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Abstract—In this paper we propose resource optimization for
subscription based media content crowdsourcing. In this form of
crowdsourcing, interested entities (referred to as Campaigners)
announce their interests expressing what media content they want
to receive from users whereas users subscribe to those interests to
serve content satisfying the interests. Campaigners solicit content
generated by users by mentioning criteria that the media content
should satisfy, for example a noise pollution campaigner who
wants to measure noise level of a city, may ask for audio clips
recorded at a certain location. Subscribed users voluntarily or
on paid terms generate content against those interests. Given
that a user may subscribe to different campaign interests, its
generated content may satisfy different interests in varying degree
of accuracy, we propose methods to evaluate contents based on the
degree of satisfaction against the interests, and develop techniques
for delivering those contents.

I. INTRODUCTION

In this paper, we propose a media data collection system
that collects media content from citizens against expressed
subscriptions for collective events. We refer collective events
as a set of social or citizen assisted events that require content
contribution from participants. This paper proposes content
upload policies for subscription based media crowdsourcing
(SMCS). SMCS refers to a participatory platform where in-
terested parties can create events and ask ordinary citizens to
voluntarily deliver a certain type of media contents to a service
point of the event generator. Example may include a City
authority asking its citizens to report problems of inhabitants
by taking photos, such as an open sanitary leak. Department
of environment may ask citizens to capture audio clips for
reporting noise level, or transportation department may ask
for pollution incidents captured by videos of vehicles releasing
black smokes. This type of service modality in emerging due to
two reasons. One is the abundance of mobile phones equipped
with high resolution camera, audio/video capture capabilities
possessed by average individuals (study predicts the number of
phones may exceed 2 billion in 2015 [1]). The second reason
is the generation and distribution of huge amount of media
contents through applications, such as Instagram, Flickr (photo
sharing), YouTube, Vimeo (video sharing), and SoundCloud
(audio sharing). Record shows nearly 350 million photos are
uploaded daily on Facebook [2]. This paper leverages these
opportunities to address a question whether we can channelize
these contents in more targeted end points by explicit intents
and generate values from the content uploaded. The initial
idea of this paper was also appeared in [3]. In this paper, we
elaborate the initial idea with simulation and real experiment
results.
Subscription based media crowdsourcing is yet another pub-

lish/subscribe system, a set of requesters, we call them cam-
paigners, solicit content from users by mentioning explicit
interests of certain media content. These requests are referred
to as campaigns, which are described by a set of condi-
tions that the requested contents should satisfy (e.g., pictures
taken from a certain location during daytime). These citizen
assisted events need large amount of media contents from
participants of users. Interested mobile users may register
to these campaigns and publish content. Unlike traditional
pub/sub where mobile user are mostly treated as subscribers
receiving published contents, here in our context they are
rather publishers, uploading contents for campaigns. As users
may subscribe to several such campaigns or events, an issue
becomes important how much resource the user may want
to engage in to serve them. Admittedly media contents are
large data objects so it usually takes considerable amount of
resources to process and upload them. In this paper, we address
the problem of content uploading in the context of subscription
based media crowdsourcing for collective events.

Since mobile users rely on metered 3G or 4G connections
that provide only limited data usage (as they are charged
heavily otherwise), data transfer capacity becomes one of
the sole constraints; more specifically the budget for content
uploads to the service end points. Our formulation takes this
into consideration. As user generated contents may satisfy
different subscribed interests in varying degree of accuracy,
we propose methods to evaluate those contents based on the
degree of matching against the subscribed interests. Again,
different services could have different level of importance (may
be set forth by users). Considering all these, we develop a
formulation for delivering contents that optimizes the user’s
resource utilization.

To this end, we propose MediaServ, a system that handles
subscription based media crowdsourcing for a mobile device
and optimally allocates resources for multiple such subscrip-
tions. Even though the proposed system is quite general in
terms of types of media content it can serve (such as image,
audio), we explicitly limit our work and experiments on pic-
tures, mainly because pictures are predominant media content
to date, and their use-cases are most befitting to our design.
In that, we assume users subscribe to interests that ask for
pictures. Our system has an Android based app that manages
subscriptions, captures and uploads images against registered
campaigns respecting individual data budget constraint.

II. RELATED WORKS

Some photo retrieval service also exists. One example is
MediaScope [4] , which tries to fill up the availability gap.
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Availability gap means the time between which the item is
taken and when it is shared (uploaded to a sharing site). On
the other hand, a subscription based media crowd-sourcing
which targets to optimize resource consumption is proposed by
us. In our system user evolution like giving caption, selecting
category is counted. Photo recognition in crowd sourcing
based multimedia by the users gives almost correct value in
different environments [5]. Some picture delivery service is
also available. One example is geo-pictures (http://www.geo-
pictures.eu/), which relies on satellite communication for send-
ing pictures to the command station. For disaster recovery,
there is also PhotoNet service [6]. Different user behavior anal-
ysis based on uploaded photos in Instagram is demonstrated
in [7].

Mobile participatory sensing has also been used for cap-
turing sound data. One such system has been proposed in [8],
which focuses on measuring noise pollution levels. Another
system, NoiseSPY [9], monitors noise to measure and anotate
urban noise using smartphone sensing. NoiseTube [10] is
another platform that utilizes noise data from smartphones
as well as manual contextual data like location, time and
noise source, and data generated by machine-based automatic
classifiers.

In mobile participatory sensing, security and large user par-
ticipation are the most common challenges. Many researches
have been conducted regarding these two problems. Some
incentive mechanism has been designed for mobile sensing
in [11]–[13]. A recurrent reverse auction incentive mechanism
with a greedy algorithm has been discussed in [11]. Based on
Stackelberg game, and auction-based incentive mechanism a
procedure is discussed in [12]. Efficient bidding system for
user is discussed in [13]. Security issues are discussed in
[14]–[16]. Framework Pepsi is discussed in [14]. Encrypted
image based solution is given in [16]. Privacy-aware incentive
mechanism is discussed in [17].

III. CONTENT UPLOAD IN SUBSCRIPTION BASED MEDIA
CROWDSOURCING

Subscription based media crowdsourcing has three com-
ponents: campaigners, interests, and publishers. Campaigners
are individual persons or organizations who are in need of
certain media content. Campaigners initiate a campaign by
registering to the system by specifying their interests. These
interests are simple predicates that media objects should satisfy
(e.g., pictures from location X). Mobile users, act as publishers
in the system, register to the campaigns they are interested
to publish contents against. This registration is also known
as subscription. Note that the term ‘subscription’ is meant
different than its traditional meaning. Here subscription does
not refer to receiving contents, rather publishing contents.
When a content gets generated at a user (e.g., user takes
a picture), the content is matched against all subscriptions
whether it satisfies any interest of the subscribed campaigns
of that user. Content is uploaded to the backend server only if
it matches any subscription. Figure 1 shows the interaction.
While the development of entire pub/sub system is possible

using existing pub/sub middleware, the full description with
detail technical merit is beyond the scope of this paper. This
paper focuses mainly on the operations that mobile publishers
perform when they generate media contents and upload them to

Fig. 1: System component and flow

the system. We indeed do build a prototype system that entails
all components, but may be in smaller scale, only enough to
evaluate data publishing part of the system. Two important
aspects are considered in this connection. One is the automatic
scheduling of content uploads based on the subscriptions held
by the user. The second one is related to specifying user’s data
budget constraint on its content uploads. In the following, we
describe these two issues.

A. Formulation of Content Uploads

When mobile users generate contents against their sub-
scriptions, the contents are not uploaded immediately; instead
they are uploaded in a batch, once in every so often defined by
a period. This is for two reasons. Contents may arrive at a high
rate in which immediate uploads may cause high processing
at the mobile device. Again, the device may not be connected
to the Internet allowing uploads not to happen anyway. We
refer to these time instances as upload events when uploads
can happen. If the user’s device is offline at the event time, the
interval is stretched until the next connectivity occurs. Contents
are queued between events.

Let c1, c2, · · · , cn be the set of contents (indexed by i)
at an upload event, and s1, s2, · · · , sk be campaigns (indexed
by j) that the user subscribed to. For each content, user may
choose one or more campaigns where that content belong
to. We define a matching score, ψ(i, j), that measures to
what extend content i satisfies the requirement set forth by
campaign j. This is measured from media metadata and the
requirement parameters set by the campaigners. Without of
loss generality, we can assume 0 ≤ ψ(i, j) ≤ 1; where
ψ(i, j) = 0, if content ci is not assigned for sj or it does not
satisfy campaign requirement at all, and ψ(i, j) becomes 1 if
it satisfies the interest completely. Any real number between
0 and 1 designates the degree of matching that content i
demonstrates against the campaign requirement.

Campaigns may have differentiated importance or priori-
ties overs others. These priorities can be set by the service
providers when they register to the system or, alternatively, can
be set by the user itself to differentiate among its subscribed
campaigns. Priorities, denoted by p(j), are real numbers
≥ 1, higher value means higher priority. Based on campaign
priorities, we can define a value for each content as the
weighted sum of all matching scores across all campaigns the

898



content satisfies. That is, value(i) =
∑
j p(j)ψ(i, j). Note that

value(i) = 0 means content does satisfy none.

Let xi be a binary decision variable that indicates whether
the content i should be uploaded at the current upload op-
portunity. Obviously, we discard items with value(i) = 0.
Moreover, a user cannot upload all candidate objects at upload
opportunities because it might have a data upload budget. We
assume that users’ devices are on metered cellular connections
and that users set explicit upload budget based on their
connection plans. So, we want to upload contents so as to—

max
∑
i

xi × value(i), subject to
∑
i

xi × size(i) ≤ B

where size(i) denotes the size (in byte) of content i, and B
is the total transfer volume allocated for at that upload event.
Budget, B, restricts how many bytes can be uploaded at this
upload instance. The formulation is an instance of the classical
0/1 Knapsack problem which is reportedly NP-Hard. We use
greedy heuristics solving for xi, particularly, pick items in
descending order of value(i)/size(i) until the budget is full.

A few modifications can to the formulation is possible. We
can limit low matching contents not to upload when their score
falls below a threshold. The budget constraint can be written
in various other forms too, such as

Budget per campaign
∑
i xi × sz(i) ≤ B(j), ∀j

Weighted budget
∑
i xij × sz(i) ≤

(
p(j)∑
l p(l)

)
×B, ∀j

What remains to discuss is how to design matching func-
tion, ψ(i, j), for contents against campaigns. We do not tie
this strongly in our service rather leave it open for campaign-
ers to specify. For example, some campaigns may describe
their interests by specifying explicit predicates over a set
of attributes requesting items within a certain range of their
attributes values (i.e, pictures from an area), which precisely
defines the matching criteria. Another set of campaigns may
specify a reference deviation from which measures degree of
matching (i.e., pictures near city center (lat, lng) on Oct 31,
2015). In our system, we use spatio-temporal attributes, namely
date, time, and location as reference attributes for requests, and
define a distance function between a content and a campaign
as follows:

dist(i, j) = w1distt(i, j) + w2distl(i, j)

where distt and distl measure much content i deviated in time
and location for the reference point of campaign j. Weights
w1 and w2 define sensitivity to these two distance components.
Afterwards, we simply use ψ(i, j) = e−D(i,j) as the matching
score. We assume each campaign specifies a spatio-temporal
reference for their interests with an associated weight values.

B. Data Budget Constraints for Mobile Users

In our system mobile users use cellular data connections
with limited data plan, which does not allow them to use all of
their data plan for a single application. So, it is natural that they
put a budget on their data activity per application. Therefore,
our MediaServ app receives a budget, which is specified by

a tuple (D,T ), indicating that the app is allowed to upload
D amount of bytes for every T unit of time (we refer to as
round). For simplicity, we assume T is an integral multiple
of our scheduling period, P . After T amount of time elapses,
the user receives another chunk of D bytes to replenish its
remaining budget for the successive operations. We assume
that remaining budget rolls over from one round to the next.

MediaServ uses two budget allocation techniques to deter-
mine how much data can be uploaded at each upload events.
Recall that upload events are at least P time apart. In the
first scheme, the app assumes all D bytes are available from
the beginning and uses up the budget as upload happens until
it hits zero. This scheme is called gradual decrease. In the
other scheme, budget is released rather slowly at a constant
rate R = D

T . That means, full D bytes are not available
at the beginning; rather accumulates as time passes. This
technique is referred to as gradual release. In this case, the
application maintains a running budget counter, B, to hold
much it is allowed to spend now, which is updated as follows:
Bnow = Bold + R(tnow − tlast), where tnow means current
time and tlast is the last time a budget was replenished. Even
though both schemes are confirmed to use the same amount of
uploads, we see in experiments that graduate release performs
better than gradual decrease.

We also propose another budget allocation scheme that lies
in between of the above two. This uses a varying replenishment
rate in contrast to constant rate as in gradual release. The
gradual release scheme releases takes the full duration, T ,
to release the entire budget at a constant rate, r(t) = R. In
varying rate case, we allow entire budget to get released by
βT time for a control parameter β ≤ 1. That means, at the
beginning the process has a higher rate of release, and then the
rate slows linearly down to zero after βT . We can visualize the
rate line, r(t), along time, t, to form a right triangle whose base
in βT , and the height is such that the entire area bounded by
the triangle is D (i.e., total budget). So, the height is 2D

βT = 2R
β ,

which gives the rate equation as follows:

r(t) =
2R

β

(
1− t

βT

)
(1)

Hence, update rule for B for this scheme becomes:

Bnew = Bold +

∫ tnow

tlast

r(t)dt

C. Scheduling for Multiple Campaigns

When a user subscribes to multiple campaigns, the for-
mulation mentioned in Section III-A favors campaigns with
higher priority, which may cause an unfair distribution of
resources across campaigns. To mitigate this, in addition to
greedy heuristic mentioned earlier, we propose a few heuristics
that addresses usage of upload resources at varying degree of
fairness.

First obvious choice could be FIFO order, contents are
uploaded in temporal order. This requires little processing
on content collection as it does not need further processing
other than maintaining a queue. Another approach can be
round robin; one content from each campaign at a time and
continuing. In this, all campaigns are treated alike, and their
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priority values are ignored. Contents under each campaign
however sorted in descending oder of their value-size ratios.
This perhaps gives the most fair usage of upload opportunities
across campaigns. A variant of round robin can be probabilistic
method where campaigns are chosen randomly based on the
weighted priority. In that, the probability that campaign j
would be chosen next is equal to p(j)∑

j p(j)
. The final one

can be strictly in order of campaign priority. Contents from
the top campaigns are all uploaded first then moving to the
next important campaign. This is useful in contexts where
campaigns are very short-lived and required contents all in
a certain time deadline (for example, journalists cover stories
for tomorrow’s daily).

IV. SIMULATION RESULTS

We do a simulation based study to demonstrate our budget
scheme on content uploads. We build a custom discrete event
simulation using Java to simulation a mobile client with
varying network connectivity (the device ON/OFF pattern is
modeled using a Poisson process). We use a Poisson arrival
process of media content generation with a rate of 1 per thirty
minutes. Contents are images of random size 0.5MB to 2.5MB.
We use varying degree of data budgets for a duration of 15
days.

To introduce variability in content generation and their
impact on uploads against a given budget allocation scheme,
we use three more data generation scenarios in addition to
a constant rate. These incorporate various rates at different
interval of the simulation. First one generates content at a high
rate at the beginning during first half followed by average rate
at the second half. The next is the reverse: low followed by
high. The last one alternates between high and low for a quarter
duration of each. Table I shows the simulation environment.

TABLE I: Simulation Environment

Parameter Value
Content value(priority) 1-10
Content size 0.5 MB to 2.5 MB
Content generation rate 1 per 30 minutes (Five times faster at high rate)
Network on Average 10 minutes
Network off Average 30 minutes
Simulation run for 15 days
Net speed 50 kbps
In gradual budget Increase by a constant(budget/days) after every day
Total budget 50 MB to 400 MB
Seed values 2000 to 2012

In all cases, we are interested in different performance
metrics, such as number of content uploaded, total value of
the all sent contents, total bytes sent, and number of dropped
contents. Due to space limit, we here produce results on total
content uploaded, referring to [18] for detailed results. In the
following, we show results for a single subscription, leaving
the same for multiple subscriptions (for full results, see [18]).

In Figure 2, we show comparison between two budgeting
schemes, gradual release and decrease, at different content
generation rates. It is apparent from all four graphs that, budget
less than 250MB, gradual release scheme shows better result.
After 250MB, gradual decrease shows similar or better results.
Before 250MB, resource is scarce and we need to select which
contents we choose to upload. But after 250MB, of total

budget we have a large amount of budget and we can use
it without much concerning about our limitations. We may
find an intersection point where two schemes have the same
results. After that, most of the cases, gradual decrease method
shows good result. In Figure 2c and Figure 2d, the difference
between the two graphs is more prominent.

When we wait for contents with higher values and delay
uploads, the content list gets bigger as contents are generated
during the wait time. When we get new allocation, may be we
wasted a lot of time in waiting, hence we can not transfer as
many contents as we can with gradual decrease method. This
is the case when budget is larger than around 250MB. But
when budget is very low, chance is that we send bigger sized
contents too much and wasted a lot of bandwidth. That is why
from all the figures, we can see for lower amount of budget
gradual release method shows better result.

In Figure 2b, we see that there is no significant difference
between two curves. This is the case when content generation
rate is very high at the beginning. Hence, there are many
contents which were created during the high generation rate
period. Gradual decrease method starts to send the contents
immediately but gradual release method delays upload because
it has low budget at the beginning. As the content list grows,
the scheme gets the chance to find smaller sized contents
among many contents. Hence, in this scenario it sends some-
how more smaller sized contents than the other generation rate
scenario. If most of the contents are generated within a short
interval, then the gradual decrease method gives better result
and the transmission of the contents will be much faster than
the gradual release method.

Even though both schemes send varying number of con-
tents, they effectively upload almost the same amount of bytes
(see Figure 3a and Figure 3b), which indicates that graduate
release uploaded more smaller sized objects than large sized
one.

(a) Constant rate (b) High rate followed by low rate

Fig. 3: Comparison between budgeting methods at different
rate of content generation

Budget can be released in a different rate rather than a
constant rate. The release rate may be higher than the constant
rate. As a result all the budget will be released earlier, before
the end of the simulation. We simulated for two different rates.
A rate indicates the fraction of total time, that is necessary to
release all the budget. In Figure 5a and Figure 5b we see the
comparison. At the beginning we have two lines in between
gradual release and gradual decrease lines. When rate is 0.5
the line follows the line of gradual decrease method. This is
because the whole budget is released within T

2 time. This is
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(a) Constant rate (b) High rate followed by low rate (c) High low alternates (d) Low rate followed by high rate

Fig. 2: Comparison between budgeting methods at different rates of content generation

some-what likely with gradual decrease method.

(a) No. of transferred content com-
parison

(b) Total sent value(priority) com-
parison

Fig. 4: Comparison among budgeting methods

One more thing, we can see in all graphs that the lines
are capped after around 250MB budget. As we generate 1
content per 30 minutes, there will be around 720 contents in
fifteen days. But before transferring all of these and fills up
the whole budget the 15 days time of simulation gets finished.
That is why the lines are capped after 250MB of budget.

We can conclude that gradual release budget scheme in
general is better than its counterpart. Actually, the performance
is largely dependent on content generation rate and their sizes.
We observe that when the budget is small following gradual
release method is good. When the budget is large gradual
decrease shows some promise for better results.

We also did experiments with varying mean network ON
time and varying data transfer rate (defaults are average 10
minutes and 50 kbps respectively). Network ON time indicates
on an average how long the cellular connection remains once
it gets connectet. Figure 5 shows results. We see that as we
increase network ON time and transfer bandwidth more and
more pictures are uploaded.

V. IMPLEMENTATION

We build an Android app of MediaServ that allows user
to create campaigns and publish photos to campaigns. Figure
6 shows the various screens of the app. At first, the user gets
four options to select from (Figure 6a). When users subscribe
to a campaign, the device is registerred for that campaign and
the user is now can publish content for that campaign. When
a user intents to publish content, the system camera is invoked

(a) Varying network ON time (b) Varying transfer bandwidth

Fig. 5: Uploads for varying network ON time and varying
transfer bandwidth.

to capture photo of the target. After capturing the photo, user
can choose to which campaign it wants to publish this photo.
Users can also select pictures from its gallery for campaigns.
Once captured or selected, pictures are queued internally to
be scheduled in the next upload opportunity. A background
Android Service maintains this list and uploads pictures from
the list when an opportinity raises.

(a) Start screen
of MediaServ

(b) Capturing a
photo

(c) Update con-
tent property

(d) List of con-
tents

Fig. 6: Application demonstration

We tested the app for three campaigns with a small number
of users:

• Clean campus campaign: This campaign asked stu-
dents to report dirts/littered objects spread around in
our campus. This is a awareness campaign against
reckless littering of objects in a campus.

• Festival campaign: This asked students to take photos
of events of a week long student program known
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as CSE FESTIVAL 2015. This asks for photos from
within campus as well as within a certain period of
time.

• Spelling campaign: Shops in cities frequently mispell
common words in their displays. The purpose of
this campaign is to collect pictures of these spelling
mistakes in a nearby market area.

The followng table shows how many photos are taken
per campaign and how many of them uploaded during the
campaign duration (details in [18]).

Campaign Generated Uploaded
Clean campus campaign 31 21
Festival campaign 38 24
Spelling campaign 42 32

VI. CONCLUSION

In this paper, we mainly focus on service based image
retrieval system. Evaluation technique of contents is illustrated.
As users normally are not willing to give data in participatory
network, hence a technique in where users can send content
efficiently is illustrated in this text. Maximize the service
campaigner’s gain, and optimize the user’s resource is mainly
described. Efficient way of image processing in user device can
be added in future, which will make the content evaluation
process more efficient. We also tried to make an effective
manner of using user bandwidth with two budgeting schemes.
Various scheduling methods are described which can be used
in an adaptive manner in different circumstances.
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