Categories
Publications Technical Report

New tech report “Identifying and Characterizing Anycast in the Domain Name System”

We just published a new technical report “Identifying and Characterizing Anycast in the Domain Name System” (available at ftp://ftp.isi.edu/isi-pubs/tr-671.pdf) .

From the abstract:

Since its first appearance, IP anycast has become essential
for critical network services such as the Domain Name Sys-
tem (DNS). Despite this, there has been little attention to
independently identifying and characterizing anycast nodes.
External evaluation of anycast allows both third-party audit-
ing of its benefits, and is essential to discovering benign mas-
querading or hostile hijacking of anycast services. In this
paper, we develop ACE, an approach to identify and charac-
terize anycast nodes. ACE first method is DNS queries for
CHAOS records, the recommended debugging service for
anycast, suitable for cooperative anycast services. Its second
method uses traceroute to identify all anycast services by
their connectivity to the Internet. Each individual method
has ambiguities in some circumstances; we show a com-
bined method improves on both. We validate ACE against
two widely used anycast DNS services that provide ground
truth. ACE has good precision, with 88% of its results corre-
sponding to unique anycast nodes of the F-root DNS service.
Its recall is affected by the number and diversity of vantage
points. We use ACE for an initial study of how anycast is
used for top-level domain servers. We find one case where
a third-party server operates on root-DNS IP address, mas-
querades to capture traffic for its organization. We also study
the 1164 nameserver IP addresses used by all generic and
country-code top-level domains in April 2011. This study
shows evidence that at least 14% and perhaps 32% use any-
cast.

Citation: Xun Fan, John Heidemann and Ramesh Govindan. Identifying and Characterizing Anycast in the Domain Name System. Technical Report N. ISI-TR-671, USC/Information Sciences Institute, June, 2011. ftp://ftp.isi.edu/isi-pubs/tr-671.pdf

Data from this paper will be available from PREDICT through the LANDER project; contact the authors for details.

Categories
Publications Technical Report

New tech report “Detecting Internet Outages with Active Probing”

We just published a new technical report “Detecting Internet Outages with Active Probing”, available at ftp://ftp.isi.edu/isi-pubs/tr-672.pdf.

From the abstract:

With businesses, governments, and individuals increasingly
dependent on the Internet, understanding its reliability is more
important than ever. Network outages vary in scope and
cause, from the intentional shutdown of the Egyptian Inter-
net in February 2011, to outages caused by the effects of
March 2011 earthquakes on undersea cables entering Japan,
to the thousands of small, daily outages caused by localized
accidents or human error. In this paper we present a new
method to detect network outages by probing entire blocks.
Using 24 datasets, each a 2-week study of 22,000 /24 address
blocks randomly sampled from the Internet, we develop new
algorithms to identify and visualize outages and to cluster
those outages into network-level events. We validate our ap-
proach by comparing our data-plane results against control-
plane observations from BGP routing and news reports, ex-
amining both major and randomly selected events. We con-
firm our results are stable from two different locations and
over more than one and half years of observations. We show
that our approach of probing all addresses in a /24 block is
significantly more accurate than prior approaches that use a
single representative for all routed blocks, cutting the num-
ber of mistake outage observations from 44% to under 1%.
We use our approach to study several large outages such as
those mentioned above. We also develop a general estimate
for how much of the Internet is regularly down, finding about
0.3% of the Internet is likely to be unreachable at any time.
By providing a baseline estimate of Internet outages, our
work lays the groundwork to evaluate ISP reliability.

Citation: Lin Quan and John Heidemann. Detecting Internet Outages with Active Probing. Technical Report N. ISI-TR-672. USC/Information Sciences Institute, May 2011. http://ftp://ftp.isi.edu/isi-pubs/tr-672.pdf

Categories
Papers Publications

New conference paper “Improved Internet Traffic Analysis via Optimized Sampling”

The paper “Improved Internet Traffic Analysis via Optimized Sampling” (available at PDF Format) was accepted to ICASSP 2010. The focus of this paper is on the best down-sampling methods to use when measuring internet traffic in order preserve signal information for traffic analysis techniques such as anomaly detection.

From the abstract:

Applications to evaluate Internet quality-of-service and increase network security are essential to maintaining reliability and high performance in computer networks. These applications typically use very accurate, but high cost, hardware measurement systems. Alternate, less expensive software based systems are often impractical for use with analysis applications because they reduce the number and accuracy of measurements using a technique called interrupt coalescence, which can be viewed as a form of sampling. The goal of this paper is to optimize the way interrupt coalescence groups packets into measurements
so as to retain as much of the packet timing information as possible. Our optimized solution produces estimates of timing distributions much closer to those obtained using hardware based systems.
Further we show that for a real Internet analysis application, periodic signal detection, using measurements generated with our method improved detection times by at least 36%.

Citation: Sean McPherson and Antonio Ortega.  Improved Internet Traffic Analysis via Optimized Sampling.  In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, p. to appear.  Dallas, TX, USA, IEEE.  March, 2010.

Categories
Publications Technical Report

New tech report “Analysis of Internet Measurement Systems for Optimized Anomaly Detection System Design”

A new tech report has been posted to the Arxiv database at http://arxiv.org/abs/0907.5233. This paper shows the effect of a software based measurement system on the timing of the measurements obtained. Additionally this paper develops a period signal detection method specific to software based measurement.

Although there exist very accurate hardware systems for measuring traffic on the internet, their widespread use for analysis tasks is limited by their high cost. On the other hand, less expensive, software-based systems exist that are widely available and can be used to perform a number of simple analysis tasks. The caveat with using such software systems is that application of standard analysis methods cannot proceed blindly because inherent distortions exist in the measurements obtained from software systems. The goal of this paper is to analyze common Internet measurement systems to discover the effect of these distortions on common analysis tasks. Then by selecting one specific task, periodic signal detection, a more in-depth analysis is conducted which derives a signal representation to capture the salient features of the measurement and develops a periodic detection mechanism designed for the measurement system which outperforms an existing detection method not optimized for the measurement system. Finally, through experiments the importance of understanding the relationship between the input traffic, measurement system configuration and detection method performance is emphasized.

Citation: Sean McPherson and Antonio Ortega. Analysis of Internet Measurement Systems for Optimized Anomaly Detection System Design. Technical Report N. arXiv:0907.5233v1, University of Southern California, Department of Electrical Engineering, July, 2009. http://arxiv.org/abs/0907.5233.