egyptian Internet in Jan. 2011 and natural disasterssuch as the Mar. 2011 Japanese earthquake, to the thousands of smalloutages caused by localized accidents, and human error, maintenance,or choices.  Understanding these events requires efficient andaccurate detection methods, motivating our new system to detectnetwork outages by active probing.  We show that a single computer cantrack outages across the entire analyzable IPv4 Internet, probing asample of 20 addresses in all 2.5M responsive /24 address blocks.  Weshow that our approach is significantly more accurate than the bestcurrent methods, with 31% fewer false conclusions, while providing 14%greater coverage and requiring about the same probing traffic.  Wedevelop new algorithms to identify outages and cluster them to events,providing the first visualization of outages.  We carefully validateour approach, showing consistent results over two years and from threedifferent sites.  Using public BGP archives and news sources weconfirm 83% of large events.  For a random sample of 50 observedevents, we find 38% in partial control-plane information, reaffirmingprior work that small outages are often not caused by BGP.  Throughcontrolled emulation we show that our approach detects 100% offull-block outages that last at least twice our probing interval.Finally, we report on Internet stability as a whole, and the size andduration of typical outages, using core-to-edge observations with muchlarger coverage than prior mesh-based studies.  We find that about0.3% of the Internet is likely to be unreachable at any time,suggesting the Internet provides only 2.5 “nines” of availability.

Categories
Publications Technical Report

New tech report “Characterizing Anycast in the Domain Name System”

We just published an new technical report of our anycast enumeration work, including some exciting new results. Check out “Characterizing Anycast in the Domain Name System” (available at ftp://ftp.isi.edu/isi-pubs/tr-681.pdf) .

From the abstract:

IP anycast is a central part of production DNS. While prior
work has explored proximity, affinity and load balancing
for some anycast services, there has been little attention to
third-party discovery and enumeration of components of an
anycast service. Enumeration can reveal abnormal service
configurations, benign masquerading or hostile hijacking of
anycast services, and can help characterize the extent of any-
cast deployment. In this paper, we discuss two methods to
identify and characterize anycast nodes. The first uses an
existing anycast diagnosis method based on CHAOS-class
DNS records but augments it with traceroute to resolve
ambiguities. The second proposes Internet-class DNS records
which permit accurate discovery through the use of existing
recursive DNS infrastructure. We validate these two meth-
ods against three widely-used anycast DNS services, using
a very large number (60k and 300k) of vantage points, and
show that they can provide excellent precision and recall.
Finally, we use these methods to evaluate anycast deploy-
ments in top-level domains (TLDs), and find one case where
a third-party operates a server masquerading as a root DNS
anycast node as well as a noticeable proportion of unusual
anycast proxies. We also show that, across all TLDs, up to
72% use anycast, and that, of about 30 anycast providers,
the two largest serve nearly half the anycasted TLD name-
servers.

Citation: Xun Fan, John Heidemann and Ramesh Govindan. Characterizing Anycast in the Domain Name System. Technical Report N. ISI-TR-681, USC/Information Sciences Institute, May, 2012. ftp://ftp.isi.edu/isi-pubs/tr-681.pdf

Categories
Publications Technical Report

New tech report “Identifying and Characterizing Anycast in the Domain Name System”

We just published a new technical report “Identifying and Characterizing Anycast in the Domain Name System” (available at ftp://ftp.isi.edu/isi-pubs/tr-671.pdf) .

From the abstract:

Since its first appearance, IP anycast has become essential
for critical network services such as the Domain Name Sys-
tem (DNS). Despite this, there has been little attention to
independently identifying and characterizing anycast nodes.
External evaluation of anycast allows both third-party audit-
ing of its benefits, and is essential to discovering benign mas-
querading or hostile hijacking of anycast services. In this
paper, we develop ACE, an approach to identify and charac-
terize anycast nodes. ACE first method is DNS queries for
CHAOS records, the recommended debugging service for
anycast, suitable for cooperative anycast services. Its second
method uses traceroute to identify all anycast services by
their connectivity to the Internet. Each individual method
has ambiguities in some circumstances; we show a com-
bined method improves on both. We validate ACE against
two widely used anycast DNS services that provide ground
truth. ACE has good precision, with 88% of its results corre-
sponding to unique anycast nodes of the F-root DNS service.
Its recall is affected by the number and diversity of vantage
points. We use ACE for an initial study of how anycast is
used for top-level domain servers. We find one case where
a third-party server operates on root-DNS IP address, mas-
querades to capture traffic for its organization. We also study
the 1164 nameserver IP addresses used by all generic and
country-code top-level domains in April 2011. This study
shows evidence that at least 14% and perhaps 32% use any-
cast.

Citation: Xun Fan, John Heidemann and Ramesh Govindan. Identifying and Characterizing Anycast in the Domain Name System. Technical Report N. ISI-TR-671, USC/Information Sciences Institute, June, 2011. ftp://ftp.isi.edu/isi-pubs/tr-671.pdf

Data from this paper will be available from PREDICT through the LANDER project; contact the authors for details.

Categories
Publications Technical Report

New tech report “Detecting Internet Outages with Active Probing”

We just published a new technical report “Detecting Internet Outages with Active Probing”, available at ftp://ftp.isi.edu/isi-pubs/tr-672.pdf.

From the abstract:

With businesses, governments, and individuals increasingly
dependent on the Internet, understanding its reliability is more
important than ever. Network outages vary in scope and
cause, from the intentional shutdown of the Egyptian Inter-
net in February 2011, to outages caused by the effects of
March 2011 earthquakes on undersea cables entering Japan,
to the thousands of small, daily outages caused by localized
accidents or human error. In this paper we present a new
method to detect network outages by probing entire blocks.
Using 24 datasets, each a 2-week study of 22,000 /24 address
blocks randomly sampled from the Internet, we develop new
algorithms to identify and visualize outages and to cluster
those outages into network-level events. We validate our ap-
proach by comparing our data-plane results against control-
plane observations from BGP routing and news reports, ex-
amining both major and randomly selected events. We con-
firm our results are stable from two different locations and
over more than one and half years of observations. We show
that our approach of probing all addresses in a /24 block is
significantly more accurate than prior approaches that use a
single representative for all routed blocks, cutting the num-
ber of mistake outage observations from 44% to under 1%.
We use our approach to study several large outages such as
those mentioned above. We also develop a general estimate
for how much of the Internet is regularly down, finding about
0.3% of the Internet is likely to be unreachable at any time.
By providing a baseline estimate of Internet outages, our
work lays the groundwork to evaluate ISP reliability.

Citation: Lin Quan and John Heidemann. Detecting Internet Outages with Active Probing. Technical Report N. ISI-TR-672. USC/Information Sciences Institute, May 2011. http://ftp://ftp.isi.edu/isi-pubs/tr-672.pdf