Categories
Papers Publications

New conference paper “Evaluating Anycast in the Domain Name System” to appear at INFOCOM

The paper “Evaluating Anycast in the Domain Name System” (available at http://www.isi.edu/~xunfan/research/Fan13a.pdf) was accepted to appear at the IEEE International Conference (INFOCOM) on Computer Communications 2013 in Turin, Italy.

Fan13a_icon
Recall as number of vantage points vary. [Fan13a, figure 2]
From the abstract:

IP anycast is a central part of production DNS. While prior work has explored proximity, affinity and load balancing for some anycast services, there has been little attention to third-party discovery and enumeration of components of an anycast service. Enumeration can reveal abnormal service configurations, benign masquerading or hostile hijacking of anycast services, and help characterize anycast deployment. In this paper, we discuss two methods to identify and characterize anycast nodes. The first uses an existing anycast diagnosis method based on CHAOS-class DNS records but augments it with traceroute to resolve ambiguities. The second proposes Internet-class DNS records which permit accurate discovery through the use of existing recursive DNS infrastructure. We validate these two methods against three widely-used anycast DNS services, using a very large number (60k and 300k) of vantage points, and show that they can provide excellent precision and recall. Finally, we use these methods to evaluate anycast deployments in top-level domains (TLDs), and find one case where a third-party operates a server masquerading as a root DNS anycast node as well as a noticeable proportion of unusual DNS proxies. We also show that, across all TLDs, up to 72% use anycast.

Citation: Xun Fan, John Heidemann and Ramesh Govindan. Evaluating Anycast in the Domain Name System. To appear in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM). Turin, Italy. April, 2013. http://www.isi.edu/~johnh/PAPERS/Fan13a.html

Categories
Announcements Data

Complete IPv4 geolocation dataset now available

complete_geoloc_map

We recently finished the work of geolocating all IPv4 addresses and plotted a “complete IP geolocation map“.

This work is based on our previous IMC paper “Towards Geolocation of Millions of IP Addresses“, joint work of Zi Hu, John Heidemann, and Yuri Pradkin.

Processed data from this work is visible on our browsable web map.  The raw data from this effort is available through PREDICT or from the authors.

Categories
Presentations

New Poster “Poster Abstract: Towards Active Measurements of Edge Network Outages” in PAM 2013

Lin Quan presented our outage work: “Poster Abstract: Towards Active Measurements of Edge Network Outages” at the PAM 2013 conference. Poster abstract is available at http://www.isi.edu/~johnh/PAPERS/Quan13a/index.html

pam_poster

End-to-end reachability is a fundamental service of the Internet. We study network outages caused by natural disasters, and political upheavals. We propose a new approach to outage detection using active probing. Like prior outage detection methods, our method uses ICMP echo requests (“pings”) to detect outages, but we probe with greater density and ner granularity, showing pings can detect outages without supplemental probing. The main contribution of our work is to de ne how to interpret pings as outages: defi ning an outage as a sharp change in block responsiveness relative to recent behavior. We also provide preliminary analysis of outage rate in the Internet edge. Space constrains this poster abstract to only sketches of our approach; details and validation are in our technical report. Our data is available at no charge, see http://www.isi.edu/ant/traces/internet_outages/.

This work is based on our technical report: http://www.isi.edu/~johnh/PAPERS/Quan12a/index.html, joint work by Lin Quan, John Heidemann and Yuri Pradkin.

Categories
Presentations

new talk “Long-term Data Collection and Analysis of Outages at the Edge” given at the AIMS workshop

John Heidemann gave the talk “Long-term Data Collection and Analysis of Outages at the Edge” at UCSD, San Diego, California on Feb. 8, 2013 as part of the CAIDA Active Internet Measurement Systems (AIMS) Workshop.  Slides are available at http://www.isi.edu/~johnh/PAPERS/Heidemann13e.html.

talk_icon

This talk describes our analysis of outages in edge networks at the time of Hurricane Sandy, and how that work was enabled by long-term data collection. The analysis showed U.S. networks had double the outage rate (from 0.2% to 0.4%) on 2012-10-30, the day after Sandy landfall, and recovered after four days. We highlighted long-term data collection of Internet Surveys, a random sample of about 41,000 /24 blocks, and the characteristics that make that data suitable for re-analysis. The talk was part of the CAIDA Workshop on Active Internet Measurement Systems, hosted at UCSD.

This work is based on our recent technical report   “A Preliminary Analysis of Network Outages During Hurricane Sandy“, joint work of John Heidemann, Lin Quan, and Yuri Pradkin.

Categories
Presentations

new abstract “Third-Party Measurement of Network Outages in Hurricane Sandy” and talk with video at FCC Workshop on Network Resiliency

We recently posted our abstract “Third-Party Measurement of Network Outages in Hurricane Sandy” at http://www.isi.edu/~johnh/PAPERS/Heidemann13c.html and the talk “Active Probing of Edge Networks: Hurricane Sandy and Beyond” at http://www.isi.edu/~johnh/PAPERS/Heidemann13d.html

These were part of the FCC Workshop on Network Resiliency at Brooklyn Law College, Brooklyn, NY on Feb. 6, 2013, chaired by Henning Schulzrinne.

Video from our talk and for the whole workshop is on YouTube.

fcc_youtube

A summary of the talk:

This talk summarized our analysis of outages in edge networks at the time of Hurricane Sandy. This analysis showed U.S. networks had double the outage rate (from 0.2% to 0.4%) on 2012-10-30, the day after Sandy landfall, and recovered after four days. It also describes our goal of tracking all outages in the Internet. The talk was part of the FCC workshop on Network Resiliency, hosted at Brooklyn Law College by Henning Schulzrinne.

This work is based on our recent technical report   “A Preliminary Analysis of Network Outages During Hurricane Sandy“, joint work of John Heidemann, Lin Quan, and Yuri Pradkin.

 

 

Categories
Presentations

new talk “Active Probing of Edge Networks: Outages During Hurricane Sandy” at NANOG57

John Heidemann gave the talk “Active Probing of Edge Networks: Outages During Hurricane Sandy” at NANOG57 in Orlando Florida on Feb. 5, 2013 as part of a panel on Hurricane Sandy, hosted by James Cowie at Renesys.  Slides are available at http://www.isi.edu/~johnh/PAPERS/Heidemann13b.html.

m2051752.small

This talk summarizes our analysis of outages in edge networks at the time of Hurricane Sandy. This analysis showed U.S. networks had double the outage rate (from 0.2% to 0.4%) on 2012-10-30, the day after Sandy landfall, and recovered after four days. The talk was part of the panel “Internet Impacts of Hurricane Sandy”, moderated by James Cowie, with presentations by John Heidemann, USC/Information Sciences Institute; Emile Aben, RIPE NCC; Patrick Gilmore, Akamai; Doug Madory, Renesys.

This work is based on our recent technical report   “A Preliminary Analysis of Network Outages During Hurricane Sandy“, joint work of John Heidemann, Lin Quan, and Yuri Pradkin.

 

 

Categories
Publications Technical Report

new tech report “A Preliminary Analysis of Network Outages During Hurricane Sandy”

We just released a new technical report “A Preliminary Analysis of Network Outages During Hurricane Sandy”, available at ftp://ftp.isi.edu/isi-pubs/tr-685.pdf and at http://www.isi.edu/~johnh/PAPERS/Heidemann12d.pdf.

From the abstract:

This document describes our analysis of Internet outages during the October 2012 Hurricane Sandy. We assess network reliability by pinging a sample of networks and observing those that respond and then stop responding. While there are always occasional network outages, we see that the outage rate in U.S. networks doubled when the hurricane made landfall, then took about four days to recover. We confirm that this increase was due to outages in New York and New Jersey.

Categories
Papers Publications

New conference paper “Towards Geolocation of Millions of IP Addresses” at IMC 2012

The paper “Towards Geolocation of Millions of IP Addresses” was accepted by IMC 2012 in Boston, MA (available at http://www.isi.edu/~johnh/PAPERS/Hu12a.html).

From the abstract:

Previous measurement-based IP geolocation algorithms have focused on accuracy, studying a few targets with increasingly sophisticated algorithms taking measurements from tens of vantage points (VPs). In this paper, we study how to scale up existing measurement-based geolocation algorithms like Shortest Ping and CBG to cover the whole Internet. We show that with many vantage points, VP proximity to the target is the most important factor affecting accuracy. This observation suggests our new algorithm that selects the best few VPs for each target from many candidates. This approach addresses the main bottleneck to geolocation scalability: minimizing traffic into each target (and also out of each VP) while maintaining accuracy. Using this approach we have currently geolocated about 35% of the allocated, unicast, IPv4 address-space (about 85% of the addresses in the Internet that can be directly geolocated). We visualize our geolocation results on a web-based address-space browser.

Citation: Zi Hu and John Heidemann and Yuri Pradkin. Towards Geolocation of Millions of IP Addresses. In Proceedings of the ACM Internet Measurement Conference, p. to appear. Boston, MA, USA, ACM. 2012. <http://www.isi.edu/~johnh/PAPERS/Hu12a.html>

 

Categories
Papers Publications

New Workshop paper “Visualizing Sparse Internet Events: Network Outages and Route Changes”


The paper “Visualizing Sparse Internet Events: Network Outages and Route Changes” was accepted by WIV’12 in Boston, MA (available at http://www.isi.edu/~johnh/PAPERS/Quan12b.html).

From the abstract:

To understand network behavior, researchers and enterprise network operators must interpret large amounts of network data. To understand and manage network events such as outages, route instability, and spam campaigns, they must interpret data that covers a range of networks and evolves over time. We propose a simple clustering algorithm that helps identify spatial clusters of network events based on correlations in event timing, producing 2-D visualizations. We show that these visualizations where they reveal the extent, timing, and dynamics of network outages such as January 2011 Egyptian change of government, and the March 2011 Japanese earthquake. We also show they reveal correlations in routing changes that are hidden from AS-path analysis.

Citation: Lin Quan and John Heidemann and Yuri Pradkin. Visualizing Sparse Internet Events: Network Outages and Route Changes. In Proceedings of the First ACM Workshop on Internet Visualization. Boston, MA. November, 2012. <http://www.isi.edu/~johnh/PAPERS/Quan12b.html>.

Categories
Publications Technical Report

New Tech Report “An Organization-Level View of the Internet and its Implications (extended)”

We just published a new technical report “An Organization-Level View of the Internet and its Implications (extended)”, available at ftp://ftp.isi.edu/isi-pubs/tr-679.pdf.
From the abstract:

We present a new clustering approach for mapping ASes to organizations, to develop an organization-level view of the Internet’s AS ecosystem. We demonstrate that the choice of clustering method and use of a new (though unconventional) data source in the form of company subsidiary information contained in the U.S. SEC~Form 10-K filings are both essential to get accurate results. Evaluating our mapping and validating it against carefully chosen datasets shows few (less than 10%) false negatives for 90% of organizations and few false positives for 60% of our organizations. We apply our map to show the importance of an organization-level view of the Internet by contrasting it with the commonly-used view that considers only an organization’s “main” AS. We find that this main-AS view sometimes severely underrepresents the influence of an organization in terms of announced addresses, geographic footprint, and peerings at Internet eXchange Points (IXPs). For example, for 20% of our organizations, the main-AS view detects only 10-60% of the cities covered by the corresponding organization-level view.