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Abstract—In a heterogeneous computing cluster, cluster objec-
tives are conflicting to each other. Selecting a right combination
of machines is necessary to enhance cluster performance, and
to optimize all the cluster objectives. In this paper, we perform
empirical performance analyses of a real cluster with our year-
long collected data, formulate a new many-objective optimization
problem for clusters, and integrate a greedy approach with the
existing NSGA-III algorithm to solve this problem. From our
experimental results, we find our approach performs better than
existing optimization approaches.

I. INTRODUCTION

Computing clusters are useful for doing extensive research,
computation, and parallel computing. There are different per-
formance metrics for computing clusters in the literature.
Energy consumption, computation time, cost, and utilization
are the common cluster objectives. We consider CPU usage
and memory usage for resource utilization, and at the same
time, we consider computation energy and cooling energy for
energy consumption.
These cluster objectives are sometimes conflicting to each
other. We find, from our year-long collected data, that increas-
ing the number of machines can reduce computation time, total
energy consumption. At the same time, it can decrease resource
utilization, and increase maintenance cost as well.
There exist different techniques to solve multiple conflicting
objectives [2]. However, solving conflicting cluster objectives
is not focused much in the literature. In this paper, we propose
a new approach to solve the conflicting objectives of a com-
puting cluster. We perform a rigorous empirical performance
analysis to formulate an optimization problem for clusters. Our
solution approach combines both greedy method and NSGA-
III algorithm to solve the optimization problem. We finally
give an operational set of machines to the cluster administrator
which will optimize the conflicting cluster objectives. We
compare our approach and other existing approaches to show
our approach performs better.

II. RELATED WORK

In cluster computing, several other studies consider per-
formance optimization. The study in [9] presents a stochastic
approach for the performance optimization, however, for more
than three objectives [1] it does not consider any many-
objective optimization approach. Integrating cooling energy
consumption is also absent from this study which is an
important part of total energy consumption.
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Multi-objective optimization techniques are considered in vir-
tual machine based schemes [4], and also in resource pro-
visioning in cloud platform [6]. However, due to significant
architectural gap between clusters and clouds we cannot con-
sider these approaches in computing clusters.
There are some studies on multi-objective performance opti-
mization in computing clusters and clouds based on Particle
Swarm Optimization (PSO) [5] and Ant Colony Optimization
(ACO) approach [3]. These approaches are not used for many-
objective optimization problems yet. Moreover, to the best
of our knowledge, existing studies do not integrate empirical
performance characterization of clusters. Such empirical char-
acterization is useful to reveal impacts of operational factors
over cluster performance.

III. CLUSTER OBJECTIVES AND PROBLEM FORMULATION

We define the four cluster objectives - minimizing compu-
tation time, minimizing total energy consumption, minimizing
cost, and maximizing utilization. We define effectiveness of a
machine, Machine Value, MV , which can have value from 0
to 100. We define MV of a machine i by MVi = w1 × P1 +
w2×P2+w3×P3+ ...+wN ×PN , where w1, w2, w3, ..., wN

are the weights of N properties.
Minimizing computation time: Computation time decreases
with the increase in machine value (using high-performing
machines). Thus, we define our objective as a part of a
minimization problem:

min

NM∑
i=1

(100− si(MV )i) (1)
Here, NM is the total number of machines, si is a decision
variable which is 1 if we select ith machine operational and
0 if we do not select ith machine operational. Computation
time also depends on work load - increased when workload
gets increased. If the workload for machine i is Wi, then we
can write:

min

∑NM
i=1 (100− si(MV )i)∑NM

i=1 si × 100
×WT1 +

Wi

Wmax(i)
×WT2 (2)

Here, Wmax(i) is the maximum allowable workload for ma-
chine i, and Wi is the machine workload. WT1 and WT2 are
the weights for machine value and workload. We take same
valued weights in both parts of Eq. 2.
Minimizing total energy consumption: Energy consumption
exhibits a decreasing trend with an increase in the number of
machines. Besides, if we need to decrease Tdiff temperature
by our cooling devices, then the total energy consumption will
increase with the increase of Tdiff value. We can write the
following objective function:

min

∑NM
i=1 si

NM
×WT3 +

Tdiff

TMaxDiff
×WT4

subject to TL ≤ TD ≤ TM

(3)
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Here, WT3 and WT4 indicate weights, and we assume same
values for the weights in Eq. 3. TMaxDiff is the maximum
possible temperature difference.
Minimizing cost: Cost will be increased with an increase in
the machine value:

min

NM∑
i=1

si(MV )i (4)

Maximizing utilization: Utilization increases with a decrease
in the number of machines:

min

∑NM
i=1 si

NM
× 100 (5)

Note that, if we have
∑NM

i=1 si operational machines and Wi

workload, then there will be Wi∑NM
i=1 si

workload per machine.
If HDDi is the hard disk size of machine i , the we have
a constraint as ∀i Wi∑NM

i=1 si
≤ HDDi. We can write the

optimization problem as:

min



∑NM
i=1 (100−si(MV )i)∑NM

i=1 si×100
×WT1 +

Wi
Wmax(i)

×WT2

∑NM
i=1 si
NM

×WT3 +
Tdiff

TMaxDiff
×WT4∑NM

i=1 si(MV )i∑NM
i=1 si
NM

× 100

subject to


∀i Wi∑NM

i=1 si
≤ HDDi

TL ≤ TD ≤ TM∑NM

i=1 si(MV )i > 0

Next, we present a solution approach for the above optimiza-
tion problem.

IV. PROPOSED SOLUTION APPROACH

We have a many-objective optimization problem for cluster
and we use NSGA-III [2] as our base algorithm to solve this
problem. We use our empirical analysis to design selection,
crossover, and mutation functions of NSGA-III algorithm. If
there are NM machines, then we consider NM number of
decision variables. We also use the temperature of cooling
devices as a decision variable. Our algorithm finally gives the
number of machines that we need to select, a selected set of
machines, and a temperature that needs to be maintained by
the cooling devices. Now, we are describing the modifications
over the functions of NSGA-III.
Population Selection From our empirical analysis, we find
that selecting a small number of machines results in a high
computation time and energy consumption. We eliminate the
population that has fewer operating machines from going into
the next generation. We take this threshold value, Th as NM

6 .
Crossover Following a greedy approach, we give bias for high-
performing machines when we make crossover. In this way,
we can ensure higher chances of their selection in the next
generation. We describe the three steps crossover below:
Half uniform crossover: We implement half-uniform crossover
[8] as our basic crossover approach. We have binary decision
variable, hence, we only make crossover when the particular
chromosome value is different from each other.
Crossover based on clustering: We separate NM machines into
two clusters with Cluster 3.0 tool using Euclidean distance
in k-means clustering. With some probabilistic condition, we
try to take machines from our top-performing cluster and do
not try to take machines from the other cluster into our next

Workload Improvement over PSO (%) Improvement over ACO (%)

Time
Cooling
energy

Comp.
energy Time

Cooling
energy

Comp.
energy

67.7 GB 21 13 10 43 10 5
50.4 GB 36 11 10 17 8 8
28.3 GB 43 13 10 15 5 0

TABLE I: Improvement over PSO and ACO for various
workloads in SimGrid with 30 machines

generation.
Solution Filtering We get a pareto-front with multiple so-
lutions from our algorithm and we take only those solutions
which have 25% to 75% values for all objectives. We select
one solution for the administrator based on the administrator’s
defined weight function:

Ftotal=Wobj1×Vobj1+Wobj2×Vobj2+· · ·+WobjN×VobjN (6)

In Eq. 6, every objective value, Vobj should be within 25% to
75% of the corresponding objective value and weights of these
objectives will be defined by the cluster administrator. Then
we take the solution having the lowest merged objective value
as we are solving a minimization problem.

V. EVALUATION RESULTS

We evaluate performances of our algorithm and other
existing approaches in a simulation platform named SimGrid.
SimGrid is able to calculate both computation energy and cool-
ing energy [7]. We experiment in clusters having 30 machines.
Table I shows corresponding improvements achieved by our
approach for 30 machines.

VI. CONCLUSION

This paper aims to solve conflicting objectives in clusters
to provide administrators a set of machines. In this paper,
we provide a solution for cluster administrators exploiting a
synergy between a greedy approach and NSGA-III algorithm.
Our approach can be used in real clusters, which will fulfill
the cluster objectives.
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