
LDplayer: DNS Experimentation at Scale
Liang Zhu

USC/Information Sciences Institute
John Heidemann

USC/Information Sciences Institute

ABSTRACT
DNS has evolved over the last 20 years, improving in security and
privacy and broadening the kinds of applications it supports. How-
ever, this evolution has been slowed by the large installed base
and the wide range of implementations. The impact of changes is
difficult to model due to complex interactions between DNS op-
timizations, caching, and distributed operation. We suggest that
experimentation at scale is needed to evaluate changes and facili-
tate DNS evolution. This paper presents LDplayer, a configurable,
general-purpose DNS experimental framework that enables DNS
experiments to scale in several dimensions: many zones, multi-
ple levels of DNS hierarchy, high query rates, and diverse query
sources. LDplayer provides high fidelity experiments while meet-
ing these requirements through its distributed DNS query replay
system, methods to rebuild the relevant DNS hierarchy from traces,
and efficient emulation of this hierarchy on minimal hardware.
We show that a single DNS server can correctly emulate multiple
independent levels of the DNS hierarchy while providing correct
responses as if they were independent. We validate that our system
can replay a DNS root traffic with tiny error (± 8ms quartiles in
query timing and ± 0.1% difference in query rate). We show that
our system can replay queries at 87k queries/s while using only one
CPU, more than twice of a normal DNS Root traffic rate. LDplayer’s
trace replay has the unique ability to evaluate important design
questions with confidence that we capture the interplay of caching,
timeouts, and resource constraints. As an example, we demonstrate
the memory requirements of a DNS root server with all traffic run-
ning over TCP and TLS, and identify performance discontinuities
in latency as a function of client RTT.

CCS CONCEPTS
• Networks → Network experimentation; Network perfor-
mance analysis;Networkmeasurement;Naming and address-
ing; Application layer protocols; Network simulations;

KEYWORDS
Domain Name System (DNS), experiments, trace replay, perfor-
mance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278544

ACM Reference Format:
Liang Zhu and John Heidemann. 2018. LDplayer: DNS Experimentation
at Scale. In 2018 Internet Measurement Conference (IMC ’18), October 31-
November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3278532.3278544

1 INTRODUCTION
The Domain Name System (DNS) is critical to the Internet. It re-
solves human-readable names like www.iana.org to IP addresses
like 192.0.32.8 and service discovery for many protocols. Almost
all activity on the Internet, such as web-browsing and e-mail, de-
pend on DNS for the correct operations. Beyond name-to-address
mapping, DNS today has grown to play various of broader roles
in the Internet. It provides query engine for anti-spam [20] and
replica selection for content delivery networks (CDNs) [28]. DANE
(DNS-based Authentication of Named Entities) [17] provides ad-
ditional source of trust by leveraging the integrity verification of
DNSSEC [4]. The wide use and critical role of DNS prompt its
continuous evolution.

However, evolving the DNS protocol is challenging because it
lives in a complex ecosystem of many implementations, archaic
deployments, and interfering middleboxes. These challenges in-
creasingly slow DNS development: for example, DNSSEC has taken
a decade to deploy [24] and current use of DANE is growing but
still small [34]. Improvements to DNS privacy are needed [6] and
now available [18, 33], but how long will deployment take?

DNS performance issues are also a concern, both for choices
about protocol changes, and for managing inevitable changes in
use. There are a number of important open questions: How does
current server operate under the stress of a Denial-of-Service (DoS)
attack? What is the server and client performance when protocol
or architecture changes? What if all DNS requests were made over
QUIC, TCP or TLS? What about increasing DNSSEC key size?

Ideally measurement and models would guide these questions.
However, measurements captures only what is, not what might be,
and DNS models are challenging because of details of how caching
and optimizations interact across levels of the DNS hierarchy and
between clients and servers. It is also difficult to estimate perfor-
mance limits with DNS involving the kernel, libraries, applications,
and distributed services.

Definitive answers to DNS performance therefore require end-
to-end controlled experiments from data-driven trace replay. Experi-
ments enable testing different approaches for DNS and evaluating
the costs and benefits against different infrastructures, revealing
unknown constraints. Trace replay can drive these experiments
with real-world current workloads, or with extrapolated “what-if”
workloads.

Accurate DNS experiments are quite challenging. In addition to
the requirements of modeling, the DNS system is large, distributed,
and optimized. With millions of authoritative and recursive servers,

https://doi.org/10.1145/3278532.3278544
https://doi.org/10.1145/3278532.3278544
www.iana.org

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

it is hard to recreate a global DNS hierarchy in a controlled experi-
ment. A naive testbed would therefore require millions of separate
servers, since protocol optimizations cause incorrect results when
many zones are provided by one server. Prior DNS testbeds avoided
these complexities, instead studying DNSSEC overhead in a piece of
the tree [3] and query distribution of recursive servers [31]. While
effective for their specific topics, these approaches do not generalize
to support changing protocols, large query rates, and diverse query
sources across a many-level hierarchy.

In this paper, we present LDplayer, a configurable, general-purpose
DNS experimental framework that enables DNS experiments at
scale in several dimensions: many zones, numerous levels of DNS
hierarchy, large query rates, and diverse query sources. Our system
provides DNS researchers and operators a basis for DNS experi-
mentation that can further lead to DNS evolution.

Our first contribution is to show how LDplayer can scale to
efficiently model a large DNS hierarchy and playback large traces
(§2). LDplayer can correctly emulate multiple independent levels of
the DNS hierarchy on a single instance of DNS server, exploiting a
combination of proxies and routing to circumvent optimizations
that would otherwise distort results. Our insight is that a single
server hosting many different zones reduces deployment cost; we
combine proxies and controlled routing to “pass” queries to the
correct zone so that the server gives the correct answers from a set
of different zones. Emulating multiple zones on limited hardware is
a DNS-specific technique that goes beyond the prior systems that
replay general network traffic. To this framework we add a two-
level query replay system where a single computer can accurately
replay more than 87 k queries per second, twice as fast as typical
query rates a DNS root letter. Multiple computers can generate
traffic in parallel with minimal coordination overhead, potentially
scaling roughly linearly with compute power to much larger rates.

Second, the power of controlled replay of traces is that we can
modify the replay to explore “what if” questions about possible
future DNS evolution (§5), beyond just replaying existing traces
(§4). We demonstrate this capability with two experiments. We
explore how traffic volume changes (increasing by 31%) if all DNS
queries employ DNSSEC (§5.1). We also use LDplayer to consider
how server memory and client latency changes if all queries were
TCP and TLS instead of UDP. Other potential applications include
the study of server hardware and software under denial-of-service
attack, growth of the number or size of zones, or changes in hard-
ware and software. All of these questions are important operational
concerns today. While some have been answered through one-off
studies and custom experiments or analysis, LDplayer allows evalu-
ation of actual server software, providing greater confidence in the
results. For example, relative to prior studies of DNS over TCP [33],
our use of trace-replay provides strong statements about all as-
pects of server memory (15GB for TCP and 18GB for TLS) and
CPU usage with real-world implementation (§5.2), and discovers
previously unknown discontinuities in client latency.

The software of our system is publicly available at: https://ant.
isi.edu/software/ldplayer/

2 LDPLAYER: DNS TRACE PLAYER
We next describe our requirements, then summarize the architec-
ture and describe critical elements in detail.

2.1 Design Requirements
The goal of LDplayer is to provide a controlled testbed for repeatable
experiments upon realistic evaluation of DNS performance, with
the following requirements:

Emulate completeDNShierarchy, efficiently: LDplayermust
emulate multiple independent levels of the DNS hierarchy and pro-
vide correct responses using minimal commodity hardware.

We must support many zones. It is not scalable to use separated
servers or virtual machines to host each zone because of hardware
limits and many different zones in a network trace. A single server
providing many zones of DNS hierarchy does not work directly,
because the server gives the final DNS answer straightly and skips
the round trip of DNS referral replies.

Replays do not leak traffic to the Internet: Experimental
traffic must stay inside the testbed, without polluting the Internet.
Otherwise each experiment could leak bursts of requests to the
real Internet, causing problems for the Internet and the experiment.
Resolving a single query will require interaction of multiple author-
itative DNS servers. For the Internet, leaks of replay from high-rate
experiments might stress real-world servers. For the experiment, we
need to control response times, and queries that go to the Internet
add uncontrolled delay and jitter.

Repeatability of experiments: LDplayer needs to support re-
peatable, controlled experiments. When an experiment is re-run,
the replies to the same set replayed queries should stay the same.
This reproducibility is very important for experiments that require
fixed query-response content to evaluate new transform in DNS,
such as protocol changes and new server implementations. With-
out building complete zone, the responses could change over time
when re-looked up. Some zones hosted at CDNs may have external
factors that influence responses, such as load balancing.

Controlled variations in traffic, when desired: Replay must
be able to manipulate traces to answer “what if” questions with
variations of real traffic. Since input is normally network traces
in some binary format (for example, pcap), the main challenge is
how to provide a flexible and user-friendly mechanism for query
modification. We also need to minimize the delay caused by query
manipulation, so that trace replay is fast enough to keep up with
real time.

Accurate timing at high query rates: LDplayer must be ca-
pable of replaying queries at fast rates, while preserving correct
timing, to reproduce interesting real-world traffic patterns for both
regular and under attack. However, both using a single host and
many hosts have challenges. Due to resource constraints on CPU
and the number of ports, a single host may not be capable to replay
fast query stream or emulate diverse sources. A potential solution
is to distribute input to different hosts, however, it brings another
challenge in ensuring the correct timing and ordering of individual
queries.

Support multiple protocols effectively: LDplayer needs to
support both connectionless (UDP) and connection-oriented (TCP
and TLS), given increasing interest in DNS over connections [33].

https://ant.isi.edu/software/ldplayer/
https://ant.isi.edu/software/ldplayer/

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Query
Mutator

Zone
Constructor

Recursive
Server

Authoritative
Server

Pre-captured
Network trace

P
ro

xy P
ro

xy

Authoritative
Server

recursive
replay

au
th

o
ri

ta
ti

ve
re

p
la

y
(o

p
ti

o
n

al
)

Query
Engine Hierarchy

Emulation
Root, TLD,

SLD ...

Single zone

Figure 1: LDplayer architecture

However, connection-oriented protocols bring challenges in trace
replay: emulating connection reuse and round-trip time (RTT). The
query replay system of LDplayer is the first system that can emulate
connection reuse for DNS over TCP. Emulation of RTT is important
for experiments of connection-oriented DNS, because RTT will
affect protocol responses with extra messages for connection setup,
while connectionless protocols do not incur those extra messages.

2.2 Architecture Overview
We next describe LDplayer’s architecture (Figure 1). With captured
network traces of DNS queries (required) and responses (optional),
a researcher can use our Zone Constructor to generate required zone
files. LDplayer uses a logically single authoritative DNS server with
proxies to emulate entire DNS hierarchy (Hierarchy Emulation). The
single DNS server provides all the generated zone files. The prox-
ies manipulate packet addresses to achieve successful interaction
between the recursive and authoritative servers, such as providing
correct answers to replayed queries. As a distributed query system,
the Query Engine replays queries in the captured traces. Optionally,
the researcher can use Query Mutator to change the original queries
arbitrarily for different replay, and query mutator can run live with
query replay.

Each component in LDplayer addresses a specific design require-
ment from §2.1. In LDplayer’s zone constructor, we synthesize data
for responses and generate required zone files by performing one-
time fetch of missing records over the Internet (§2.3). We run a real
DNS server that hosts these reusable zone files and provides an-
swers to replayed queries, so that we can get repeatable experiments
without disturbing the Internet.

With generated zone files, we need to emulate DNS hierarchy
to provide correct answers. Logically, we want many server hosts,
one per each zone, like the real world. However, we compress those
down to a single server process with single network interface using
split-horizon DNS [1, 8], so that the system scales to many zones.
For easy deployment, we redirect the replayed experimental traffic
to proxies, which then manipulate packet addresses to simplify
routing configuration and discriminate queries for different zones
to get correct responses (§2.4). We could run multiple instances

of the server to support large query rate and massive zones, with
routing configuration that redirects queries to the correct servers.

In LDplayer’s query mutator, we pre-process the trace so that
querymanipulation does not limit replay times.We convert network
traces to human-readable plain text for flexible and user-friendly
manipulation. After necessary query changes, we convert the result
text file to a customized binary stream of internal messages for fast
query replay (§2.5). In principle, at lower query rates, we could
manipulate a live query stream in near real time.

In LDplayer’s query engine, we use a central controller to coor-
dinate queries from many hosts and synchronize the time between
the end queriers, so that LDplayer can replay large query rates accu-
rately. The query engine can replay queries via different protocols
(UDP, TCP or TLS) effectively. We distribute queries from the same
sources in the original trace to the same end queriers for replay, in
order to emulate queries from the same sources which is critical
for connection reuse (§2.6). LDplayer replays queries based on the
timing in the original trace without preserving query dependencies.

2.3 Synthesize Zones to Provide Responses
To support experiment repeatability and avoid leaking bulk experi-
mental DNS queries to the Internet, we build the zone files that drive
the experiment once and then reuse them in each experiment. We
build zones by replaying the queries, once, against the real-world
servers on the Internet and harvesting these responses.

One-time Queries to the Internet: We need to build a DNS
hierarchy that includes answers to all the queries that will be made
during replay.When emulating an authoritative server, we can often
acquire the zone from its manager, but when emulating recursive
servers we must recreate all zones that will be queried. (If any part
of hierarchy is missing, replayed queries may fail.) For example, if
.com delegation (NS records of .com) is missing in the root zone, a
recursive server will fail to answer all the queries for .com names
in experiments.

To build a DNS hierarchy that covers all queries, we send all
unique queries in the original trace to a recursive server with cold
cache and allow it to query Internet to satisfy each query. In this
case, the recursive server walks down the DNS hierarchy, querying
root servers, top-level domain (TLD) servers, and all other necessary
authoritative servers. We then capture all the DNS responses that
authoritative servers respond, recording the traffic at the upstream
network interface of the recursive server. Since the recursive server
walks down the DNS hierarchy for each queries, the captured trace
contains all authoritative data needed to build zones for the parts of
the DNS hierarchy that are needed for the replay. When we do trace
replay from our rebuilt zones, a recursive might fail to resolve a
query if the query was not exercised when the zone was generated.

Zone construction need to be done only once (we save the recre-
ated zones for reuse) so any load it places on the original servers
is a one time cost. We also prototyped an alternative that primes
these zones with replies from the trace, but we found that caching
makes raw traces incomplete if the traces are captured after the
cache is warm. We therefore rebuild the entire zone from scratch to
provide a consistent snapshot. If an experiment requires updated
zone data, we make an additional pass of zone construction.

.com
.com
.com

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

Construct Zones from Traces: Given the traces captured at
the recursive server, we next reverse the traces to recreate appro-
priate zone data.

We convert traces to multiple zone files, since a full DNS query
(for example, mail.google.com) may touch several different servers
(root, .com, googlemail.l.google.com, plus their authoritative name-
servers, DNSSEC records, etc.).

We first scan the whole trace and identify authoritative name-
servers (NS records) for different domains and their host addresses
(A or AAAA records) from all the responses. Since most of domains
have multiple nameservers (for example, google.com has 4 name-
servers: ns{1-4}.google.com), a recursive server may choose any of
them to trace the query based on its own strategy. We group the
set of nameservers responsible for the same domain, and aggre-
gate all DNS response data from the same group of nameservers
by checking the source address in responses. We then generate an
intermediate zone file from the aggregate data.

Since a nameserver can serve multiple different zones, the inter-
mediate zone file we generate may contain data of different domains
and may not be a valid zone file acceptable by a DNS server. We fur-
ther split the response data in the intermediate zone file by different
domains, and output corresponding separated zone files. Optionally
we can also merge the intermediate zone files of multiple traces. To
determine zone cuts (which parts of the hierarchy are served by
different nameservers), we probe for NS records at each change of
hierarchy.

Similarly, we can recreate a zone file for queries replaying at
an authoritative server. Since only single authoritative server is in-
volved without the recursive, the zone file reconstruction is straight-
forward.

Recover Missing Data: Sometimes records needed for a com-
plete, valid zone will not appear in the traces. For example, a valid
zone file needs SOA (Start of Authority) record and NS records for
the zone, however, those records are not required for regular DNS
use. We create a fake but valid SOA record and explicitly fetch NS
records if they are missing.

Handle inconsistent replies: DNS queries sometimes vary
over time, such as replies to CDNs that balance load across a cluster,
or in the unlikely event that the zone is modified during our rebuild.
DNS records can be updated. However sometimes those update
conflict with each other, such as multiple CNAME records for the
same name while only one allowed in principal. More often, the
address mapping for names may change over time, such as content
delivery network (CDN) redirecting by updating DNS using its own
algorithm.

By default, to build a consistent zone, we choose the first answer
when there are multiple differing responses. Simulating the various
CDN algorithms to give different addresses for queries is future
work.

2.4 Emulate DNS Hierarchy Efficiently
With zones created from traces, we next introduce how we emulate
DNS hierarchy in order to answer replayed queries correctly in
LDplayer. Handling queries to a recursive server requires emulating

Stub
Recursive

Server

Recursive
Proxy

Recursive
TUN

all queries
(dport: 53)

From: Rec
To: .com

From: .com
To: Aut

From: .com
To: Rec

Authoritative
Server

Authoritative
Proxy

Authoritative
TUN

all responses
(sport: 53)

From: Aut
To: .com

Figure 2: With a network tunnel (TUN), server proxies ma-
nipulate the source and destination addresses in the queries
and responses to make routing work and get the correct re-
sponses.

multiple hierarchical zones, while handling queries to an author-
itative server does not need to emulate hierarchy due to a single
zone.

The greatest challenges of emulating full DNS hierarchy in a
testbed environment are scalability to support many different zones
and easy deployment. Since we use real DNS records (such as real
public IP addresses) in zone files, the other challenge is how to make
these zone files work in a private testbed environment with local
IP addresses. A naive way would use separate authoritative servers
for each zone, each on its own server. Even with virtual machines,
such an approach cannot emulate typical recursive workloads that
see hundreds or thousands of zones over days or weeks—it will
encounter limits of memory and virtual network interfaces. We
see 549 valid zones in a 1-hour trace Rec-17 (Table 1) captured at a
department-level recursive server. DNS server software can host
multiple zones in one server, but optimizations built into common
server software mean that putting the whole hierarchy in one server
gives different results. (Asking for www.example.com will directly
produce an IP address from a server that stores the root, .com, and
example.com zones, not three queries.)

Scale to many zones with a single server: To emulate com-
plete DNS hierarchy efficiently, instead we contribute a meta-DNS-
server: a single authoritative server instance with a single network
interface correctly emulates multiple independent levels of DNS
hierarchy using real zone files, while providing correct responses
as if they were independent.

Challenges: There are some challenges in making the recursive
server successfully interact with the meta-DNS-server during query
replay, because we use a single server instance and a single network
interface to provide authoritative service to all relevant zones in
the trace.

First, how do the queries sent by the recursive server merge to
the same network interface at meta-DNS-server? Typically, if a re-
cursive receives an incoming query (for example, www.google.com
A) with cold cache, it walks down the DNS hierarchy (for example,
root→ com→ google.com) and sends queries to respective author-
itative servers (for example, a.root-servers.net→ a.gtld-servers.net
→ ns1.google.com). As a result, the queries out of the recursive

mail.google.com
.com
googlemail.l.google.com
google.com
ns{1-4}.google.com
www.example.com
.com
example.com
www.google.com
root
com
google.com
a.root-servers.net
a.gtld-servers.net
ns1.google.com

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

have a set of different destination IP addresses. Without changes,
those queries will not be routed to the meta-DNS-server by default.

Second, how does the meta-DNS-server know which zone files
to use in order to answer the incoming queries correctly? When a
recursive server resolves an incoming query iteratively with cold
cache, the query content sent by the recursive is the same, regardless
of which level of the DNS hierarchy it is contacting. Assume the
meta-DNS-server receives a query (for example, www.google.com
A) which was meant to send to the authoritative server of com.
The meta-DNS-server is not able to identify the target zone (com)
based on the query content. The answers from root, com and google.
com zones are are completely different (a referral answer of com,
a referral answer of google.com, and an authoritative answer of
www.google.com A respectively). A wrong answer which is not
from the correct zone (com) can lead to a broken hierarchy at the
recursive and further failure of query replay.

Third, how are meta-DNS-server’s responses accepted by the
recursive server? Assume the meta-DNS-server can pick the correct
zone (for example, com) to answer queries (we will present the
solution later). All the reply packets by meta-DNS-server have the
same meta-DNS-server’s address as source IP addresses. Even if the
recursive receives this “correct” reply, it will not accept the reply
because the reply source address (the address of meta-DNS-server)
is not matched with the original query destination address (for
example, the address of a.gtld-servers.net)

Solutions: To overcome those challenges, at high level, we use
split-horizon DNS [1, 8] to host different zones discriminated by
incoming query source addresses. We use network tunnel (TUN) to
redirect all the DNS queries and responses to proxies. Those proxies
further manipulate packets addresses to successfully deliver the
packets and to let the meta-DNS-server find the correct answers
(Figure 2). We explain details of our solutions in the following.

To redirect recursive server’s queries to meta-DNS-server we
must change the destination or source addresses of those DNS
packets.

Before any address manipulation, we first need to capture all
the queries and responses, because any leaked packets are non-
routable and dropped, leading to the failure of trace replay. We
create two TUN interfaces to get all required packets at the recursive
and meta-DNS-server respectively (Figure 2). We use port based
routing that all queries (packets with destination port 53) at the
recursive, and responses (packets with source port 53) at the meta-
DNS-server are routed to TUN interfaces. We manage this routing
by using iptable: first mark the desired packets using mangle table,
and then redirect all the marked packets to TUN interfaces. We
choose TUN interface because it let us observe all raw IP packets
to manipulate IP addresses.

We build two proxies (recursive proxy and authoritative proxy) to
manipulate packet addresses at the recursive server and meta-DNS-
server respectively (Figure 2). The common task of the proxies is
to make sure captured packets can be routed to the server at the
other end smoothly for correct trace replay. Specifically, recursive
proxy captures recursive server’s queries and authoritative proxy
captures meta-DNS-server’s responses. Then, both of the proxies
rewrite the destination address with the IP address of the server at
the other end.

To make the meta-DNS-server determine the correct answer and
let the recursive server accept the reply, the proxies replace the
source address with the original destination address in the packets.
We will explain the functionality of using original destination ad-
dress below. After recalculating the checksum, the proxies send the
modified packets directly to the meta-DNS server and the recursive
server respectively.

This process with proxy rewriting allows the meta-DNS server
to determine to which zone each query is addressed. To address
the zone selection, the meta-DNS server hosts multiple zones using
software-based, split-horizon DNS [1, 8], where a server provides
different answers based on query source and destination addresses.
When a recursive server resolves an incoming query iteratively with
cold cache, the destination addresses (target authoritative server
address) of the iterative queries is the only identifier for different
zones, because the query content is always the same and not dis-
tinguishable by itself. However, matching queries by destination
addresses at the meta-DNS-server requires the server listens on
different network interfaces for each zone separately, which brings
deployment complexity, such as creating many (virtual) network
interfaces and a giant routing table in testbed. This complexity
conflicts our goal of scalability and deployability to support many
different zones.

With split horizon, we make the meta-DNS server listen on one
address and uses the source IP address to determine for which level
of the hierarchy the query is destined. Since recursive proxy already
replaces the query source address with the original query destina-
tion address (OQDA), the current query source address becomes the
zone identifier now. To correctly discriminate queries for different
zones, we take the public IP addresses of zone’s nameservers as
the matching criteria (query source addresses). In this way, the
meta-DNS-server sees a query coming from OQDA instead of the
recursive server’s address (Figure 2). The meta-DNS server then
determines the correct zone file from the this source address, and
issues a correct reply where the destination address is OQDA. As
discussed above, the authoritative proxy captures this reply, and
puts the destination address in source address. As a result, the recur-
sive server observes a normal reply from OQDA and can match this
reply to the original query, without knowing any address manip-
ulation in the background. Our method works with authoritative
server implementation that supports split-horizon DNS, such as
BIND with its view and match-clients clauses in configuration.

2.5 Mutate Trace For Various Experiments
Another benefit of our system is that we support arbitrary trace
manipulation to study different questions from one trace.

There are two challenges in changing the traces. First, binary net-
work trace is complicated to edit directly because changes are not
space-equivalent. We need a user-friendly method to manipulate
queries. Second, the delay caused by manipulation and processing
traces, may also bring problems for accurate query replay.

Plain text for easy manipulation: To easily manipulate input
queries, we convert network traces to human-readable plain text.
We develop a DNS parser to easily extract relevant data from net-
work trace, and output a column-based plain text file where each
line contains necessary information of a DNS message. In this stage,

www.google.com
com
com
root
com
google.com
google.com
com
google.com
www.google.com
com
com
a.gtld-servers.net

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

Trace
Converter

Text
Converter

In
tern

al
M

essage

Network
Trace

Plain Text

Customized
binary

Binary
Reader

pcap, erf …

time: 1461234567.012345
src: 192.168.1.1
query: example.com A IN
protocol: TCP …

Length: 200 bytes
010101110001…..

D
N

S
Pa

rs
er

C
o

n
ve

rt
er (d

e-serialize)

LDplayer’s input engine

Q
u

e
ry

 M
an

ip
u

la
to

r

Input files

Figure 3: Trace mutator converts network trace to plain text
for easy editing, and further converts to customized binary
stream as input. LDplayer accepts three types of input: net-
work trace, formatted plain text and customized binary files.

users can edit DNS messages as desired with a program or text
editor. Most data in a DNS message can be modified, including DNS
header flags, query names, EDNS data, and transport protocol.

Binary for fast processing: Since plain text as input delays
building DNS messages, we convert the resulting text file to a cus-
tomized binary stream of internal messages to serve as input for
trace replay (Figure 3) for fast processing. To distinguish differ-
ent messages in the input stream, we pre-pend the length of each
message at the beginning of each binary message.

To save unnecessary input delay in query replay, we pre-process
the input and separate the input processing from the query replay
system. Optionally, the input engine of our system can also read net-
work trace and formatted text file directly, and convert to internal
binary messages on the fly.

We handle trace replay and support mutation of the trace in ways
that are similar to the original. In some cases, what-if experiments
may imply changes to traffic that are very different from the original
trace. For example, if all zones are changed to be DNSSEC signed,
then one must generate new DNSKEY and RRSIG records. For such
experiments, the experimenter must insure that trial zone includes
new data for the replay to provide correct results.

2.6 Distribute Queries For Accurate Replay
With server setup and input trace, the next step for a successful
DNS trace replay is to emulate DNS queries with correct timing
from different sources and connections.

Fast query replay and diverse sources: There are several re-
source limit in a single host: CPU, memory and the number of ports.
The query rate generated at a single host is limited because of CPU
constraints. The ability to maintain concurrent connections in a
single host is limited by memory and the number of ports (typical
65 k).

To support fast query rates from many sources, our approach
is to distribute query stream to many different hosts, allowing
many senders to provide a large aggregate query rate. In particular,
we coordinate queries from many hosts with a central Controller
managing a team of Distributors which further controls several

Queriers. The end Queriers directly interact with DNS servers via
different protocols (UDP, TCP or TLS). For reliable communication,
we decide to choose TCP for message exchange among distributors.

The primary purpose of multiple levels is to connect enough end
Queriers when there is a limit on the number of distribution con-
nections in each Distributor. Without limit, one-level distribution
(Controller distributes to Queriers directly) can bring 4 billion con-
nections theoretically in total, with maximum 65 k Querier hosts
connected at any time.

If the input trace is extremely fast, the CPU of Controller may
become bottleneck because it limits the speed of input processing.
To solve this problem, we can split input stream to feed multiple
controllers.

Correct timing for replayed queries: The ultimate goal of
query replay system is to replay DNS queries with correct timing
and reproduce the traffic pattern.

Due to distributing queries among different hosts, it is challeng-
ing to synchronize time and ensure the correct timing and ordering
of individual queries.

To replay queries at accurate time, LDplayer keeps tracking
trace time and real time, and schedules timer events to send queries.
When getting the first input query message, controller broadcasts a
special time synchronization message to all the queriers to indicate
the start time of the trace. Upon receiving the time synchronization
message, a querier obtains the current trace time (t̄1) and real time
(t1).

On receiving the subsequent query stream, a querier extracts
the absolute query time in trace (t̄i) and computes the relative trace
time (∆t̄i), as ∆t̄i = t̄i − t̄1. The relative trace time is the ideal delay
that should be injected for trace replay assuming no input delay.

Similarly, the querier also gets current absolute real time (ti)
and the relative real time (∆ti) as ∆ti = ti − t1. The relative real
time represents the accumulated program run-time delay, such as
input processing and communication delay, that has already been
generated.

To replay the query (qi) at correct time, LDplayer removes the
added latency and schedules a timer event at ∆Ti in the future,
where ∆Ti = ∆t̄i − ∆ti . If the trace is extremely fast and the in-
put processing falls behind (∆Ti ≤ 0), LDplayer sends the query
immediately without setting up a timer event.

By tracking timing and continuously adjusting, LDplayer pro-
vides good absolute and relative timing (as shown in §4).

Some experiments, such as load testing, prefer large query streams,
as fast as possible, instead of tracking original timing time. As an
option, LDplayer can disable time tracking and replay as fast as
possible.

Emulating queries from the same source: Some traces or
experiments require reproduction of inter-query dependencies. Two
examples are UDP queries where the second query can be sent only
after the first is answered, or when studying TCP queries where
connections are reused. In general, we assume all queries from the
same source IP address are dependent and queries from different
sources are independent. We assume queries are independent, since
captured DNS traces normally do not show application dependency.
Identifying semantic dependence between queries is an area for
future work.

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

. . .Distributor

Querier

Querier

DNS
Server

Query
Stream

. . .

U
n

ix

so
ck

et
Reader

Postman

Controller

. . .Distributor

Querier

Querier

Client instance

optional

Figure 4: A prototype of distributed query system with two-
level query distribution. Distributors and queriers are imple-
mented as processes and running on the same host (client in-
stance). Optionally, a single distributor can read input query
stream directly.

We do preserve queries that originate from the same source as
one kind of dependency, since it affects performance of DNS-over-
TCP. We use different network sockets to emulate query sources.
To emulate queries from the same sources, we must first deliver
all the queries from the same sources (IP addresses) in the original
trace to the same end querier for replay. To accomplish this, each
distributor tracks the original query source address and the lower
level component in the message distribution flow. When queries
are distributed, each distributor either picks the next entity based
on a recent query source address in record, or selects randomly
otherwise (during startup). Similarly, the controller guarantees the
same-source queries are assigned to same distributor. Each entity
keeps the record during the experiments.

Similarly, queriers map the query sources and the underlying
network socket, insuring that same-source queries use the same
socket if it is still open. New sources start new sockets.

When emulating TCP connection reuse, queriers also tracks open
TCP connections. They may close them after a pre-set timeout.

As a result, during query replay, a DNS server observes queries
from the same set of host addresses but with a range of different port
numbers, which emulates different queries from the same sources.

An alternative is to setup virtual interfaces with different IP ad-
dresses at queriers, and use those interfaces for each query sources
address in query replay. However, the method does not scale to a
large number of addresses.

3 IMPLEMENTATION
We implement a prototype replay system and proxies in C++, to
provide efficient run-time, and full control over memory usage.

Query System: In two-level query distribution system (Fig-
ure 4), with a controller and multiple clients. The controller runs
two processes, the Reader, for trace input, and another, the Postman
to distribute queries. One or more machines are clients, each with
distributor and multiple querier processes. Processes use event-
driven programming to minimize state and scale to a large number
of concurrent TCP connections. The reader pre-loads a window of
queries to avoid falling behind real time.

Server Proxy: The proxies around the server run as either recur-
sive proxy or authoritative proxy (§2.4). A single reader thread reads
from a tunnel network interface, while multiple worker threads

S

T

C1
IXP

Cn

1Gb/s
<1ms

Figure 5: Network topology used for evaluation: controller
(T), server (S), and client instances (C)

read from a thread-safe queue that rewrites queries (§2.4). Our pro-
totype of the recursive proxy only talks to a single authoritative
proxy. Supporting partitioning the zones across the set of different
authoritative servers is a future work.

4 EVALUATION
We validate the correctness of our system by replaying different
DNS traces in controlled testbed environment (§4.1). Specifically, we
validate query inter-arrival time and query rate. Our experiments
show that the distributed client system replays DNS queries with
correct timing, reproducing the DNS traffic pattern (§4.2).

4.1 Experiment Setup and Traces
To evaluate our system, we deploy the network shown in Figure 5
in the DETER testbed [5]. We use a controller (T) to distribute query
stream to client instances (C1 to Cn). Each client instance runs sev-
eral distributor and querier processes to replay input queries. The
query traffic merges at a LAN representing an Internet Exchange
Point, and is then sent to the server (S). Each hosts is a 4-core (8-
thread) 2.4 GHz Intel Xeon running Linux Ubuntu-14.04 (64-bit). We
use several traces, listed in Table 1 and described below, to evaluate
the correctness of our system under different conditions.

B-Root: This trace represents all traffic at B-Root DNS server
(both anycast sites) over one hour during the 2016 and 2017 DITL
collections [13]. It is available from the authors and DNS-OARC.We
use B-Root-16 trace (Table 1) in this section to validate our system
can accurately replay high-volume queries against an authoritative
server. We use other groups of B-Root-17 traces in later sections
(§5). Traffic to each root server varies, but the B-Root trace is not
significantly different from the others.

Synthetic: To validate the capability to replay query traces with
various query rates, we create five synthetic traces (syn-0 to syn-4
in Table 1), each with different, fixed inter-arrival times for queries,
varying from 0.1ms to 1 s. Each query uses a unique name to allow
us to associate queries with responses after-the-fact.

4.2 Accuracy of Replay Timing and Rate
We first explore the accuracy of the timing and rate of query replay.

Methodology:We replay B-Root and synthetic traces over UDP
in real time and capture the replayed traffic at server. We match
query with reply by prepending a unique string to every query
names in each trace. We then report the query timing, inter-arrival
time and rate, comparing the original trace with the replay. We use
a real DNS root zone file in server for B-Root trace replay to provide
responses. For synthetic trace replay, we setup the server to host
names in example.com with wildcards, so that it can respond all

example.com

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

inter-arrival
traces start (min) (seconds) client IPs records
B-Root-16 2016-04-06 +60 .000027 1.07M 137M

15:00 UTC ±.000619
B-Root-17a 2017-04-11 +60 .000023 1.17M 141M

15:00 UTC ±.001647
B-Root-17b +20 .000025 725 k 53M

±.001536
Rec-17 2017-09-01 +60 .180799 91 20 k

17:22 UTC ±.355360
Synthetic

syn-0 - 60 1 3 k 3.6 k
syn-1 - 60 .1 9.7 k 36 k
syn-2 - 60 .01 10 k 360 k
syn-3 - 60 .001 10 k 3.6M
syn-4 - 60 .0001 10 k 36M

Table 1: DNS traces used in experiments and evaluation.
Mean and standard deviation of inter-arrival time for B-
Root and Rec traces.

-20

-15

-10

-5

0

5

10

15

20

.0001 .001 .01 .1 1B Root
trace Synthetic trace: query inter-arrival time (seconds)

qu
er

y
tim

e
er

ro
r (

m
s)

 in
 re

pl
ay

Figure 6: Query timing difference between replayed and
original traces. Figure shows quartiles, minimum and maxi-
mum. The empty circles on x-axis exceed ± 20ms (outliers).

the queries within that domain. We repeat each type of trace replay
for 5 times to avoid outliers.

Query time:We use unique query names to identify the same
queries in original and replayed traces, and study the timing of each
query: the absolute time difference compared to the first query. We
ignore the first 20-seconds of the replay to avoid startup transients.

Figure 6 shows that timing differences in replay are tiny, usu-
ally quartiles are within ± 2.5ms . We observe small, but noticeably
larger differences when the query interarrival is fixed at 0.1 s:± 8ms
quartiles. We are examining this case, but suggest it is an interac-
tion between application and kernel-level timers at this specific
timescale. Even when we look at minimum and maximum errors,
timing differences are small, within ± 17ms .

Query Inter-arrival Time: We next shift from absolute to rel-
ative timing with inter-arrival times.

Figure 7 shows the CDF of experimental interarrival times for real
(B-Root-16) and synthetic traces of different interarrival rates. (Note
that timescale is shown on a logarithmic scale.) Interarrival is quite
close for traces with input inter-arrivals of 10ms or more, and for
real-world traffic with varying interarrivals. We see larger variation
for very small, fixed interarrivals (less than 1ms), although the

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

.000001

.00001
.0001

.001
.01 .1 1

C
D

F

query inter-arrival time (seconds)

dash lines: original
dots: replayed

B Root

synthetic
0.1 ms

synthetic
1 ms

synthetic
10 ms

synthetic
100 ms

synthetic
1 s

Figure 7: Cumulative distribution of the inter-arrival time
of original and replayed traces.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2% -1% 0 1% 2%

C
D

F

query rate (per second) difference

original median query rate:
38K q/s

B root trace replay
for 5 times

+0
.1

%

-0
.1

%

Figure 8: Query rate differences between replayed and origi-
nal B-Root trace (5 trials). Black solid circles on the edge are
a few cases out of ±2%.

median is on target, there is some variation. This variation occurs
because it is hard to synchronize precisely at these fine timescales,
since the overhead from system calls to coordinate take nearly
as much time as the desired delay, adding a lot of jitter. We see
divergence for the smallest interarrivals for the real-world B-Root
trace, but little divergence for the 50% longest B-Root interarrivals.
Uneven spacing in real traces gives us fee time to synchronize. We
repeat this experiment for 5 times; all show similar results to the
one shown here.

Query Rate:We finally evaluate query rates. To do so, we replay
the B-Root-16 trace and compute the query rate in each second of
trace replay against the corresponding rate of that second in the
original trace. We repeat this test five times.

Figure 8 shows the CDF of the difference in these per-second
rates for all 3,600 seconds of each of the five replays. We observe
that almost all (4 trials with 98%-99% and 1 trial with 95%) of 3.6 k
data points (1-hour period) have tiny (± 0.1%) difference in average
query rate per second. This experiment uses the B-Root because it
has large query rate (median 38 k queries/s) and the rate varies over
time. We use a 1-second window to study overall replay rate; finer
(smaller) windows may show greater variation as OS-scheduling
variation becomes significant.

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

0

20k

40k

60k

80k

100k

0 50 100 150 200 250 300
 0

 20

 40

 60

 80

 100

qu
er

y
ra

te
 (q

/s
)

ba
nd

w
id

th
 (M

bi
t/s

)

time (seconds)

Figure 9: The throughput of fast replay a continuous input
query stream over UDP directly: queries are sent immedi-
ately without timer events. Data point is sampled every two
seconds over total 5 minutes.

4.3 Single-Host Throughput
Having shown our query system is accurate to replay different
traces, we next evaluate the maximum throughput: how fast can
our system replay using a single host?

Methodology: We use an artificial query generator for con-
trolled, high-speed replay. We send a continuous stream of identical
queries (www.example.com) to the target, sending them with UDP,
without timeouts, to an authoritative server hosting example.com
zone with wildcards. We run our query replay system with one
distributor and six querier processes, along with the query genera-
tor (total 8 processes), on a single 4-core (8-hyperthread) host. We
monitor the packet rate and bandwidth after the query system is in
steady state.

Results:With this setup we replay 87 k queries/s (60Mb/s), as
shown in Figure 9). This rate is more than twice of normal DNS
B-Root traffic rate (as of mid-2017). In this experiment the query
generator is the bottleneck (it completely saturates one CPU core),
while other processes (distributor and queriers) each consumes
about 50% of single CPU core. Higher rates would be possible with
faster query generation.

5 APPLICATIONS
With controlled, configurable and accurate trace replay, our system
provides a basis for large-scale DNS experimentation which can
produce new results and answer open research questions. We next
show such applications of LDplayer, including studying the impact
of increased DNSSEC queries and exploring the performance of
DNS over TCP and TLS at a Root DNS server.

5.1 Impact of Increased DNSSEC Queries
How does the root DNS traffic change when more and more applica-
tions start to use DNSSEC? We use LDplayer to enable DNSSEC for
all queries when we replay traces, allowing us to predict potential
future behavior. We start to answer this question and predict future
DNS root traffic. Prior studies used trace replay with current traffic
mixes [30].

We replay the B-Root-16 trace (Table 1) with a mix of different
key sizes and different portions of queries requiring DNSSEC, under
the previous experiment setup (§4.1).

Our new experiments of all queries with DNSSEC show that
going from 72% DO (as of mid-2016) to 100%, root response traffic
becomes 296Mb/s (median) with 2048-bit ZSK in steady state (right
group in Figure 10). Compared to 225Mb/s with current 72% DO
and 2048-bit ZSK, root response traffic could increase by 31% in
the future when all queries require DNSSEC. Our experiments also
demonstrate 32% traffic increase when DNS root ZSK was upgraded
to 2048-bit from 1024-bit keys, replicating experiments previously
done in a custom testbed [30]. As a future work, we could use
LDplayer to study the traffic under 4096-bit ZSK.

As future work, one could use this experiment to test LDplayer’s
predictive ability. For example, one could take 2016 data, adjust it
to 2018 DNSSEC levels, and see how well they match.

 0

 50

 100

 150

 200

 250

 300

 350

1024 2048 2048 1024 2048 2048ZSK (bits):
...normal... rollover

72.3% queries with DO bit (current)
...normal... rollover

All queries with DO bit

Ba
nd

w
id

th
 o

f a
ll

re
sp

on
se

s
(M

bi
t/s

)

Figure 10: Bandwidth of responses under different DNSSEC
ZSK sizes. Trace: B-Root-16. Figures show medians, quar-
tiles, 5th and 95th percentiles.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

o
ve

ra
ll

p
e
rc

e
n
t
o
f
cp

u
 u

sa
g
e

TCP time-out window (seconds) at server

original trace
(3% queries
over TCP)

all queries
over TCP

all queries
over TLS

Figure 11: CPU usage with different TCP timeouts under
minimal RTT (<1ms). Trace: B-Root-17a. Figures show me-
dians, quartiles, 5th and 95th percentiles.

5.2 Performance of DNS over TCP and TLS at a
Root Server

We next use experiments to study DNS over TCP and TLS. Our goal
is to understand real-world resource usage at servers (memory and

www.example.com
example.com

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

ST

C1

…

IXP

Cn

1Gb/s
<1msIXP

1Gb/s
<1ms

Figure 12: Network topology for experiments of replaying
Root DNS traces over TCP and TLS: controller (T), server (S),
and client instances (C)

CPU) and client latency. Our experiments here are the first to study
these topics at scale, with a full server implementation; prior work
used micro-benchmarks and modeling [33]. We convert all queries
to use TCP and TLS, demonstrating actual resource usage and also
revealing performance discontinuities in latency as a function of
RTT, which modeling cannot capture.

5.2.1 Experiment Setup and Methodology. To evaluate server re-
source requirements and query latency, we deploy a network topol-
ogy (Figure 12), separating control and experimental traffic. We
vary the client-to-server RTT for different experiments. All client
hosts use 16GB RAM and 4-core (8-thread) 2.4 GHz Intel Xeon. To
support the all-TCP/TLS workload, we configure the authoritative
server with 64GB RAM on a 24-core (48-thread) 2.2 GHz Intel Xeon,
and controller with 24GB RAM on a 12-core (24-thread) 2.2 GHz
Intel Xeon. We run nsd-4.1.0 with 16 processes for all the exper-
iments, and a TLS-patched version [27] for TLS experiments. All
hosts run Ubuntu 16.04.2 LTS (64-bit) with 4.4.0-83-generic ker-
nel. Different server implementations may have different memory
requirements.

We conduct three types of query replay. First, we replay the
queries using the protocols in the original trace (3% TCP queries)
to establish a baseline for comparison. We then mutate the queries
so all employ TCP and TLS respectively for two different sets of
experiments. We vary either TCP timeouts (5ms to 40ms) at the
server, or the client-server RTTs (0ms to 140ms or based on a
distribution). In TCP and TLS experiments, we optimize TCP at
the client and server by enabling net.ipv4.tcp_low_latency in
Linux, and disable the Nagle algorithm [15] at the client.

We use two B-Root traces (Table 1) in the experiments in this
section. We first use 1-hour B-Root-17a trace to study server state
with controlled minimal RTT (<1ms), verifying the experiment
reaches steady state in about 5 minutes. For later experiments we
use B-Root-17b, a 20-minute subset of the B-Root-17a trace.

We log server memory with top and ps, CPU with dstat, and
active TCP connections with netstat.

5.2.2 Memory and Connection Footprint. For DNS over TCP and
TLS, a server should keep idle connections open for some amount of
time, to amortize TCP connection and TLS session setup costs [18,
33]. However, a server cannot keep the connection open forever,
since maintaining concurrent connections costs server memory.
LDplayer provides the unique ability emulating and maintaining a
large number of concurrent connections for DNS that enables re-
playing queries over TCP and TLS at a root server, while most of the

previous DNS studies focus on UDP-dominated DNS. Server mem-
ory is an important metric to study to understand the constraints
of connection-oriented DNS.

Our experimental results confirm prior models [33] in a real-
world implementation, showing that even if all DNS were shifted
to connection oriented protocols, memory requirements are man-
ageable. Figures 13 and 14 show the memory and connections for
our experiments. We demonstrate that both the number of active
TCP connections and server memory consumption rise as the TCP
timeout increases. We show that with 20 s TCP timeout suggested
in prior work [33], our experimental server requires about 15GB
RAM for TCP (Figure 13a) and 18GB RAM for TLS (Figure 14a).
The server requires 180 k connections for TCP, one-third are ac-
tive (Figure 13c) and the rest in TIME_WAIT state (Figure 13b),
while TLS has similar connection requirement (Figure 14c and Fig-
ure 14b). These values are well within current commodity server
hardware, although much larger than today’s UDP-dominated DNS
(2 GB RAM, blue bottom line in Figure 13a). DNS operators with old
hardware will need to upgrade server when preparing for DNS over
TCP and TLS. Resource usage reaches steady state in about 5 min-
utes and is thereafter stable (approximately flat lines in Figure 13
and Figure 14).

Most of the extra memory cost is used for TCP connections. We
observe that server memory requirement increases significantly
(6× more) when shifting from UDP to TCP, while only increases
moderately (30% more) from TCP to TLS. Prior work [33] models
server memorywithout testing in a real-world implementation. One
possible way to reduce the memory requirement is using smaller
TCP read and write buffer in kernel, although future experiments
are needed.

We expected memory to vary depending on querier RTT, but the
memory does not change regardless of the distance from client to
server (figure is omitted due to length limit). This resource stability
is because memory is dominated by connection timeout duration,
which at 20 s is 200× longer than RTTs.

5.2.3 CPU Usage. LDplayer enables the first experimental evalua-
tion of CPU consumption of TCP and TLS; prior work was unable
to model CPU costs.

Figure 11 shows our evaluation of server CPU usage for DNS
over TCP and TLS. We observe that overall the CPU usage is about
5% (median) over 48 cores for all queries over TCP and 9% to 10%
(median) for all queries over TLS, again manageable on current
commodity server hardware. Results are stable regardless of the
connection timeout window (the flat lines). We observe a slightly
higher (2% more at median) CPU usage for TLS at 5ms timeout,
likely due to more frequent connection timeout and setup.

In contrast, replaying original trace (3% TCP queries) requires
median 10% CPU, surprisingly higher (5% more at median) than
CPU usage of all queries over TCP. We are investigating the reason
for this surprisingly lower CPU usage in TCP. One possible is that
operating system and network stack might be highly optimized for
TCP. Another possible is the TCP optimizations built in network
interface card (Intel X710 40G in our experimental server), such
as TCP offload engine and TCP segmentation offload. These TCP
optimizations may help to reduce the server CPU usage, although
further investigation is needed.

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

4GB

8GB

12GB

16GB

20GB

24GB

28GB

0 10 20 30 40 50 60

m
e
m

o
ry

 c
o
n
s
u
m

p
tio

n

time (minute)

5s

10s

15s

20s

25s

30s
35s

40s

dashed lines: All
solid lines: NSDall queries over TCP

original trace (3% queries over TCP) with 20s timeout

(a) Memory consumption.

0

20k

40k

60k

80k

100k

120k

0 10 20 30 40 50 60

n
u
m

b
e
r

o
f
e
st

a
b
lis

h
e
d
 T

C
P

 c
o
n
n
e
c
tio

n
s

time (minute)

5s

10s

15s

20s

25s

30s

35s
40s

all queries over TCP

original trace (3% over TCP) with 20s timeout

(b) Established TCP connections.

0

50k

100k

150k

200k

0 10 20 30 40 50 60n
u
m

b
e
r

o
f
T

C
P

 c
o
n
n
e
c
tio

n
s

in
 T

IM
E

_
W

A
IT

time (minute)

5s

10s

15s
20s
25s
30s
35s
40s

all queries over TCP

original trace (3% over TCP) with 20s timeout

(c) TCP connections in TIME_WAIT state.

Figure 13: Evaluation of server memory and connections re-
quirement with different TCP timeouts and minimal RTT
(<1ms). Trace: B-Root-17a. Protocol: TCP

Our experiments confirm that connection tracking and cryptog-
raphy processing in TLS does not increase CPU usage noticeably
over UDP. CPU usage for all queries over TCP is even lower than
UDP with possible TCP optimizations in hardware. These results
are only possible in experiment, since there are no good models of
CPU consumption for DNS.

5.2.4 Query Latency. LDplayer experiments also allow us a first
look at the distribution of query latency. Prior modeling provided

4GB

8GB

12GB

16GB

20GB

24GB

28GB

0 10 20 30 40 50 60

m
e
m

o
ry

 c
o
n
s
u
m

p
tio

n

time (minute)

5s

10s

15s

20s

25s

30s

35s

40s

dashed lines: All
solid lines: NSDall queries over TLS

original trace (3% queries over TCP) with 20s timeout

(a) Memory consumption.

0

20k

40k

60k

80k

100k

120k

0 10 20 30 40 50 60

n
u
m

b
e
r

o
f
e
st

a
b
lis

h
e
d
 T

C
P

 c
o
n
n
e
c
tio

n
s

time (minute)

5s

10s

15s

20s

25s

30s

35s
40s

all queries over TLS

original trace (3% over TCP) with 20s timeout

(b) Established TCP connections.

0

50k

100k

150k

200k

0 10 20 30 40 50 60n
u
m

b
e
r

o
f
T

C
P

 c
o
n
n
e
c
tio

n
s

in
 T

IM
E

_
W

A
IT

time (minute)

5s

10s

15s
20s
25s
30s
35s
40s

all queries over TLS

original trace (3% over TCP) with 20s timeout

(c) TCP connections in TIME_WAIT state.

Figure 14: Evaluation of server memory and connections re-
quirement with different TCP timeouts and minimal RTT
(<1ms). Trace: B-Root-17a. Protocol: TLS

only expected values (the mean), but experimentation allows un-
derstanding of tail performance.

Figure 15a shows query latency for DNS over TCP and TLS
with different RTTs. Query latency is asymmetric: the 5th and 25th
percentiles are similar, but performance in the tail varies greatly
(compare the 75%ile and 95%ile). This skew is captured in experi-
mentation, but not in modeling.

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180

q
u

e
ry

 l
a
te

n
cy

 (
m

ill
is

e
c
o

n
d

s
)

RTT (milliseconds)

o
ri
g

in
a

l
tr

a
c
e

 (
3

%
 T

C
P

)
a

ll
q

u
e

ri
e
s
 o

ve
r

T
C

P
a

ll
q

u
e

ri
e
s
 o

ve
r

T
L
S

(a) Query latency over all clients. Figure shows medians, quartiles, 5th and
95th percentiles

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180

q
u
e
ry

 la
te

n
cy

 (
m

ill
is

e
c
o
n
d
s)

RTT (milliseconds)

o
ri
g
in

a
l t

ra
c
e
 (

3
%

 T
C

P
)

a
ll

q
u
e
ri
e
s
 o

ve
r

T
C

P
a
ll

q
u
e
ri
e
s
 o

ve
r

T
L
S

(b) Query latency over non-busy clients that send less than 250 queries in
the trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1x106

C
D

F

number of queries from each IP (log scale)

(c) Cumulative distribution of query load per client in the original trace

Figure 15: Evaluation of query latency over all clients and
non-busy clients respectively, with 20-second TCP timeout
and different RTTs. Trace: B-Root-17b.

We demonstrate TCP connection reuse helps to reduce query
latency: median query latency in TCP is similar to UDP at small
20ms RTT and is only about 15% slower than UDP at large 160ms
RTT (Figure 15a), while if all connections were fresh, models predict
100% overhead for TCP due to the extra RTT in connection setup.

The small median latency differences between UDP and TCP/TLS
are weighted by queries from a few busy clients where a connection

may always get reused. In B-Root-17b trace (Table 1), we find that
a tiny set (1%) of the clients contribute three quarters of the total
query load, while most (81%) of the clients are inactive (<10 queries
over the 20-minute trace (Figure 15c)), similar to the observations
in prior work [9].

We next evaluate the query latency for the group of non-busy
clients which send less than 250 queries in B-Root-17b trace. Fig-
ure 15b shows the statistics of query latency from a subset of 708 k
non-busy clients, covering 98% clients and 14% query load. The me-
dian query latency in TCP among those non-busy clients is about 2
RTT, much larger than the 1-RTT median latency in UDP, indicat-
ing that many queries are sent through fresh connections, while
connection reuse is still effective (25th percentile is 1 RTT for TCP).

Experimentation also helps reveal differences due to RTT. As
the RTT increases, the median query latency of TLS increases non-
linearly from 2 to 4 RTTs (red dashed line in Figure 15b), while not
captured in models.

We observe that some queries have large multi-time RTT latency
(75th percentile and up in Figure 15b), which is is unexpected since
a single TCP query would only require 2 RTTs and a TLS query
needs 4 RTTs. By examining packet traces, we see many server
reply TCP segments (possibly DNS messages) reassembled into a
large TCP message. Resembling may cause the large delay in DNS
over TCP, because waiting for all the packets. Another optimization
is to disable the Nagle algorithm on the server.

By contrast, latency with UDP is consistent regardless of RTT,
because UDP has no algorithms like Nagle trying to reduce packet
counts.

Evaluating these real-world performance interactions between
the DNS client and server was only possible in full trace-driven
experiments, since there no generic model for TCP and TLS query
processing in DNS servers. Our experiments shows the effect of
TCP connection reuse although the query latency of TCP and TLS is
still larger than UDP, providing much greater confidence to testbed
experiments with synthetic traffic and modeling [33]. Our use of
real traces and server software also showed an unexpected increase
in median query latency of TLS for large client RTTs.

6 RELATEDWORK
DNS Replay Systems: Several other systems that replay DNS
traffic and simulate parts of DNS hierarchy. Wessels et al. simulate
the root, TLD and SLD servers with three computers to study the
caching effects of different resolvers on the query load of upper
hierarchy [31]. Yu et al. build a similar system with multiple TLD
servers hosting one TLD (.com), to understand authority servers
selections of different resolvers [32] . Ager et al. set up a testbed
simulating DNS hierarchy to study DNSSEC overhead [3]. DNS-
OARC develops a DNS traffic replay tool [11, 12] to test server
load.

Our system differs from these in scale, speed, and flexibility.
Each of these systems host each zone on a different name server,
so they cannot scale to thousands of zones. They also often make
modifications to the zones (dropping and modifying NS records), to
make the routing work and obtain the correct answers from servers.
We instead use proxies to allow all zones to be provided from one
name server, and to provide a query sequence that matches real

.com

DNS Experimentation at Scale IMC ’18, October 31-November 2, 2018, Boston, MA, USA

DNS. In addition, these systems do not carefully track timing. (For
example, the Ager et al. system uses batch-mode dig and so can
handle only light loads.) Our client system replays DNS queries
with correct timing, reproducing the traffic pattern accurately. Fi-
nally, prior systems are designed to recreate today’s protocol; we
instead include the ability to project a current trace through future
protocol options, such as replaying UDP queries as TCP with preset
connection timeout.

TrafficGenerators: Several traffic generators can create DNS [14,
22]. Like these tools, our query replay system can also generate a
stream of DNS packets with specified parameters. However, these
tools are not specific for DNS; they provide only simple replay
or generation. Our system focuses on DNS protocol and provides
a generic DNS experimentation platform. Our system can replay
queries with accurate timing, and mutate queries to test what-if
scenarios.

Network Replay Tools: Several tools replay general network
traces [16, 21, 29]. While these tools can replay DNS trace with
timing given in the trace, our replay-client system simulates the
DNS query semantics, allowing us to replay real-world queries
with different variations (such as if all used TCP). Rather than just
replaying each packet in the trace mechanically, our system allows
exploration of future DNS design options. Other tools replay HTTP
traces with accurate timing [2, 10, 23]. Our system is specifically
designed for DNS, and takes steps to emulate the DNS hierarchy
on a single instance of DNS server.

DNS Studies: There are studies that replay DNS queries to eval-
uate the performance of DNS applications [7, 19, 26]. Our replay-
client system supports analysis like these studies, but it provides a
more flexible platform that also enables new studies at high query
rates with protocol variants. The focus of our system is accurate
trace replay, while DNS Flagger can replay trace at faster rates [7].
We would like to compare the accuracy of our approach to these
prior systems, but they do not have published performance results
on timing accuracy. Other studies improve web performance by
using customized DNS proxy [25]. We also use proxies in our replay
system, but our focus is to provide a query sequence that matches
real DNS.

To the best of our knowledge, ours is the only experimental DNS
system that can replay DNS trace with original zone files, uses
distributed clients to handle large query rate and simulate different
query sources, and lets us vary protocols.

7 CONCLUSION
This paper has described LDplayer, a system that supports trace-
drivenDNS experiments. This replay system is efficient (87k queries/s
per core) and able to reproduce precise query timing, interarrivals,
and rates (§4). We have used it to replay full B-Root traces, and are
currently evaluating replays of recursive DNS traces with multiple
levels of the DNS hierarchy.

We have used our system to evaluate alternative DNS scenar-
ios, such as where all queries use DNSSEC, or all queries use TCP.
Our system is the first to make at-scale experiments of these types
possible, and experiments with TCP confirm that memory and la-
tency is good (as predicted by modeling), but highlight performance
variation in latency due to implementation details not captured in

models. In addition, experimental confirmation of complex systems
factors such as memory usage are critical to gain confidence that
an all-TCP DNS is feasible on current server-class hardware.

Acknowledgments: Research by Liang Zhu and John Heidemann in
this paper is partially sponsored by the Department of Homeland Secu-
rity (DHS) Science and Technology Directorate, HSARPA, Cyber Security
Division, BAA 11-01-RIKA and Air Force Research Laboratory, Informa-
tion Directorate under agreement number FA8750-12-2-0344, and contract
number D08PC75599. The U.S. Government is authorized to make reprints
for Governmental purposes notwithstanding any copyright.The views con-
tained herein are those of the authors and do not necessarily represent those
of DHS or the U.S. Government.

REFERENCES
[1] [n. d.]. Split-horizon DNS. https://en.wikipedia.org/wiki/Split-horizon_DNS.
[2] [n. d.]. Telerik Fiddler. http://www.telerik.com/fiddler/.
[3] B. Ager, H. Dreger, and A. Feldmann. 2006. Predicting the DNSSEC overhead

using DNS traces. In Annual Conference on Information Sciences and Systems.
1484–1489. https://doi.org/10.1109/CISS.2006.286699

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005. DNS Security
Introduction and Requirements. RFC 4033 (Proposed Standard). http://www.ietf.
org/rfc/rfc4033.txt Updated by RFCs 6014, 6840.

[5] Terry Benzel. 2011. The Science of Cyber Security Experimentation: The
DETER Project. In Proceedings of the 27th Annual Computer Security Appli-
cations Conference (ACSAC ’11). ACM, New York, NY, USA, 137–148. https:
//doi.org/10.1145/2076732.2076752

[6] S. Bortzmeyer. 2015. DNS privacy considerations. RFC 7626. https://doi.org/10.
17487/RFC7626

[7] J. Brustoloni, N. Farnan, R. Villamarin-Salomon, and D. Kyle. 2009. Efficient
Detection of Bots in Subscribers’ Computers. In 2009 IEEE International Conference
on Communications. 1–6. https://doi.org/10.1109/ICC.2009.5198970

[8] B. Carpenter. 2000. Internet Transparency. RFC 2775 (Proposed Standard).
http://www.ietf.org/rfc/rfc2775.txt

[9] Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. 2008.
A Day at the Root of the Internet. SIGCOMM Comput. Commun. Rev. 38, 5 (Sept.
2008), 41–46. https://doi.org/10.1145/1452335.1452341

[10] chromium. [n. d.]. web-page-replay. https://github.com/chromium/
web-page-replay/.

[11] DNS-OARC. [n. d.]. dnsjit. https://github.com/DNS-OARC/dnsjit.
[12] DNS-OARC. [n. d.]. drool. https://github.com/DNS-OARC/drool.
[13] DNS-OARC. 2017. Day In The Life of the Internet (DITL) 2017. https://www.

dns-oarc.net/oarc/data/ditl/2017. https://www.dns-oarc.net/oarc/data/ditl/2017
[14] Herbert Haas. [n. d.]. Mausezahn. http://netsniff-ng.org/.
[15] John Heidemann. 1997. Performance Interactions Between P-HTTP and TCP

Implementations. SIGCOMM Comput. Commun. Rev. 27, 2 (April 1997), 65–73.
https://doi.org/10.1145/263876.263886

[16] Addy Yeow Chin Heng. [n. d.]. Bit-Twist. http://bittwist.sourceforge.net/.
[17] P. Hoffman and J. Schlyter. 2012. The DNS-Based Authentication of Named

Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698
(Proposed Standard). http://www.ietf.org/rfc/rfc6698.txt Updated by RFCs 7218,
7671.

[18] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.
Specification for DNS over Transport Layer Security (TLS). RFC 7858 (Proposed
Standard). http://www.ietf.org/rfc/rfc7858.txt

[19] Ahmed Khurshid, Firat Kiyak, and Matthew Caesar. 2011. Improving Robustness
of DNS to Software Vulnerabilities. In Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC ’11). ACM, New York, NY, USA, 177–186.
https://doi.org/10.1145/2076732.2076758

[20] C. Lewis and M. Sergeant. 2012. Overview of Best Email DNS-Based List (DNSBL)
Operational Practices. RFC 6471 (Informational). http://www.ietf.org/rfc/rfc6471.
txt

[21] Andreas Loef and Yuwei Wang. [n. d.]. libtrace tool: tracereplay. http://www.
wand.net.nz/trac/libtrace/wiki/TraceReplay.

[22] Jeff Nathan. [n. d.]. nemesis. http://nemesis.sourceforge.net/.
[23] Ravi Netravali, Anirudh Sivaraman, Keith Winstein, Somak Das, Ameesh Goyal,

and Hari Balakrishnan. 2014. Mahimahi: A Lightweight Toolkit for Reproducible
Web Measurement. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 129–130.
https://doi.org/10.1145/2740070.2631455

[24] Eric Osterweil, Michael Ryan, Dan Massey, and Lixia Zhang. 2008. Quantifying
the Operational Status of the DNSSEC Deployment. In Proceedings of the 8th
ACM SIGCOMM Conference on Internet Measurement (IMC ’08). ACM, New York,
NY, USA, 231–242. https://doi.org/10.1145/1452520.1452548

https://en.wikipedia.org/wiki/Split-horizon_DNS
http://www.telerik.com/fiddler/
https://doi.org/10.1109/CISS.2006.286699
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
https://doi.org/10.1145/2076732.2076752
https://doi.org/10.1145/2076732.2076752
https://doi.org/10.17487/RFC7626
https://doi.org/10.17487/RFC7626
https://doi.org/10.1109/ICC.2009.5198970
http://www.ietf.org/rfc/rfc2775.txt
https://doi.org/10.1145/1452335.1452341
https://github.com/chromium/web-page-replay/
https://github.com/chromium/web-page-replay/
https://github.com/DNS-OARC/dnsjit
https://github.com/DNS-OARC/drool
https://www.dns-oarc.net/oarc/data/ditl/2017
https://www.dns-oarc.net/oarc/data/ditl/2017
https://www.dns-oarc.net/oarc/data/ditl/2017
http://netsniff-ng.org/
https://doi.org/10.1145/263876.263886
http://bittwist.sourceforge.net/
http://www.ietf.org/rfc/rfc6698.txt
http://www.ietf.org/rfc/rfc7858.txt
https://doi.org/10.1145/2076732.2076758
http://www.ietf.org/rfc/rfc6471.txt
http://www.ietf.org/rfc/rfc6471.txt
http://www.wand.net.nz/trac/libtrace/wiki/TraceReplay
http://www.wand.net.nz/trac/libtrace/wiki/TraceReplay
http://nemesis.sourceforge.net/
https://doi.org/10.1145/2740070.2631455
https://doi.org/10.1145/1452520.1452548

IMC ’18, October 31-November 2, 2018, Boston, MA, USA L. Zhu et al.

[25] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Bustamante. 2012.
Content Delivery and the Natural Evolution of DNS: Remote Dns Trends, Per-
formance Issues and Alternative Solutions. In Proceedings of the 2012 Inter-
net Measurement Conference (IMC ’12). ACM, New York, NY, USA, 523–536.
https://doi.org/10.1145/2398776.2398831

[26] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe Wang. 2004. CoDNS:
Improving DNS Performance and Reliability via Cooperative Lookups. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04). USENIX Association, Berkeley, CA, USA,
14–14. http://dl.acm.org/citation.cfm?id=1251254.1251268

[27] Sinodun. [n. d.]. DNS over TLS patch for nsd-4.1.0. https://portal.sinodun.
com/stash/projects/TDNS/repos/dns-over-tls_patches/browse/nsd-4.1.0_
dns-over-tls.patch.

[28] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabián E. Bustamante.
2006. Drafting Behind Akamai (Travelocity-based Detouring). In Proceedings of
the 2006 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’06). ACM, New York, NY, USA, 435–446.
https://doi.org/10.1145/1159913.1159962

[29] Aaron Turner and Fred Klassen. [n. d.]. Tcpreplay. http://tcpreplay.appneta.com/.
[30] Duane Wessels. 2016. Increasing the Zone Signing Key Size for the Root Zone.

In RIPE 72. https://ripe72.ripe.net/presentations/168-verisign-zsk-change.pdf
[31] D. Wessels, M. Fomenkov, N. Brownlee, and k. claffy. 2004. Measurements

and Laboratory Simulations of the Upper DNS Hierarchy. In Passive and Active
Network Measurement Workshop (PAM). PAM 2004, Antibes Juan-les-Pins, France,
147–157.

[32] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority Server
Selection in DNS Caching Resolvers. SIGCOMM Comput. Commun. Rev. 42, 2
(March 2012), 80–86. https://doi.org/10.1145/2185376.2185387

[33] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and N. Somaiya. 2015.
Connection-Oriented DNS to Improve Privacy and Security. In 2015 IEEE Sympo-
sium on Security and Privacy. 171–186. https://doi.org/10.1109/SP.2015.18

[34] Liang Zhu, Duane Wessels, Allison Mankin, and John Heidemann. 2015. Mea-
suring DANE TLSA Deployment. In Proceedings of the 7th IEEE International
Workshop on Traffic Monitoring and Analaysis. Springer, Barcelona, Spain, 219–
232. https://doi.org/10.1007/978-3-319-17172-2_15

https://doi.org/10.1145/2398776.2398831
http://dl.acm.org/citation.cfm?id=1251254.1251268
https://portal.sinodun.com/stash/projects/TDNS/repos/dns-over-tls_patches/browse/nsd-4.1.0_dns-over-tls.patch
https://portal.sinodun.com/stash/projects/TDNS/repos/dns-over-tls_patches/browse/nsd-4.1.0_dns-over-tls.patch
https://portal.sinodun.com/stash/projects/TDNS/repos/dns-over-tls_patches/browse/nsd-4.1.0_dns-over-tls.patch
https://doi.org/10.1145/1159913.1159962
http://tcpreplay.appneta.com/
https://ripe72.ripe.net/presentations/168-verisign-zsk-change.pdf
https://doi.org/10.1145/2185376.2185387
https://doi.org/10.1109/SP.2015.18
https://doi.org/10.1007/978-3-319-17172-2_15

	Abstract
	1 Introduction
	2 LDplayer: DNS trace player
	2.1 Design Requirements
	2.2 Architecture Overview
	2.3 Synthesize Zones to Provide Responses
	2.4 Emulate DNS Hierarchy Efficiently
	2.5 Mutate Trace For Various Experiments
	2.6 Distribute Queries For Accurate Replay

	3 Implementation
	4 Evaluation
	4.1 Experiment Setup and Traces
	4.2 Accuracy of Replay Timing and Rate
	4.3 Single-Host Throughput

	5 Applications
	5.1 Impact of Increased DNSSEC Queries
	5.2 Performance of DNS over TCP and TLS at a Root Server

	6 Related Work
	7 Conclusion
	References

