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Abstract—Computing clusters are evaluated using different
performance metrics, which often appear to be conflicting while
being attempted to be optimized. For such conflicting cases
along with frequently having an existence of heterogeneous
environment, it is difficult for the cluster administrators to
efficiently schedule machines, i.e., to select the right number
and right combination of machines. In this paper, we develop
a technique through which cluster administrators can select the
right set of machines to enhance energy efficiency and cluster
performance. To do so, first, we perform extensive laboratory
experiments for a period of more than one year. Based on
empirical analyses of data collected from the experiments, we
formulate a many-objective optimization problem for clusters and
integrate a greedy approach with Non-dominated Sorting Genetic
Algorithm (NSGA-III) to solve this problem. We demonstrate that
our approach mostly performs better than existing approaches in
the literature through both real experimentation and simulation.

I. INTRODUCTION

Computing clusters are extensively used for distributed and
parallel computing now-a-days [24]. In a computing cluster,
multiple machines work together to increase overall capacity.
Fig. 1 shows the skeleton of a computing cluster. Here, a
central machine normally controls other machines. The central
machine acts as a master machine that distributes a big task
among the several slave machines. The slave machines work
together and send their results to the master machine. The
master machine generally maintains coordination among the
slave machines and accumulate all the results. We can use
different tools for the purpose of job distribution. Hadoop
[23] and Yarn [22] are examples of such kind of tools. A
sophisticated mechanism such as MapReduce [4] normally
runs to handle these distribution of tasks over the slave
machines.

There exists several performance metrics for computing
clusters [19] [21] in the literature. Here, some administrators
may want to reduce the computation energy, others may
want to reduce cooling energy, and so on. In this paper, we
consider both the computation energy and cooling energy in
combination. Besides, resource utilization and computation
time are also important for some administrators. Therefore, we
consider CPU usage and memory usage for resource utilization
along with considering computation time.

In many cases, these objectives appear to be conflicting as
well. From our year-long collected data, we find that increasing
the number of machines can reduce computation time. It can
also decrease total energy consumption. However, increasing
the number of machines may decrease resource utilization, and
increase maintenance cost as well.

Solving such conflicting objectives is a classical problem
and there exist myriad techniques in the literature available to
solve multiple conflicting objectives [5][6]. However, little ef-
fort has been spent to solve conflicting objectives in computing
clusters. Therefore, in this paper, we propose a new approach
to solve the conflicting objectives of a computing cluster. Here,
we consider cooling energy consumption. The cooling energy
can be around 39% of total energy consumption of a cluster
[15], however, it is mostly ignored by existing studies. In road
to devising our solution incorporating cooling energy, we use
our year-long data to formulate a many-objective optimization
problem consisting objectives and constraints of clusters. We
make empirical analyses over the data to facilitate solving
the optimization problem. Our solution approach exploits a
synergy between greedy method and NSGA-III algorithm [5].
As the final output, our solution gives a set of machines
that a cluster administrator needs to operate. We evaluate
performance of our solution through both simulation and real
implementation. We find that our approach performs better
than other existing approaches in computing clusters. In short,
we make the following contributions:

• We formulate a new many-objective optimization
problem for computing clusters considering differ-
ent objectives and constraints. The objectives include
cooling energy consumption, which is mostly ignored
in contemporary studies. Besides, we consider our
year-long collected data in formulating the problem.

• We formulate a new approach exploiting both greedy
method and NSGA-III algorithm to solve the many-
objective optimization problem for computing clusters.
Our technique pinpoints the set of machines that need
to be selected to achieve the cluster objectives.

• We use a well-established simulation platform namely
SimGrid to experimentally evaluate performances of
our proposed and other existing approaches.

• We also implement our proposed and existing ap-978-1-7281-1325-8/18/$31.00 c© 2018 IEEE



Fig. 1: Master-slave relation in a computing cluster

proaches in a real setup and evaluate their perfor-
mance. Comparative analysis over all the experimental
results demonstrates that our proposed approach can
provide significant performance improvement in most
of the cases compared to other existing approaches.

II. RELATED WORK

There are several studies in the literature, which consider
performance optimization in cluster computing. For example,
the study in [21] presents a stochastic approach for the
performance optimization. This study does not consider any
many-objective optimization approach for more than three
objectives [3], rather it uses a multi objective stochastic
approach. Moreover, it does not consider optimizing cooling
energy consumption.

Besides, multi-objective optimization techniques are stud-
ied in virtual machine based schemes [11]. There are some
other studies [14], which consider resource provisioning tech-
niques in cloud computing. However, these studies do not use
any specialized many-objective optimization technique. At the
same time, they do not integrate any empirical performance
characterization of clusters.

Some recent studies focus on multi-objective performance
optimization in computing clusters and clouds. Examples in-
clude a Particle Swarm Optimization (PSO) based approach
[12] and Ant Colony Optimization (ACO) based approach
[8]. These techniques are yet to be extended for many-
objective cases. Moreover, integrating empirical performance
characterization of clusters is yet to be focused by all the
approaches in the literature to the best of our knowledge. Such
empirical characterization exhibits a potential to reveal impacts
of operational factor over cluster performance - yet another
aspect to be focused in the literature.

III. IMPACTS OF OPERATIONAL FACTORS OVER
PERFORMANCE OF A CLUSTER

We analyze impacts of operational factors over cluster
objectives from our experimental data. Here, we consider the
number of machines, configuration of the machines, machine
failures etc, as the operational factors.Besides, we consider
four cluster objectives, which we elaborate next.
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A. Cluster Objectives

We define the four cluster objectives in the following way:
Objective 1 - Minimizing computation time: Computation
time means the time to finish a task. Cluster administrators
generally want to decrease the computation time so that tasks
are finished within a shortest possible duration. From Fig. 3a
(got from our year-long experiment with settings as presented
in Section VII-A), we can see that when the number of
machines increases, the computation time decreases. We make
our experiment in different seasons of the year and find
the same pattern. Besides, if we increase the workload, the
computation time also gets increased.

Objective 2 - Minimizing total energy consumption:
In computing clusters, we want to decrease total energy
consumption. Fig. 2 suggests that cooling energy plays a
significant role in total energy consumption (∼39%). Hence,
we incorporate cooling energy while considering total energy
consumption. From Fig. 3b, we can see a trend line of
decreasing energy consumption with an increase in the number
of machines. This behavior seems surprising. We get energy
by multiplying power and computation time. Computation time
is decreased with the increase of number of machines. Total
power consumption is increased with the increase of number of
machines. However, the ratio of decreasing computation time
is much greater than the increase in power consumption. That
is why we get a decrease in energy consumption.

Objective 3 - Minimizing cost: Cost to operate a com-
puting cluster increases with an increase in the number of
machines. With the increase in the number of machines, other
related costs such as that for maintenance, utilities etc. will
also get increased. Cluster administrators want to decrease the
cost of a cluster.

Objective 4 - Maximizing utilization: Administrators also
want to improve the resource utilization. When a machine
runs, it consumes resources such as physical memory and
CPU. Getting higher CPU and memory utilizations is more
desirable than smaller utilization. From Fig. 3c, we can see
CPU utilization decreases with an increase in the number of
machines.

In the following subsection, we discuss impacts of different
operational factors on cluster objectives.

B. Impacts of Different Factors on Cluster Objectives

Different operational factors have significant impacts over
cluster objectives. Here, we discuss how these factors have
impacts on cluster objectives.



Impacts of the number of machines: Cluster objectives are
dependent on the number of operating machines. They have
conflicting impacts over cluster objectives. By increasing the
number of machines, we can get decreased computation time.
At the same time, the total energy consumption gets decreased.
We can achieve these two objectives with an increased number
of machines. However, resource utilization gets decreased with
an increase in the number of machines. As more machines
are now working, they will not be utilized according to
their capacities. At the same time, the operating cost also
gets increased, which is not desirable. Hence, the number of
machines have conflicting impacts over cluster objectives. Fig.
3 shows the impacts of increasing number of machines.

Impacts of configuration of computing machines: Config-
uration of machines have impacts on cluster objectives. High-
performing machines can reduce computation time. At the
same time, these machines can increase energy consumption
and overall cluster cost.

IV. PROPOSED PROBLEM FORMULATION

We define configuration of a machine as the machine prop-
erty. We can have different machine properties such as physical
memory, processor speed, etc. We represent these properties as
P1, P2, P3, ..., PN , where N is the number of machine proper-
ties. In our experiment, we take network bandwidth, memory
usage, and CPU usage as machine properties. We express
effectiveness of a machine using the term Machine Value, MV ,
which can span over [0, 100]. We define MV of a machine i
by MVi = w1×P1+w2×P2+w3×P3+...+wN×PN , where
w1, w2, w3, ..., wN are the weights of N properties. Based on
these terms, we develop our problem formulation considering
the four objectives as presented in the earlier section.

Minimizing computation time: Computation time is de-
pendent on the number of machines and machine value. As
presented earlier in Fig. 3a, it decreases with an increase in
the number of machines. Computation time also decreases
when the machine value gets increased (using high-performing
machines). Thus, from the perspective of machine value, we
deduce our objective as follows:

max

NM∑
i=1

si(MV )i (1)

Here, NM is the total number of machines in the cluster.
si is a decision variable that describes an indicator function.
si is 1 if we run ith machine operational in our cluster and 0
if we do not make ith machine operational. We can write si
as

si =

{
1, if machine i is operating in the cluster
0, otherwise

To remain coherent with other objectives, we make this
optimization problem as a minimization problem and make
necessary changes. Thus, the objective function becomes:

min

NM∑
i=1

(100− si(MV )i) (2)

Note that, computation time also depends on work load.
If the workload gets increased, the computation time gets
increased. Considering the workload for machine i to be Wi,
we adopt the following normalized values for the objective
function:

min

∑NM

i=1 (100− si(MV )i)∑NM

i=1 si × 100
×WT1 +

Wi

Wmax(i)
×WT2

(3)

Here, Wmax(i) refers to the maximum allowable workload
for machine i. Besides, Wi is the machine workload, which we
assume to be evenly balanced as Totalworkload∑NM

i=1 si
. WT1 and WT2

are the weights for machine configuration and workload. In our
analysis, we adopt same valued weights in both parts of Eq. 3.
In case we would give less weight to machine configuration,
some highly-configured machines might not be selected with
high probability.

Minimizing total energy consumption: Energy consump-
tion is dependent on the number of machines and temperature
difference. From Fig. 3b, we can see that total energy con-
sumption exhibits a decreasing trend with an increase in the
number of machines. Besides, if the temperature difference
(Tdiff ) decreases, the total energy consumption gets decreased.
In our model, there is a range for allowable temperature.
Let TE is the environment temperature, TM is the maximum
allowable temperature within the cluster, TL is the lowest
value of allowable temperature range, and TD is an expected
temperature that can be within TL and TM . Thus, we can
deduce as: Tdiff = TE − TD. The cooling system needs to
cool the system by Tdiff . Here, the maximum temperature
difference can be TMaxDiff = TE−TL. Thus, we deduce the
following objective function:

min

∑NM

i=1 si
NM

×WT3 +
Tdiff

TMaxDiff
×WT4

subject to TL ≤ TD ≤ TM

(4)

Here, WT3 and WT4 indicate weights for the number
of machines and temperature difference. In our analysis, we
assume same values for the weights in Eq. 4. We can use
different weights if we intend different effects of number of
machines, workload, and temperature difference. Due to space
limitation we cannot provide details in selecting weights.

Minimizing cost: Cost of a cluster is dependent on the
number of operating machines and their configuration. Cost
will be increased with an increase in the number. Besides, high
performing machines will also increase the cost. Therefore, we
deduce an objective function as follows:

min

NM∑
i=1

si(MV )i (5)

Maximizing utilization: As already shown in Fig. 3c,
utilization increases if we decrease the number of machines.
Therefore, we deduce an objective function as:

min

∑NM

i=1 si
NM

× 100 (6)
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Fig. 3: Comparative analysis of cluster objectives with an increase of number of machines

Note that, if there are
∑NM

i=1 si number of operational
machines and Wi workload, then there should be Wi∑NM

i=1 si
workload per machine on an average. Considering HDDi as
the size of available hard disk of machine i , we can write the
constraint as ∀i Wi∑NM

i=1 si
≤ HDDi. Combining all the above

objectives and constraints we can write:

min



∑NM
i=1 (100−si(MV )i)∑NM

i=1 si×100
×WT1 +

Wi

Wmax(i)
×WT2

∑NM
i=1 si
NM

×WT3 +
Tdiff

TMaxDiff
×WT4∑NM

i=1 si(MV )i

∑NM
i=1 si
NM

× 100

subject to


∀i Wi∑NM

i=1 si
≤ HDDi

TL ≤ TD ≤ TM∑NM

i=1 si(MV )i > 0

Next, we present a solution for optimizing the above
optimization functions.

V. PROPOSED SOLUTION APPROACH

Our focus covers a many-objective optimization problem.
There are many approaches to solve such problems, which can
be found in [3]. In our case, we use NSGA-III [5] as our base
algorithm. We exploit outcomes of our empirical analyses to
modify the NSGA-III algorithm. Several functions usually par-
ticipate in the original NSGA-III optimization algorithm such
as selection, crossover, and mutation. We use our empirical
results to design these functions. Here, we consider selection
decision of a machine as a decision variable. If there are NM

machines, then we will have NM number of decision variables.
We also consider the expected temperature (expressed as TD)
as a decision variable. This expected temperature will be
maintained by the cooling devices. Hence, our algorithm will
finally give the number of machines to be active or operational
in the cluster, a selected set of machines, and a temperature
that needs to be maintained by the cooling devices. Now, we
are describing different modifications over the functions which
are actively used in optimization steps.

TABLE I: Impacts of selection threshold value in experimental
results with 120 pareto front solutions

Threshold
value

No. of solutions
with < 6 machines

Computation
time (mins)

Cooling
energy
(KWh)

Computation
energy
(KWh)

2 34 11.1 0.43 0.92
4 27 9.5 0.31 0.66
6 13 9.7 0.24 0.53
8 14 10.2 0.32 0.68

A. Population Selection

From our experiment, we find that if the number of
machines is below than a particular number, then both com-
putation time and total energy exhibit highly increased values.
Besides, Fig. 3a and 3b, we can see that the rate of decrement
in computation time and total energy is very high when the
number of machines is less than 6. After this range, the chang-
ing rate gets significantly decreased. Based on this observation,
while we select a population for the next generation, we
eliminate the population that has fewer operating machines.
In our case, we take this threshold value, Th as NM

6 .

From Table I, we can see when the threshold value is 2, we
have undesirable values for computation time, cooling energy,
and computation energy. When we select small threshold value
we have more solutions with small number of machines among
120 pareto front solutions. These solutions practically increase
the chance to cause high computation time and energy. We

Algorithm 1 Population Selection

1: function SELECTPOPULATION(Threshold value, Th)
2: G← Existing generation
3: for each population p ∈ G do
4: populationSize← populationSize(p)
5: if populationSize > Th then
6: newGeneration.add(p)

7: Fill up the generation with random population
8: return newGeneration

use jMetal [7] as the objective optimization framework and
modify its existing selection, mutation and crossover functions.
Algorithm 1 shows the steps for modified population selection.

B. Crossover

While making crossover, we use a partition to separate
machine selection variables and temperature variable as they



are two different types of variables. We make crossover among
machine selection variables while not mixing temperature
variable with the selection variable. Algorithm 2 represents
the modified algorithm for crossover function. We make three
steps for our modification. Here, following a greedy approach,
we introduce biases for the highly-performing machines while
making crossover. This ensures higher chances of their selec-
tion in a next generation. We describe the three steps crossover
based on the bias below:

Half uniform crossover: We apply half-uniform crossover
[9][20] as our primary crossover approach. As we have binary
decision variable, we only make crossover when the particular
chromosome is different from each other. We can see the half
uniform crossover in line 11.

Crossover based on clustering: We separate the NM

number of machines into two clusters for each property. Line
5 of Algorithm 2 shows this. We use Euclidean distance in
k-means clustering [13] to make two separate clusters. We
deploy Cluster 3.0 [1] tool for clustering. We name these two
clusters as top performing and bottom performing clusters. We
make a set (ST ) of machines that are in the top-performing
cluster for all properties and a set of machines (SB) that are
in the bottom-performing cluster for all properties. Line 6 and
7 of Algorithm 2 show this. From ST , with some probabilistic
condition, we take machines into our next generation. Besides,
from SB , with some probabilistic condition, we do not take
that machine into our next generation. We can see this in Line
12-17 of Algorithm 2.

Take the top and remove the bottom: With some
probabilistic condition, we take the topmost machine for
one property, which is also selected in a stochastic manner.
Besides, we also exclude the bottom most performing machine
for the same property. Line 19-22 of Algorithm 2 present these
modifications.

C. Solution Filtering

Optimization methods give a pareto-front with multiple
solutions. Solutions having a desirable value for one objective
sometimes have an undesirable value for other objectives.
These solutions are not acceptable since they make significant
performance degradation for some objectives. Hence, we take
only those solutions, which have values from 25% to 75% of
all values pertinent to all objectives. Among these solutions,
based on the administrator’s defined weight function, we select
only one solution. We use the following function to converge
four objective values into one measure:

Ftotal=Wobj1×Vobj1+Wobj2×Vobj2+· · ·+WobjN×VobjN (7)

In Eq. 7, every objective value, Vobj should be within 25%
to 75% of the corresponding objective value to be considered
as a feasible solution. Weights of these objectives will be
defined by the cluster administrator. After having the feasible
solutions, we sort over the feasibleSolution. Then, we take
the top solution having the lowest merged objective values
since we convert our problem into a minimization problem.
Algorithm 3 shows the filtering process. Here, firstBoxP lot
refers to 25% and thirdBoxP lot refers to 75% of correspond-
ing objective value.

Algorithm 2 Population Crossover

1: function CROSSOVER(Parent P1, Parent P2)
2: C1 ← Chromosome set in P1

3: C2 ← Chromosome set in P2

4: noOfCluster ← 2
5: Implement k-means clustering for all machine proper-

ties with noOfCluster
6: Find out the machines, which are in the top group for

all the machine properties, ST

7: Find out the machines, which are in the bottom group
for all the machine properties, SB

8: size← C1.size()− 1
9: i = 0

10: while i < size do
11: Inter-change ith chromosome value of C1 and C2

based on probability and if they are different
12: if i is in ST and Random.nextDouble() < insert-

Probability then
13: C1(i).set(1)
14: C2(i).set(1)

15: if i is in SB and Random.nextDouble() < dele-
tionProbability then

16: C1(i).set(0)
17: C2(i).set(0)

18: i++
19: if Random.nextDouble() < takeTopProbability then
20: rndProperty = Random.nextInt() mod

noOfproperty
21: Take the top machine for rndProperty
22: Remove the bottom machine for rndProperty

property
23: Update P1 and P2 according to C1 and C2

Algorithm 3 Solution Filtering
1: function SOLUTIONFILTERING(objectiveValues, O)
2: if for all objectives o.val() ≥ O.firstBoxP lot() and

o.val() ≤ O.thirdBoxP lot() then
3: feasibleSolution.add(O)

4: Sort feasibleSolution in increasing order
5: return feasibleSolution.get(0)

VI. SIMULATION EVALUATION

We evaluate performances of our algorithm and other
existing approaches in a simulation environment. We adopt
clusters having 30 and 50 machines to evaluate our algorithm
and compare it with other approaches.

A. Simulation Platform and Settings

For simulation, we use a well-known simulation tool for
distributed system called SimGrid [2].

SimGrid has an energy plug-in, which can compute both
computation energy and cooling energy [17]. We use this
plug-in in our simulation environment, which is shown in
Table II. Note that SimGrid uses different unit conventions
while setting-up machines in clusters. The conversions between
SimGrid unit and the traditional unit can be found in [17],
which we adopt in our case.



TABLE II: Simulation environment in SimGrid

Parameter Value
SimGrid version 3.12

# of master machine 1
# of slave machines 29 and 49

PC power 4,000-38,000 Mega FLOPS

PC power consumption
Peak: 10 - 400 W,
idle: 2.5-100 W,
power off: 5 W

Line bandwidth 10-100 KBps
Total # of files 86, 64 and 36

Size of each file 787 MB
Total data size 67.7 GB, 50.4 GB and 28.3 GB

Maximum allowable temperature 20◦ − 23◦ C
Environment temperature 28◦ C

Workload Improvement over PSO (%) Improvement over ACO (%)

Time
Cooling
energy

Comp.
energy Time

Cooling
energy

Comp.
energy

67.7 GB 21 13 10 43 10 5
50.4 GB 36 11 10 17 8 8
28.3 GB 43 13 10 15 5 0

TABLE III: Improvement over PSO and ACO for various
workloads in SimGrid with 30 machines

B. Simulation Results

Fig. 4 shows simulation results in SimGrid for 30 machines
and Fig. 5 shows the simulation results for 50 machines. Table
III and IV show corresponding improvements achieved by our
approach for 30 and 50 machines respectively.

C. Findings from Simulation Results

We find from Table III and IV that modified NSGA-III
gives better performance than other methods for all three
objectives in most cases. Here, Table III suggests that com-
putation time gets improved by 21%, 36%, and 43% than
PSO, and 43%, 17%, and 15% than ACO in a cluster of 30
machines having different workloads. Besides, cooling energy
gets improved by 13%, 11%, and 13.0% compared to PSO, and
by 10%, 8%, and 5% compared to ACO. Computation energy
also gets improved by the modified NSGA-III algorithm. Here,
we have nearly 10% improvement over PSO and nearly 5%
to 8% improvement over ACO. We also find similar or even
better performance in most of the cases for 50 machines as
shown in Table IV.

VII. EVALUATION THROUGH REAL IMPLEMENTATION

We create a real cluster, and evaluate performance of our
approach and other approaches with different workloads. We
present settings of our implementation and its experimental
results below.

Workload Improvement over PSO (%) Improvement over ACO (%)

Time
Cooling
energy

Comp.
energy Time

Cooling
energy

Comp.
energy

67.7 GB 38 59 59 16 55 55
50.4 GB 33 36 38 41 79 79
28.3 GB 10 -6 0 46 87 87

TABLE IV: Improvement over PSO and ACO for various
workloads in SimGrid with 50 machines

TABLE V: Experimental settings in real implementation

Parameter Value
# of master machine 1
# of slave machines 29

Processor Intel Core 2 Duo
Processor base frequency 2.4 GHz (3 PCs), 2.66 GHz (10 PCs), 2.8 GHz (17 PCs)

Memory 1 GB to 2 GB
Network B/W 5 to 100 MBps

OS Ubuntu 14.04 LTS (x86)
Total number of files 40, 24, 16, 11

Size of each file 787 MB
Total data size 31.5 GB, 18.9 GB, 12.6 GB, and 8.7 GB

A. Settings of Real Implementation

We implement a real cluster having thirty machines.
Among these machines, one is selected as the master node
and the others as slave nodes. Distribution of tasks from the
master node to slave nodes is shown in Fig. 1. We use Hadoop
[23] framework to implement distributed system in the cluster.
We set up a distributed and multi-node (30 PCs) Apache
Hadoop cluster with Hadoop Distributed File System (HDFS),
running on Ubuntu Linux [16]. We vary the work-load and
use a different number of machines to get the computation
energy and cooling energy consumptions. Here, we run the
popular word-count task [10]. Table V shows the experimental
setup in more detail. Beside, Fig. 7 shows a snapshot of real
implementation.

We use two Arduino energy monitors to get the compu-
tation energy and cooling energy. One monitor measures the
CPU power and the other measures the air condition power. We
use potential transformer (PT) and current transformer (CT) to
measure power and current consumed by the cluster machines
and cooling devices. Using the basic power formula, we get
computation power and cooling power. Power consumed by air
conditions is considered as the cooling power. After that, using
Work = P × T formula, we get the computation energy and
cooling energy where P refers to power and T refers to time.
One thing is to be noted that, computation power means the
power, necessary to finish the given task by the slave nodes.
We test our approach in a heterogeneous environment to see
the effect of our greedy approach. To create heterogeneity, we
use Wondershaper tool [18] to control the network bandwidth.
SimGrid and real testbed use different unit conventions. Hence,
imitating the real testbed into SimGrid is not always com-
pletely possible. Besides, we use different performance metrics
for real testbed and simulation environment. For example, in
real setup, we can get resource utilization, however, in the
existing SimGrid we cannot get such resource utilization.

B. Results from Real Implementation

We use different workloads and consider five cluster ob-
jectives. We show all comparisons against other approaches in
Table VI. We have up-to 74% improvement in computation
time, 75% improvement in cooling energy, 63% improvement
in computation energy, 127% improvement in CPU usage,
and 5% improvement in memory usage over PSO. Moreover,
we have up-to 49% improvement in computation time, 49%
improvement in cooling energy, 58% improvement in com-
putation energy, 159% improvement in CPU usage, and 4%
improvement in memory usage over ACO.
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Fig. 4: Comparison of different algorithms with various workloads in SimGrid for a cluster with 30 machines cluster
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Fig. 5: Comparison of different algorithms with various workloads in SimGrid for a cluster with 50 machines cluster
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Fig. 6: Comparison over performances of different algorithms with various workloads in a real cluster with 30 machines

Fig. 7: Snapshot of real implementation

C. Findings from Results of Real Implementation

We compare our algorithm and other existing algorithms in
the real testbed as mentioned in Subsection VII-A. We take the
number of machines, computation time, computation energy,
cooling energy, CPU usage, and memory usage as our cluster
objectives. We want to decrease the number of machines (to
decrease cost), computation time, computation energy and
cooling energy. At the same time, we want to increase the
CPU and memory usage. From Table VI, we can see the
comparison. For the case of 31.5 GB and 18.9 GB workload,
NSGA-III shows significant performance improvement than



TABLE VI: Improvement over PSO and ACO with various workloads in a real testbed

Workload Improvement over PSO (%) Improvement over ant colony optimization (%)

Time
Cooling
energy

Computation
energy CPU usage Memory usage Time

Cooling
energy

Computation
energy CPU usage Memory usage

31.5 GB 43 75 22 1 5 13 49 28 23 4
18.9 GB 74 75 63 127 5 49 49 58 159 0
12.6 GB 36 35 25 0 -1 -18 -20 10 27 3
8.7 GB 21 21 20 10 -7 43 42 56 130 1

the other two approaches for all the objectives. For 12.6 GB
workload, NGSA-III performs better in terms of most of the
cluster objectives. For 8.7 GB workload, though PSO has a
better memory usage, NSGA-III performs better for all other
objectives. We have some negative values also. This is because
evolutionary algorithms cannot assure optimal solutions all the
time.

VIII. CONCLUSION

Solving conflicting objectives in clusters to provide admin-
istrators a set of machines is important. However, little research
effort has been made till now to solve this problem for com-
puting clusters. Moreover, the few available studies focus on
this from either single or multi-objective perspectives. On the
contrary, in this paper, we provide a many-objective solution
for cluster administrators to select the cluster nodes. Here, we
exploit a synergy between a greedy approach and NSGA-III
algorithm to solve the many-objective problem. We evaluate
performance of our approach and other existing approaches.
Comparative analysis over the performances demonstrates that
our proposed approach reveals the best set of nodes in most of
the cases, which fulfill all the cluster objectives. We experiment
in both simulation environment and in a real cluster, which
confirms efficacy of our approach. To facilitate developing our
solution approach, we collect real data for a period of more
than one year and conduct empirical analyses of the data. We
consider different environmental settings in different seasons
of the year to ensure robustness of the empirical analyses. Our
approach engendered from the analyses can be used in real
clusters to select the best combination of machines, which will
fulfill the cluster objectives.
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