
T-DNS: Connection-Oriented DNS
to Improve Privacy and Security

USC/ISI Technical Report ISI-TR-688, Feb. 2014 ∗

Liang Zhu1 Zi Hu1 John Heidemann1

Duane Wessels2 Allison Mankin2 Nikita Somaiya1

1: University of Southern California
2: Verisign

ABSTRACT
This paper explores connection-oriented DNS to improve
DNS security and privacy. DNS is the canonical example of
a connectionless, single packet, request/response protocol,
with UDP as its dominant transport. Yet DNS today is chal-
lenged by eavesdropping that compromises privacy, source-
address spoofing that results in denial-of-service (DoS) at-
tacks on the server and third parties, injection attacks that ex-
ploit fragmentation, and size limitations that constrain pol-
icy and operational choices. We propose t-DNS to address
these problems: it combines TCP to smoothly support large
payloads and mitigate spoofing and amplification for DoS.
T-DNS uses transport-layer security (TLS) to provide pri-
vacy from users to their DNS resolvers and optionally to
authoritative servers. Traditional wisdom is that connection
setup will balloon latency for clients and overwhelm servers.
These are myths—our model of end-to-end latency shows
TLS to the recursive resolver is only about 21% slower,
with UDP to the authoritative server. End-to-end latency is
90% slower with TLS to recursive and TCP to authoritative.
Experiments behind these models show that after connection
establishment, TCP and TLS latency is equivalent to UDP.
Using diverse trace data we show that frequent connection
reuse is possible (60–95% for stub and recursive resolvers,
although half that for authoritative servers). With conser-
vative timeouts (20 s at authoritative servers and 60 s else-
where) we show that server memory requirements match
current hardware: a large recursive resolver may have 25k
active connections consuming about 9 GB of RAM. We iden-
tify the key design and implementation decisions needed to
minimize overhead—query pipelining, out-of-order responses,
TLS connection resumption, and plausible timeouts.

1. INTRODUCTION
∗Reseach by Liang Zhu, Zi Hu, and John Heidemann in this
paper is partially sponsored by the Department of Home-
land Security (DHS) Science and Technology Directorate,
HSARPA, Cyber Security Division, BAA 11-01-RIKA and
Air Force Research Laboratory, Information Directorate
under agreement number FA8750-12-2-0344, and contract
number D08PC75599. The U.S. Government is authorized
to make reprints for Governmental purposes notwithstand-
ing any copyright.The views contained herein are those of
the authors and do not necessarily represent those of DHS
or the U.S. Government.

The Domain Name System (DNS) is the canonical
example of a simple request-response protocol. A client
uses DNS to translate a domain name like www.iana.

org into the IP address of the computer that will pro-
vide service. A single web page may require resolving
several domain names, so latency of each query should
be minimal [9]. Historically, requests and responses are
small (less than 512 B), so a single-packet request is an-
swered with a single-packet reply over UDP.

DNS standards have always required TCP support
also, but it has been seen as a poor relation—necessary
for large exchanges between servers, but otherwise dis-
couraged. TCP implies longer latency and more re-
sources than UDP, since connection setup requires ad-
ditional packet exchanges, and tracking connections re-
quires memory and CPU at the server. Why create a
connection if a two-packet exchange is sufficient?

This paper makes two contributions: first, we show
that connectionless DNS faces fundamental weaknesses
today stemming from the extension of DNS to many
applications in a less safe Internet. We support this
claim by summarizing the range of problems that stem
from DNS’ focus on single-packet, connectionless com-
munication: weak privacy, security concerns, and opera-
tional constraints. While individual problems are small
and can often be worked around, taken together they
prompt revisiting assumptions.

These challenges prompt us to reconsider connection-
oriented DNS: we propose t-DNS, where DNS requests
should use TCP by default (not as last resort), and
that DNS requests from end-users should use Transport-
Layer Security (TLS, [12]). Our second contribution is
to show that end-to-end latency of t-DNS is only mod-
erately more than connectionless. Our models show la-
tency is only 21% greater with TLS to the recursive
resolver and UDP beyond, and 90% slower with TLS
to the recursive resolver and TCP beyond. With mod-
erate timeout durations (20 s at authoritative servers
and 60 s elsewhere), connection reuse at servers is high
(85%–98%), amortizing setup cost and leaving memory
requirements are well within what is typical for servers
today. Connection reuse rates for clients is lower (60–
80% at the edge, but 20–40% at the root), but caching
at recursive resolvers minimizes the end-to-end latency.

1

www.iana.org
www.iana.org

The connection rates within even modest server-class
hardware today. With conservative timeouts (20 s at au-
thoritative servers and 60 s elsewhere), a large recursive
resolver may have 25k active connections using about
9 GB of RAM, and double at an authoritative server.

Why: Connection-based communication is essential
to support encryption of DNS queries for privacy1. In-
creasing use of wireless networks, and growth of third-
party DNS (such as OpenDNS since 2006 [37] and Google
Public DNS since December 2009 [39]) means that end-
user requests are not to a server on the local network
but may cross several networks and be subject to eaves-
dropping. Prior work has suggested a from scratch de-
sign [36, 11]; we instead an existing standards to DNS
to provide confidentiality, and demonstrate only moder-
ate performance costs. As a side-effect, it also protects
DNS queries from tampering over parts of their path.

TCP’s connection establishment by itself reduces vul-
nerabilities due to denial-of-service (DoS) attacks by
forcing both sides of the conversation to prove their
existence and limit the effects of source-address spoof-
ing. TCP supports well-established techniques to toler-
ate DoS attacks [16]. In DNS amplification attacks an
anonymous attacker gets 20:1 increase in traffic to its
victim with spoofed UDP traffic to a DNS server, a crit-
ical component of recent multi-Gb/s DoS attacks [4].
TCP-based-DNS cannot be used for amplification at-
tacks,

DNSSEC and other recent uses of DNS greatly in-
crease response sizes. Considerations of large DNS re-
sponses over UDP reveal a number of limitations. Orig-
inally DNS limited UDP messages to 512 B [34], a lim-
itation later relaxed by the Extension Mechanisms for
DNS (EDNS0) [10]. Today most servers advertise sup-
port for 4096 B messages, but messages near or above
Ethernet’s 1500 MTU size are likely to see IP-level frag-
mentation, presenting several dangers: (1) fragments
may be dropped by the network due to packet loss, in-
creasing the chance that the entire message can not be
delivered; (2) a noticeable fraction of middleboxes (fire-
walls) block all IP fragments; and (3) fragmentation
is one component in a class of recently discovered at-
tacks [21]. In addition, the transition from UDP to
TCP for large (truncated) replies incurs a UDP round-
trip (in addition to TCP connection establishment) be-
fore a full reply can be received. Even with years of
support for large replies, operations still strive to live
within original constraints [49].

How: On the surface, connection-oriented DNS seems
untenable, since TCP doubles the round-trips and re-
quires state on servers. If TCP is bad, TLS’ heavier
weight handshake is impossible.

Fortunately, we show that connection persistence, re-

1 While DTLS provides TLS over UDP, it must implement
ordered, reliable delivery for the TLS handshake [41].

using the same connection for multiple requests, amor-
tizes connection setup. We identify the key design and
implementation decisions needed to minimize overhead—
query pipelining, out-of-order responses, TLS connec-
tion resumption, shifting state to clients when possi-
ble. Combined with conservative timeouts, these bal-
ance end-to-end latency and server load.

Our key results are to show that t-DNS is feasible and
that it provides a clean solution to a broad range of DNS
problems across privacy, security, and operations. We
support these claims with end-to-end models driven by
analysis of day-long traces from three different types of
servers and experimental evaluation of prototypes.

2. PROBLEM STATEMENT
We next briefly review today’s DNS architecture, the

specific problems we aim to solve, and our threat model.

2.1 Background
DNS is a protocol for resolving domain names to dif-

ferent resource records in a globally distributed database.
A client makes a query to a server that provides a re-
sponse. Domain names are hierarchical with multiple
components. The database has a common root and is
distributed across millions of servers. Replies return
resource records of a few dozen specific types.

Originally DNS was designed to map domain names
to IP addresses. Its success as a lightweight, well under-
stand key-to-value mapping protocol caused its role to
quickly grow to other Internet-related applications, in-
cluding host integrity identification for anti-spam mea-
sures and and replica selection in content-delivery net-
works [48]. Recently DNS’s trust framework (DNSSEC)
has been used to provide an alternative to traditional
PKI/Certificate Authorities for e-mail [2] and TLS [22].

Protocols: The DNS has always run over both con-
nectionless UDP and connection-oriented TCP trans-
port protocols. UDP has always been preferred, with
TCP used primarily for zone transfers (expected to be
kilobytes or more in size). DNS truncates replies larger
than advertised limits, prompting clients to retry with
TCP [47]. UDP can support large packets with IP frag-
mentation, at the cost of new problems discussed below.

The integrity of DNS replies is protected by DNSSEC [5].
DNSSEC provides cryptographic integrity checking of
positive and negative DNS replies. Since July 2010 the
root zone has been signed, providing a root of trust
through signed sub-domains. DNSSEC provides data
integrity, but makes no attempt to protect privacy.

As a Distributed System: DNS resolvers have
both client and server components. Resolvers typically
take three roles: stub, recursive, authoritative (Fig-
ure 1). Stub resolvers (or “stubs”) are clients that talk
only to recursive resolvers, which handle name reso-
lution. Stubs are typically use one or a few recur-
sive resolvers, with configuration automated through

2

����������

����������

����������

����������

����������

���������

��������

���������

��������

���������

��������

���������

��������

	�
����
	
���

��������

	�
����
	
���

��������

	�
����
	
���

��������

	�
����
	
���

��������

�
��

���������

Figure 1: Stub, recursive, and authoritative resolvers.

DHCP [14] or by hand.
Recursive resolvers operate both as servers for stubs

and clients to authoritative servers. Recursive resolvers
work on behalf of stubs to iterate through each of the
several components in a typical domain name, contact-
ing one or more authoritative servers as necessary to
provide a final answer to the stub. Much of the tree is
stable and some is frequently used, so recursive resolvers
cache results, reusing them over their time-to-live.
Authoritative servers provide answers for specific parts

of the namespace (a zone). Replication between au-
thoritative peers is supported through notifications and
periodic serial number inquiries.

This three-level description of DNS is sufficient to dis-
cuss protocol performance for this paper. We omit both
design and implementation details that are not relevant
to our discussion. The complexity of implementations
varies greatly (see [43], for example); we describe some
of one operator’s implementation in § 5.1.

2.2 Problem: the Limitations of Single-Packet
Exchange

Our goal is to remove the limitations caused by op-
timizing DNS around a single-packet exchange as sum-
marized in Table 1. We consider transition in § 4.4.

2.2.1 Avoiding Arbitrary Limits to Response Size
Limitation in payload size is an increasing problem as

DNS evolves to improve security. Without EDNS [10],
UDP DNS messages are limited to 512 B. With EDNS,
clients and servers may increase this limit (4096 B is
typical), although this can lead to fragmentation which
raises its own problems [29]. Due to problematic mid-
dleboxes, clients must be prepared to fall back to 512 B,
or resend the query by TCP. Evidence shows that about
of 2.6% web users are behind resolvers that fail to retry
queries over TCP [24]. Such work-arounds are often
fragile and the complexities of incomplete replies can
be a source of bugs and security problems [21], includ-
ing partial compromise of DNSSEC.

While 512 B has been adequate for many years, the
recent deployment of DNSSEC makes it insufficient for
almost any complete query. DNSSEC’s cryptographic
signatures add hundreds of bytes to a reply that before
might only have been several dozen.

Figure 2 shows the size of responses from popular au-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

response size (bytes)

size of response for
each component

size of maximum response
for all components

5
1
2
 b

y
te

s

A root

J root

Figure 2: Response sizes from name servers of the Alexa
top-1000 websites (as of 2014-01-24), and UDP response
sizes out of two root servers. (Data: 2013-10-01)

thoritative name servers and from two root DNS servers.
This table shows resolution of full domain names for the
Alexa top-1000 websites. We show the distribution of
responses for each component as well as the maximum
seen over all components of each domain name. From
this graph we see that responses today are fairly large:
nearly 75% of top 1000 result in a response that is at
least 738 bytes (the DNSSEC-signed reply for .com).
Resolvers today require EDNS support for large replies.

Resolution of these domain names typically requires
600–800 B replies. Many Internet paths support 1500 B
packets without fragmentation, making these sizes a
good match for today’s network. This result is not sur-
prising: of course DNS use is tailored to match current
constraints. However, transient conditions stress these
limits. One example is the two methods of DNSSEC
key rollover. With pre-published keys, DNSKEY re-
sponses grow, or double-signatures all signed responses
are temporarily inflated. Both stretch reply sizes.

More importantly, size constraints can distort current
policy decisions. For example, proposals to decentral-
ize signing authority for the DNS root may replies that
require TCP for root resolution [45]. For some, this re-
quirement for TCP is seen as a significant technical bar-
rier forcing use of shorter keys or different algorithms.

Finally, size can also preempt future DNS applica-
tions. Recent work has explored the use of DNS for
managing trust relationships, so one might ask how
DNS would be used if these constraints to response size
were removed. We examine the PGP web of trust [38]
as a trust ecosystem that is unconstrained by packet
sizes. Rather than a hierarchy, key authentication PGP
builds a mesh of signatures, so 20% of keys show 10
or more signatures, and well connected keys are essen-
tial to connecting the graph. PGP public keys with 4
signatures exceeds 4kB, and about 40% of keys have 4

3

.com

problem current DNS with t-DNS (why)
packet size limitations guarantee: 512 B, typical: 1500 B no limit (from TCP bytestream)
source spoofing spoof-detection depends on source ISP most cost pushed back to spoofer (SYN cookies in TCP)
privacy (stub-to-recursive) vulnerable to eavesdropping privacy (from TLS encryption)

(recursive-to-authoritative) aggregation at recursive aggregation, or optional TLS

Table 1: Benefits of t-DNS.

signatures or more [38]. If DNS either grows to con-
sider non-hierarchical trust, or if it is simply used to
store such information, larger replies will be important.

2.2.2 Need for Sender Validation
Uncertainty about the source of senders is a problem

that affects both DNS servers and others on the Inter-
net. Today source IP addresses are easy to spoof, al-
lowing botnets to mount denial-of-service (DoS) attacks
on DNS servers directly [25, 44], and to leverage DNS
servers as part of an attack on a third party through a
DNS Amplification attack [46, 30].

Work-arounds to DNS’ role in DoS attacks exist. Many
anti-spoofing mechanisms have been proposed, and DNS
servers should rate-limit replies. T-DNS would greatly
reduce the vulnerability of DNS to DoS and to par-
ticipate in DoS. Well established techniques protect
DNS servers from TCP-based DoS attacks [16], and
TCP’s connection establishment precludes source ad-
dress spoofing, eliminating amplification attacks.

We do not have data to quantify the number of DNS
amplification attacks. However, measurement of the
feasibility of source-IP spoofing show ability to spoof in
the number of networks and autonomous systems has
been fairly steady over the last six years [7]. Recent re-
ports of DoS attacks show that DNS amplification is a
serious problem, particularly in the largest attacks [4].
T-DNS suggests a long-term path to reduce this risk.

2.2.3 Need for DNS Privacy
Lack of protection for query privacy is the final prob-

lem. Traditionally, privacy of Internet traffic has not
been seen as critical. However, recent confirmation of
widespread government eavesdropping [20] has identi-
fied the need to improve DNS privacy [8]. In addition,
recent trends in DNS deployment make DNS query pri-
vacy of increasing concern. First, end-user queries are
increasingly exposed to possible eavesdropping, from
use of third-party DNS services such as OpenDNS and
Google Public DNS, and through use of public Inter-
net services such as WiFi hotspots and Internet cafes.
Second, presence of widespread eavesdropping and mis-
direction is now well documented, by governments for
espionage [20], censorship [3], or criminal gain [32]. Fi-
nally, ISPs have recognized the opportunity to monetize
DNS typos, redirecting non-existing domain responses
(NXDOMAIN hijacking), widespread since 2009 (for ex-
ample [33]). For both corporate or national observation

or interference, we suggest that one must follow the poli-
cies of one’s provider and obey the laws of one’s country,
but we see value in making those policies explicit by re-
quiring interaction with the configured recursive name
server.

Although DNS privacy issues are growing, most DNS
security concerns have focused on the integrity of DNS
replies, out of fear of reply modification. The integrity
of DNS replies has been largely solved by DNSSEC
which provides end-to-end integrity checks.

2.3 Threat Model
To understand security aspects of these problems we

next define our threat model. For fragmentation attacks
due to limited packet size, assume an off-path adversary
that can inject packets with spoofed source addresses,
following Herzberg and Schulman [21].

For DoS attacks exploiting spoofed source addresses,
our adversary can send to the 30M currently existing
open, recursive resolvers that lack ingress filtering [31].

For query eavesdropping and attacks on privacy, our
threat model is an adversary with network access on
the network path between the user and the recursive
resolver. We assume aggregation at the recursive re-
solver is sufficient anonymization, although one could
add TLS between the recursive and authoritative name
server as well.

We assume traffic from the recursive resolver to au-
thoritative name server is safe, and that the operator
of that resolver is trusted. Although outside the scope
of this paper, this trust requirement is relaxed by al-
ternating requests across several DNS providers, imple-
menting a mix network shuffling requests from multiple
users, or padding the request stream with fake queries.

We focus only on DNS privacy and assume integrity is
provided by DNSSEC. However, we do secure stub-to-
recursive resolver and protect the integrity non-DNSSEC
zones between the user and the recursive resolver (al-
though not beyond it). We also consider only privacy of
DNS : an eavesdropper on the local network can observe
other traffic, including IP addresses of websites.

3. RELATED WORK
Our work draws on prior work in transport protocols

and more recent work in DNS security and privacy.

3.1 DNS Security Extensions (DNSSEC)
The Domain Name System Security Extensions use

4

public-key cryptography to ensure the integrity and ori-
gin of DNS replies [5]. Since the 2010 signature of the
root zone it has provided a root of trust for DNS.

Although DNSSEC protects the integrity and ori-
gin of requests, it does not address query privacy. We
propose TLS to support this privacy, complementing
DNSSEC. Although not our primary goal, TLS also
protects against some attacks such as those that exploit
fragmentation; we discuss these below.

3.2 DNSCrypt and DNSCurve
OpenDNS has proposed use elliptic-curve cryptogra-

phy to encrypt and authenticate DNS packets between
stub and recursive resolvers (DNSCrypt [36]) and recur-
sive resolvers and authoritative servers (DNSCurve [11]).

These protocols address the same goals as we pro-
pose for TLS. While ECC is established cryptogra-
phy, above this they use a new approach to securing
the channel and a new DNS message format. We in-
stead reuse existing DNS message format and standard
TLS and TCP. Their custom approach allows tight in-
tegration with DNS, but the implementation does not
benefit from existing TLS libraries which benefit from
wide study, experience, and optimization (for example,
proposals for TLS resumption). TLS’s suite of crypto-
graphic protocols also aids future evolution.

In addition, the suggested DNSCrypt deployment is a
proxy resolver on the end-user’s computer. We too use
proxies for testing, but long-term deployment needs to
be integrated with existing systems. We suggest that
integration of existing standards, with careful imple-
mentation choices, will provide faster deployment.

3.3 Unbound and TLS
We are not the first to suggest combining DNS and

TLS. Recent review of DNS privacy proposed TLS [8],
and NLnet Lab’s Unbound DNS server has supported
TLS since December 2001. Unbound currently supports
DNS-over-TLS only on a separate port. To avoid this
requirement we have prototyped our proposed in-band
negotiation in unbound.

3.4 Other Standards: DTLS and TLS over SCTP
Although UDP, TCP and TLS are widely used, addi-

tional transport protocols exist to provide different se-
mantics. Datagram Transport Layer Security (DTLS)
implements TLS over UDP [41]. It meets our privacy
requirements and avoids full TCP connection establish-
ment. DTLS must still implement some support for reli-
ability and ordering during its TLS handshake. In addi-
tion, DTLS requires application-level support for query
reliability and retransmission. Current DNS implemen-
tations support these for small requests, but would likely
require additional work to provide reliability for large
non-TCP replies.

TLS over SCTP has been standardized [27]. SCTP

is an attractive alternative to TCP because TCP’s or-
dering guarantees are not desired for DNS.

The very wide use of TCP and TLS-over-TCP pro-
vides a wealth of time-tested implementations and li-
braries, while DTLS and SCTP implementations have
seen less exercise. We show that TCP and TLS-over-
TCP can provide near-UDP performance with connec-
tion caching. However, these protocols deserve evalua-
tion and comparison to TCP and TLS and we hope to
explore that as future work.

3.5 Specific Attacks on DNS
As a critical protocol, DNS has been subject to tar-

geted attacks. These attacks often exploit currently
open DNS recursive name servers, and so they would
be prevented with use of TLS’ secure client-to-server
channel. Currently researchers employ more specific
countermeasures.

The Kaminsky Vulnerability exploited a small iden-
tification space to allow injection of content into DNS
caches [28]. It is unknown if this vulnerability is ex-
ploited, but it resulted in rapid deployment of coun-
termeasures (use of the port space to increase effective
ID size) in most DNS software. Another class of in-
jection attacks “race” alternative replies ahead of the
legitimate reply, sometimes for government-supported
censorship [3]. Hold-On is a proposed countermeasure
for this specific attack [15]. Fragmentation attacks ex-
ploit the IP-level fragmentation of large DNS queries to
replace portions of DNS replies [21]; they also propose
specific measures to prevent or recover from fragmenta-
tion.

Although specific countermeasures exist for each of
these attacks, responding to new attacks is costly and
slow. Connection-level encryption like TLS prevents
a broad class of attacks that manipulate replies. Al-
though TLS is not foolproof (for example, it can be
vulnerable to person-in-the-middle attacks), it signifi-
cantly raises the bar for these attacks.

3.6 Applying DNS for Trust: DANE/TLSA
Recently standardized DNS-based Authentication of

Named Entities for TLS (DANE/TLSA) brings DNS to
serve as a root of trust for TLS certificates [22]. Cer-
tificate authentication is necessary to avoid person-in-
the-middle attacks. DANE/TLSA builds the DNSSEC-
enforced trust in the DNS hierarchy to provide an al-
ternative authentication method to current certificate
authorities (CAs). It is therefore unrelated to our goal
of improving the privacy of DNS communication.

There may seem to be a circular dependency between
DANE/TLSA and DNS-over-TLS if DNS uses TLS for
privacy, and DANE/ TLSA depends on DNS to authen-
ticate certificates. This dependency can be broken with
an external CA (many of which already exist). Alterna-
tively, one may use DANE/TLSA without the privacy

5

to establish an initial TLS certificate for a third-party
DNS provider (like Google or OpenDNS), if disclosure
of this use is acceptable.

4. DESIGN AND IMPLEMENTATION
OF T-DNS

We next describe our design for in-band TLS negoti-
ation. We also identify key implementation details that
can produce large performance differences (§ 6).

4.1 DNS over TCP
Design of DNS support for TCP was in the original

specification [34], and details were clarified in subse-
quent RFCs [6]. However, implementations of DNS-
over-TCP have been underdeveloped because it is not
seen today as the common case. We consider three im-
plementation decisions, two required to to make TCP
performance approach UDP.

Pipelining is the ability to send several queries be-
fore the responses arrive. It is essential to avoid round-
trip delays that would occur with the stop-and-wait
alternative. Batches of queries are common: recur-
sive resolvers with many clients have many outstand-
ing requests to popular authoritative servers like .com.
End-users often have multiple names to resolve, since
most web pages draw resources from multiple domain
names. We examined 40M web pages (about 1.4%)
from CommonCrawl-002 [19] to confirm that 62% of
web pages have 4 or more unique domain names, and
32% have 10 or more.

Support for receiving pipelined requests over TCP
exists in bind and unbound, but neither sends outgoing
TCP unless forced to by indication of reply truncation
in UDP. Our custom stub resolver supports pipelining.

Out-of-order processing (OOOP) at recursive re-
solvers is another important optimization to avoid head-
of-line blocking. OOOP is defined and explicitly al-
lowed by RFC-5966 [6]. Without OOOP, queries to
even a small percentage of distant servers with stall a
strictly-ordered queue, unnecessarily delaying all subse-
quent queries. Without connections, concurrent UDP
queries are naturally independent and all major DNS
servers process them concurrently.

We know of no DNS server today that supports out-
of-order processing of TCP queries; BIND and unbound
instead resolve each query for a TCP connection be-
fore considering the next. We have implemented out-
of-order processing in our DNS proxy, and have a pro-
totype implementations in unbound.

Finally, when possible, we wish to shift state from
server to client Per-client state can be a significant
cost for servers with many connections, as observed for
TIME-WAIT state due to closed TCP connections as
previously observed in web servers [18]. Support for
shifting TCP state with DNS is currently being stan-
dardized [52].

The importance of these implementation details are
not unique to DNS; they have been recognized before
in HTTP [35, 18]. HTTP supports only pipelining, but
both pipelining and OOOP are possible in DNS.

4.2 DNS over TLS
TLS support in DNS builds on TCP, adding new de-

cisions about grounding trust, TLS negotiation, and im-
plementation choices.

4.2.1 Grounding Trust
TLS depends on public-key cryptography to estab-

lish session keys to secure each connection and prevent
person-in-the middle attacks [12]. DNS-over-TLS can
use existing methods of certificate validation: one may
have a list of known good Certificate Authorities (CAs),
obtained out-of-band (such as from the vendor of ones
operating system). Existing public-key infrastructures
(PKI) distribute certificate authentication through a
hierarchy of signatures, allowing one to begin with a
shorter list of CAs. Alternatively, protocols such as
DANE/TLSA leverage DNSSEC to build a chain of
trust through the DNS [22]. Any of these methods
are suitable for our use, although care must be taken
with recursion if trust for DNS resolution depends on
DNSSEC.

4.2.2 Upwards TLS Negotiation
T-DNS requires a method to negotiate the use of

TLS. Early users of TLS depended on separate ports
to indicate its use (for example, HTTP and HTTPS
with TCP ports 80 and 443), but IETF encourages new
users of TLS to negotiate its use inside current pro-
tocols, and this is the preferred mechanism for most
other protocols (IMAP, POP3, SMTP, FTP, XMPP,
LDAP, and NNTP, although all also have have IANA-
recognized but not RFC-standardized ports to indicate
TLS). We therefore propose a new EDNS0 Extension
Mechanism [10] to negotiate the use of TLS. We sum-
marize our current proposal below; a formal specifica-
tion is also available [23].

To negotiate TLS, we reserve a new “TLS OK” (TO)
bit in the extended flags of the EDNS0 OPT record.
A client requests TLS by setting this bit and placing a
DNS query. A server that supports TLS responds with
the same bit set, then both client and server transition
to a TLS handshake [12]. The TLS handshake generates
a unique session key; following the handshake the con-
nection is protected from eavesdropping. Normal DNS
queries then continue on this connection.

The DNS query made during TLS negotiation is spe-
cial and proceeds in the clear. This query should not
disclose information. We recommend a distinguished
query for name “STARTTLS”, type TXT, class CH,
analogous to current support queries [51].

Once TLS is negotiated, we expect the client and

6

.com

server to maintain an active, TLS-enabled TCP con-
nection. This connection can be used for subsequent
DNS requests, avoiding the significant expense of TLS
setup. We expect connections to be closed after they
are idle for some timeout period as proposed in § 5.

4.2.3 Implementation Optimizations
Two implementation options affect performance. First,

TLS supports connection resumption, where the server
passes all the state needed to re-create a TLS connection
to the client [42]. This mechanism allows a busy server
to discard state, yet an intermittently active client can
regenerate that state more quickly than a full, fresh
TLS negotiation. A full TLS handshake requires three
round-trip exchanges (one for TCP and two for TLS);
TLS resumption reduces this to two RTTs, as well as re-
ducing server computation by reusing the master secret
and ciphersuite. Experimentally we see that resumption
takes less than 1 ms to resume a session § 6.1).
TLS close notify allows one party to request the

other to close the connection. We use this mechanism
to shift TCP TIME-WAIT management to the client.

4.3 Implementation Status
We have several implementations of these protocols.

Our primary client implementation is a custom client
resolver that we use for performance testing. This client
implements all protocol options discussed here and uses
either the OpenSSL or GnuTLS libraries. We also have
some functionality in a version of dig.

We have three server implementations. Our primary
implementation is in a new DNS proxy server. It pro-
vides a minimally invasive approach that allows us to
test any recursive resolver. It receives queries with all
of the options described here, then sends them to the
real recursive resolver via UDP. When the proxy and
real resolver are on the same machine or same LAN we
can employ unfragmented 9 kB UDP packets, avoid size
limitations and exploiting existing OOOP for UDP. It
uses either the OpenSSL or GnuTLS libraries.

In the long run we expect to integrate our methods
into existing resolvers. We have implemented subsets of
our approach in BIND-9.9.3 and unbound-1.4.21.

4.4 Gradual Deployment
Given the huge deployed base of DNS clients and

servers, any modifications to DNS will take effect grad-
ually. In general, our changes are backwards compat-
ible with current DNS deployments. TCP is already
supported for DNS, so clients and servers can upgrade
independently. Our performance improvements require
server-side changes and can be deployed as servers op-
erators see greater TCP use. Privacy requires TLS sup-
port at both client and server, but clients can fall back
on non-TLS DNS. Only connection establishment’s role
in DoS mitigation requires widespread deployment to be

dataset date client IPs records
DNSChanger 2011-11-15

all-to-one 15k 19M
all-to-all 692k 964M

DITL/Level 3 2012-04-18
cns4.lax1 282k 781M
cns[1-4].lax1 655k 2412M

DITL/B-root 2013-05-29 3118k 1182M

Table 2: Datasets used to evaluate connection reuse and
concurrent connections. Each is 24 hours long.

effective. However, incremental deployment can pro-
ceed at servers most vulnerable to use in DNS ampli-
fication and could be accompanied by rate-limiting on
UDP queries, providing some reduction in harm.

5. CONNECTION REUSE AND SERVER-SIDE
RESOURCE CONSUMPTION

The purpose of DNS is get a reply for a query. UDP
is well matched to this goal, while t-DNS adds the delay
of connection setup before a query can be made. When
we examine latency in § 6, we will show that connec-
tion reuse is essential to amortizing the cost of setup
over several queries. This need brings a fundamental
trade-off: clients prefer long-lived connections, because
for them resources are plentiful and latency is precious.
For servers, however, resources are shared across many
clients, and so even modest state per idle connection
can add up, encouraging short-lived connections.

In this section we examine this trade-off using traces
from from different real-world DNS deployments. We
simulate different connection time-out periods to un-
derstand connection hits and misses. A connection hit
is when a new query B arrives within the time-out win-
dow of a prior query A. In this case, B will be sent
on the same connection as A without suffering connec-
tion setup. (A connection hit should not be confused
with a DNS cache hit, which is when the answer for a
query can be found in the cache of a stub or recursive
resolver.) A connection miss is a query that finds no ac-
tive connection, either because it is the first to a server,
or a prior connection timed out and was torn down.

We evaluate connection reuse with two metrics: the
connection hit fraction indicates how many queries are
connection hits and not misses. We also consider the
number of concurrent connections as the total number
of clients with non-timed-out connections to a server
at any time. We relate this count to memory usage at
the server, and plot worst-case number of concurrent
connections for every second.

5.1 Datasets
We use three different datasets (Table 2) for our trace

analysis to stand in for stub clients, recursive resolvers,
and authoritative servers.

7

DNSChanger: DNS changer was malware that redi-
rected end-users’ DNS resolvers to a third party so they
could inject advertising. This dataset was collected by
the working group that, under government authority,
operated replacement name servers while owners of in-
fected computers were informed [32]. It contains the
timing of all queries made from end-user IP addresses
that were compromised by this malware as captured
at recursive resolvers run by the working group. We
believe each IP address in this dataset represents an in-
dividual computer, and so we use it to represent stub-
to-recursive resolver traffic. We use the traffic to the
busiest server (all-to-one) in § 5.3 and the traffic from
all the sources to all the servers (all-to-all) in § 6.4.

DITL/Level 3: Level 3 operates DNS service for their
customers, and also as an open public resolver [40].
Their infrastructure supports 9 sites, each with typi-
cally 4 front-end recursive resolvers, each load-balanced
across typically 8 back-end resolvers. We confirmed this
architecture with the operators. They have provided a
48-hour dataset from this infrastructure to DNS-OARC [13].

We examined two subsets of this data. We first se-
lected a random site (lax1, although we confirmed other
sites give similar results). Most client IP addresses
(89%) access only one site, so by examining this site we
see all traffic for most clients in the dataset cns[1-4]

.lax1. Many clients (75%) only access one front-end at
a site, so we also consider smaller subset of this data,
selecting the busiest front-end at this site (cns4.lax1).
Since it is representative, we use this still large subset
(2.4B records) to speed processing. We use these Level 3
traces to represent a recursive resolver.

DITL/B-Root: This dataset was taken at the B-
Root nameserver as part of DITL-2013 and is provided
through DNS-OARC. We selected B-Root because at
the time of this collection it employed only a single site,
so this dataset captures all client traffic to this root
instance. (Although as one of 13 instances it is only a
fraction of total root DNS traffic). We use this traffic
to represent an authoritative server.

Generality: These datasets cover each class of DNS
resolver (Figure 1) and so cover very different behav-
ior seen at different parts of the DNS system. However,
each dataset is unique. We do not claim that any repre-
sents all servers of that class, and we are aware of quirks
in each dataset. Nevertheless, we believe the diversity
here is broad enough to evaluate our design.

5.2 Trace Replay and Parameterization
To evaluate connection hits for different timeout win-

dows we replay these datasets through a simple simu-
lator. The simulator implements the DNS server cache
and an adjustable timeout window; from that we find
out the number of concurrent connections and the frac-
tion of connection hits. We study both short (10 through
60 s) and longer (120 to 480 s) window sizes. We ignore

results for the first 10 minutes of trace replay to avoid
transient effects due to a cold cache.

To convert numbers of concurrent connections to hard-
ware constraints, we estimate both memory and CPU
consumption per connection. We determine both exper-
imentally. We measure the memory consumption for
idle TCP/TCP connection by opening 10k simultane-
ous connections from a custom client to unbound, then
measure peak heap size with valgrind. Measured on
a computer running 64-bit Fedora 18 Linux OS, we see
each TCP connection consume 260 kB, and each TLS
connection 264 kB. To this, we estimate kernel buffers
at about 100 kB, so we approximate the per-connection
memory as 360 kB.

5.3 Concurrent Connections and Hit Fraction
Trace replay of the three datasets provides several ob-

servations. First consider how usage changes over the
course of the day, finding that variation in the number
of active connections is surprisingly small. When we
measure counts over one-second intervals, connections
vary by ±10% for Level 3, with slightly more variation
for DNSChanger and less for B-Root (graphs omitted
due to space). Connection hit fractions are even more
stable, varying by a few percent. This stability prompts
us to summarize overall usage with medians and quar-
tiles in Figure 3.

Next, we see that the three servers have very differ-
ent absolute numbers of active connections consistent
with their client populations (Figure 3a DNSChanger:
for this dataset, a few thousand uncorrected users; Fig-
ure 3b: Level 3: many thousand customers per site and
B-Root: potentially any global recursive resolver).

For all of our traces, Figure 3c shows connection hit
fractions converge on an asymptote, showing diminish-
ing benefits beyond a timeout windows of 100 s or so.
The asymptote varies by server: with a 120 s window,
DNSChanger is at 97-98%, Level 3 at 98-99%, and B-
Root at 94-96%. These fractions show that connection
caching will be very successful. We know that much
network traffic is bursty and self-similar, so it is not
surprising that caching is so effective.

Finally, when one compares the authoritative server
(B-Root) with the recursive resolvers, we see the ulti-
mate hit fraction is considerably smaller, consistently
several percent lower for a given timeout. We believe
the lower hit fraction for B-Root is due to its diverse
client population and the small set of queries for which
it is authoritative. We expect this result will hold for
servers that provide static DNS zones. (DNS servers
providing dynamic content, such as blackhole lists are
likely to show different trends.)

Recommendations: We propose timeouts of 60 s
for recursive resolvers and 20 s for authoritative servers,
informed by the data with a conservative approach to
server load. We recommend that clients and servers not

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

nu
m

be
r o

f c
on

cu
rr

en
t c

on
ne

ct
io

ns

m
em

or
y

co
ns

um
pt

io
n

(G
B

)

time-out window (seconds)

DNSChanger/all-to-one

(a) Median and quartiles of num-
bers concurrent connections. Dataset:
DNSChanger

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

nu
m

be
r o

f c
on

cu
rr

en
t c

on
ne

ct
io

ns

m
em

or
y

co
ns

um
pt

io
n

(G
B

)

time-out window (seconds)

Level 3, cns4.lax1

DITL/B Root

(b) Median and quartiles of num-
bers concurrent connections. Datasets:
Level 3/cns4.lax1 and B-Root

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nn

ec
tio

n
hi

t f
ra

ct
io

ns

time-out window (seconds)

DNSChanger/all-to-all
DITL/B-Root

Level 3, cns4.lax1

(c) Median connection hit fractions,
taken server-side. (Quartiles omitted
since always less than 1%.)

Figure 3: Evaluation of concurrent connections and connection hit fractions.

preemptively close connections, but instead maintain
them for as long as they have resources. Of course,
timeouts are ultimately at the discretion of the DNS
operator and providers can experiment independently.

Using our estimated memory consumption, we can
translate these recommendations into memory require-
ments. With 60 s for recursive resolvers and 20 s for
authoritative servers, each DNSChanger server would
need 0.7 GB RAM, Level 3’s 9 GB, and B-Root 18 GB,
based on the 75%iles in Figure 3. (These values are in
addition to memory required to cache actual DNS data.)
Although large, these values are well within what is typ-
ical for current server hardware.

An alternative for servers with limited memory is to
set a small timeout and depend on TCP Fast Open and
TLS Resume to quickly restart terminated connections.

6. CLIENT-SIDE LATENCY
For clients, the primary cost of t-DNS is the potential

for additional latency due to connection setup.
Using experiments, we next examine stub-to-recursive

and recursive-to-authoritative latency with TCP and
TLS, highlighting the effects of pipelining and out-of-
order processing. Three parameters affect these results:
the computation time needed to execute a query, the
client-server latency, and the workload. We first study
computation time and show that, even with TLS, la-
tency is much more significant than computation.

For latency, we consider both stub-to-recursive queries,
where latency is usually constant and small, and recursive-
to-authoritative queries, where latency is often large
and variable. We highlight the effects of latency with
two different workloads: start and wait (s+w) queries,
where queries are send sequentially; each query is sent
after the reply for the last is received, and pipelining,
where the client sends queries as fast as possible.

Finally, we combine these experimental results with
estimates of client hit rate to model the end-to-end ef-
fects on observed client latency.

6.1 Computation Costs

step OpenSSL GnuTLS
TCP handshake processing 0.15 ms
TCP packet handling 0.12 ms
TLS connection establishment 25.8 ms 13.1 ms

key exchange 13.0 ms —
CA validation 12.8 ms —

TLS connection resumption — 0.7 ms
DNS resolution (from [50]) 0.1–0.5 ms

Table 3: Computational costs of connection setup and
packet processing.

We next experimentally evaluate CPU consumption
of TLS. The client and the server are 4-core x86-64
CPUs, running Fedora 19 with the Linux-3.12.8 kernel,
connected by 1Gb/s Ethernet LAN. We test our own
client and server for GnuTLS; for OpenSSL we use the
Apache-2.4.6 webserver.

Because each event is short we estimate times by re-
peating each action many times and dividing. (We re-
port the median of 10 trials.) We measure 10k TCP
handshakes, each by setting up and closing a connec-
tion. We estimate TCP packet processing by sending
10k full-size packets over an existing connection. We
measure TLS connection establishment from 1000 con-
nections, and isolate key exchange from certificate vali-
dation by repeating the experiment with CA validation
disabled. Our GnuTLS server uses only anonymous au-
thentication so there we cannot evaluate CA validation.
We measure GnuTLS connection resumption with 1000
trials. OpenSSL does not support TLS resumption.

Our results are in Table 3. TCP setup and DNS res-
olution are small (less than 1 ms). TLS setup is much
more expensive (13 or 26 ms), with both key exchange
and CA validation equally costly. TLS resumption,
however, is only a few times more expensive than TCP.

Although TLS is computationally expensive, TLS com-
putation will not generally limit DNS. Most DNS servers
are bandwidth limited with only light CPU loads. We

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

RTT between stub and recursive resolvers (ms)

ISP
Google Level3

OpenDNS

Figure 4: Measured RTTs from stub and recursive re-
solver from 400 PlanetLab nodes, for the ISP-provided
resolver and three third-party resolvers.

expect server memory will be a larger limit than CPU.
For clients, we show (§ 6.5) that latency dominates per-
formance, not computation.

6.2 Latency: Stub-to-Recursive Resolver
We first estimate what latencies to expect for stub-

to-recursive, then compare protocol alternatives.

6.2.1 Typical Stub-to-Recursive RTTs
Stubs typically talk to a few (one to three) recursive

resolvers. Recursive resolvers are usually provided as a
service by ones ISP, and so they are typically nearby
in the network. Alternatively, some users use third-
party resolvers. These may have a higher round-trip-
time (RTT) from the stub, but provide a very large
cache and user population.

We latency between stub and recursive resolvers across
400 PlanetLab nodes to their local (ISP-provided) re-
solver, and also to three third-party DNS services (Google,
OpenDNS, and Level 3). For each case, we issue the
same query 7 times, each after the previous reply, and
report the median result. We expect the first query to
place the result in the cache, and report the median to
suppress noise from interfering traffic.

Figure 4 shows the CDF of these latency measure-
ments. This data confirms that the ISP-provided recur-
sive resolver almost always has very low latency (80%
less than 3 ms). Only a few stragglers have moderate
latency (5% above 20 ms). For third-party resolvers, we
see more variation, but most have fairly low latency due
to distributed infrastructure. Google Public DNS pro-
vides median latency of 23 ms and the others only some-
what more distant. The tail of higher latency here af-
fects more stubs, with 10–25% showing 50 ms or higher.

PlanetLab nodes are primarily hosted at academic
sites and so likely have better-than-typical network con-
nectivity. These observed third-party DNS latency may

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
D

F

per query time (ms)

protocol sending processing

UDP 1-q in-order;
parallel OOOP;

TCP 1-q in-order;
m-q, s+w OOOP;
m-q, pipeline OOOP;

TLS 1-q in-order;
m-q, s+w OOOP;
m-q, pipeline OOOP

(TCP: m-q, pipeline, sequential)

Figure 5: Median query response times for 140 different
names with different protocol configurations with 1 ms
client-to-server latency.

be lower than typical. However, with this sample of
more than 300 organizations, this data provide some
diversity in geography and configuration of local DNS.

6.2.2 TCP connection setup: stub-to-recursive
We next evaluate the costs of TCP connection setup

for stub-to-recursive queries. Since the RTT between
stub and recursive is usually small, we expect over-
all query latency to be dominated by the recursive-
to-authoritative resolution; the (stub-to-recursive) TCP
handshake should add minimal overhead.

We simulate a typical stub and recursive resolver by
operating both on the same network (RTT is about
1 ms). We use our custom DNS client and the BIND-
9.9.3 server with our modifications. The stub then makes
140 unique queries, randomly drawn from the Alexa
Top-1000 sites [1]. We repeat these requests with DNS
over different protocols: UDP, TCP and TLS. For each
protocol, we evaluate different sending policies on the
client side: UDP: single-query (1-q); parallel. TCP:
single-query per TCP (1-q);multiple-query per TCP with
start and wait (s+w); multiple-query per TCP con-
nection (m-q) with pipelining (pipeline); and also dif-
ferent processing policies on the server side: in-order:
queries are processed sequentially. Out-of-order pro-
cessing (OOOP): queries are processed concurrently.

We report median latency across 10 trials of this ex-
periment to avoid bias due to outliers and cross-traffic.
We restart the recursive resolver before each run so all
occur with a cold cache.

Figure 5 shows the results of these experiments. We
first consider UDP compared to TCP : the left set of lines
with triangles, corresponding with sequential queries
(s+w) made with UDP, single-query and multi-query
TCP. The lines are nearly on top of each other, demon-
strating that with small client-server RTTs, TCP setup

10

time is irrelevant ; it is dwarfed by overall cost of resolv-
ing a new name.

To consider pipelining, sending multiple queries be-
fore the replies return. In Figure 5 the lines marked
with squares indicate pipelining. First, we see that per-
query resolution times are actually higher with pipelin-
ing than when done sequentially. This delay occurs be-
cause all 140 queries arrive at the server at nearly the
same time, so they queue behind each other as they are
processed by our 4-core computer. Second, we see that
the delay with multi-query TCP (light blue, dashed line
with filled circles at the bottom) is horrible, increasing
linearly. The reason for this delay is that while both
BIND-9 and Unbound can process multiple queries from
UDP concurrently(OOOP), they process queries from
the same TCP connection sequentially(in-order), which
causes head of line blocking: later queries get blocked by
previous ones. While correct, current resolvers are not
optimized for high-performance TCP query handling.

DNS specifications require support for out-of-order
queries and responses, even though current implemen-
tations do not process queries this way (see prior dis-
cussion in § 4.1). Here we approximate native resolvers
support for out-of-order TCP queries by placing a proxy
resolver on the same computer as the real resolver. The
proxy receives queries from the stub over TCP, then
forwards them to recursive resolver over UDP. This ap-
proach leverages current native out-of-order UDP pro-
cessing and incurs no fragmentation since UDP is sent
inside the same machine (over the loopback interface).
The proxy then returns replies over TCP to the stub,
but in whatever order the recursive resolver generates
results. The light blue, dashed line with filled squares
in Figure 5 shows the effects of this improvement: TCP
and UDP performance are again equivalent. In fact, for
about half of the cases multi-query TCP shows equiva-
lent performance to UDP (within measurement noise).

6.2.3 TLS privacy: stub-to-recursive
Connection establishment for TLS is much more ex-

pensive than TCP, requiring additional round trips and
computation to establish a session key. We repeat our
experiments from the prior section, this time comparing
UDP with TLS. For consistency with our out-of-order
experiments, we place our proxy resolver on the same
machine recursive resolver.

The dotted lines in Figure 5 show TLS performance.
Although the TLS handshake adds 3 RTTs to the query,
this cost is negligible relative to the cost of the recursive-
to-authoritative query (ten vs. hundreds of ms). With
sequential queries, TLS performance is almost the same
as UDP and TCP (lines with triangles in the left overlap
with each other). With both pipelining and out-of-order
processing, TLS performance is only slightly slower than
UDP (the light green, dotted squares are only 10–50 ms
behind the red, solid squares).

6.2.4 Overall Stub-to-Recursive
In summary, this section shows that when the stub

and recursive resolvers are close to each other the extra
packet exchanges add very small latency to the query,
and even the TLS connection setup cost is dwarfed by
the costs involved in making distributed DNS queries to
authoritative name servers. Second, minimizing connec-
tion setup requires reusing connections, and we showed
that head-of-line blocking in the TCP processing of cur-
rent resolver implementations adds significant latency.
Current resolvers have most of the machinery to fix this
problem, and our experiments show out-of-order pro-
cessing allows DNS performance with both TCP and
TLS to be very close to that of simple UDP. In short,
the cost of connections between nearby stub and recur-
sive resolvers is in the noise.

6.3 Latency: Recursive Resolver to Authori-
tative Server

We next turn to latency we expect between the re-
cursive resolvers and authoritative name servers. While
stubs query only a few, usually nearby recursive re-
solvers, authoritative servers are distributed around the
globe and so the recursive/authoritative round-trip times
are both larger and more diverse.

6.3.1 Typical Recursive-to-Authoritative RTTs
To estimate typical recursive-to-authoritative RTTs,

we again turn to the Alexa top 1000 sites. We query
each from four locations: our institution in Los Ange-
les (isi.edu), and PlanetLab sites in China (www.pku.
edu.cn), UK (www.cam.ac.uk), and Australia (www.
monash.edu.au). These sites show the effects of geo-
graphic diversity; we do not claim they are representa-
tive.

For each site we query each domain name. We use
dig +trace to resolve each domain component from
the root to the edge, including DNSSEC where possi-
ble. We report the median of 10 repetitions of the query
time of the last step to estimate of best-case recursive-
to-authoritative RTTs. This method represents perfor-
mance as if higher layers were already cached by the re-
cursive resolver, and median provides some robustness
to competing traffic and random selection from multiple
name servers.

Figure 6 shows the results of this experiment. We
see that the U.S. and UK sites are close to many au-
thoritative servers, with median RTT of 45 ms, but it
also has a fairly long tail, with 35% more than 100 ms.
The Chinese site has generally longer RTTs, with only
30% responding in 100 ms. While many large sites op-
erate Asian mirrors, many don’t. The Australian site
shows a sharp shift with about 20% of sites less than
30 ms, while the remaining 150 ms or longer. This jump
is due to the long propagation latency for services with-
out sites physically in Australia.

11

isi.edu
www.pku.edu.cn
www.pku.edu.cn
www.cam.ac.uk
www.monash.edu.au
www.monash.edu.au

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

C
D

F

RTT between recursive and authoritative (ms)

Western US

China
Australia

UK

Figure 6: RTT between recursive resolver and authori-
tative name server

Overall, the important difference compared to stub-
to-recursive RTTs is that while a few authoritative servers
are close (RTT < 30 ms), many will be much further.

6.3.2 TCP connection setup: recursive-to-authoritative
With noticeably larger RTTs to authoritative servers

compared to the stub/recursive RTTs, we expect to see
a much higher overhead for connection negotiation with
TCP and TLS.

To evaluate query latencies with larger RTTs between
client and server, we set up a DNS authoritative server
for an experimental domain and queried it from a client
35 ms (8 router hops on a symmetric path) away. We
operate a BIND-9.9.3 server as the authoritative name
server at one site. We then query this name server di-
rectly, 140 times, while varying the protocol in use. As
before, we repeat this experiment 10 times and report
the median observed value. Standard deviations are
very small and so are not shown.

We first compare UDP (UDP:1-q), single-query per
TCP (TCP: 1-q), and multiple-query per TCP (TCP:
m-q), the lines in Figure 7 marked with open triangles.
We see that all queries made by single-query-per-TCP
with in-order processing (TCP:1-q,in-order) take about
70 ms, exactly two RTTs, due to TCP’s connection es-
tablishment followed by the request and response. Both
UDP and multiple-query-per-TCP with start and wait
(TCP:m-q,s+w) take 35 ms, one RTT per query. This
difference shows the importance in reusing TCP con-
nections for multiple queries to avoid connection setup
latency, highlighting the need for good connection hit
ratios (§ 5).

We next consider pipelining multiple queries over a
single TCP connection and supporting out-of-order pro-
cessing (TCP:m-q, pipelining, OOOP). Basic UDP al-
ready supports both of these. To match our prior ex-
periment we implement these options for TCP with a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

per query time (ms)

udp:1-q,
in-order;

udp:parallel,
OOOP;

TCP:m-q,
s+w,
OOOP;

TLS:m-q,
s+w,
OOOP

TCP:1-q,
in-order

TLS:1-q,
in-order

TCP:m-q,
pipelining,
OOOP

TLS:m-q,
pipelining,
OOOP

TCP:m-q,
pipelining,
OOOP
no proxy

Figure 7: Median per-query response times for 140 re-
peated queries to the same name with a 35 ms RTT
between client and server with different protocol con-
figurations with 1 ms client-to-server latency.

proxy server running on the same computer as the au-
thoritative server, and we plot these results as the line
with filled squares in Figure 7. In this case, 10% of
the queries complete with performance similar to UDP,
while the other queries take slightly longer, in steps.
We examined packet traces and verified each step is a
single TCP packet with 12 or 13 responses. Thus the
delay is due to synchronization overhead as all 140 re-
sponses, processed in parallel, are merged into a sin-
gle TCP connection in our proxy. When we remove
our proxy and use unbound directly (the black dotted
“TCP:m-q, pipelining, OOOP, no proxy” line) perfor-
mance is limited by the 8-packet TCP initial window.
For this special case of more than 100 queries arriv-
ing simultaneously, a single connection can add some
latency.

6.3.3 TLS privacy: recursive-to-authoritative
Next we consider the addition of TLS. Use of TLS

from recursive-to-authoritative is a policy decision; one
might consider aggregation at the recursive resolver to
provide sufficient anonymity, or one might employ TLS
on both hops as a policy matter (for example, as with
HTTPS Everywhere [17]). Here we consider the effects
on latency of full use of TLS.

In Figure 7, the green, dotted lines show TLS us-
age. Without pipelining (the line on the right: TLS:1-
q, in-order), TLS always takes 175 ms (5 round trips).
This corresponds to one round trip to setup TCP, one
to negotiate DNS-over-TLS (§ 4.2.2), two for the TLS
handshake, and then the final private query.

However, once established, the TLS connection can
easily be reused. If we reuse the existing TLS con-
nection and send queries without pipelining (TLS:m-q,
s+w, OOOP), TLS performance is identical to UDP

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nn

ec
tio

n
hi

t f
ra

ct
io

ns

time-out window (seconds)

DNSChanger/all-to-all

cns [1-4]
.lax1

DITL BRoot

Figure 8: Median client-side connection hit fractions
with quartiles.

with a mean latency of one RTT, except for the first
TLS query. This result shows that the expense of en-
cryption is tiny compared to moderate round-trip de-
lays, when we have an established connection.

Finally, when we add out-of-order processing, we see
similar stair-stepped behavior as with TCP, again due
to synchronization over a single connection and our un-
optimized proxy. The light-green, dotted line with filled
squares shows connection reuse, pipelining, and out-of-
order processing; with this combination TLS perfor-
mance again roughly equivalent to TCP, within mea-
surement noise.

6.3.4 Overall Recursive-to-Authoritative
This section showed that round-trip latency domi-

nates performance for queries from recursive resolvers
to authoritative name servers. Latency is incurred in
connection setup, with TCP adding one additional RTT
and TLS three more. This latency is very expensive, but
it can be largely eliminated by connection reuse.

6.4 Client connection hit fractions
Our experiments that show query latency evaluate

the benefits of connection reuse, but they don’t ad-
dress how likely a client will find an existing connection.
In § 5.3 we reported connection hit fractions from the
server’s perspective and found them very high because
frequent queriers often have open connections. We next
see that client connection hit fractions are lower, be-
cause there are many clients that query infrequently.

To evaluate client connection hit fractions, we replay
our three DNS traces through the simulator from § 5.3,
but we evaluate connection hit fractions per client. Fig-
ure 8 shows these results, with medians (lines) and quar-
tiles (bars, with slight offset to avoid overlap).

Among the three traces, the DNSChanger hit fraction
exceeds Level 3, which exceeds B-Root, because servers
further up the hierarchy see less traffic from any given
client. We see that the top quartile of clients have high
connection hit fractions for all traces (at 60 s: 95% for
DNSChanger, 91% for Level 3, and 67% for B-Root).

The connection hit rate for the median client is still
fairly high for DNSChanger and Level 3 (89% and 72%),
but quite low for B-Root (28%). Since most B-Root
content can be cached, many clients only contact it in-
frequently and so fail to find an open connection.

These results suggest that some clients (those mak-
ing few requests) will need to restart connections fre-
quently. This observation indicates the importance to
TCP Fast Open and TLS Resumption, mechanisms that
allow these clients to assume the burden of retaining
state for this process.

6.5 Modeling End-to-End Latency for Clients
With this data we can now model the expected (av-

erage) end-to-end latency for DNS users, exploring the
interaction of stub, recursive and authoritative resolvers
as we vary the protocols in use.

Modeling: We first model latency (L) from client
to server (c to σ), Lcσ, as the probability of connection
reuse (PCcσ) and its cost (SCcσ) added to the the cost of
the actual query (Qcσ):

Lcσ = (1− PCcσ)SCcσ +Qcσ (1)

From Figure 7 we know that Qcσ the same for all
methods when the connection is open: it is about one
client-server RTT, or Rcσ. Setup SCcσ is 0 for UDP,
Rcσ for TCP, and 4Rcσ + Scpuσ for TLS (1 for TCP, 1
for TLS neogitation, and 2 for TLS handshake), where
Scpuσ is computationally approximated at 25.8 ms (Ta-
ble 3). We can estimate PCcσ given a timeout window
from client-side trace analysis (Figure 8).

To compute end-to-end latency (stub-to-authoritative,
Lsa), we combine stub-to-recursive latency (Lsr) with
behavior at the recursive resolver. For a cache hit (prob-
ability PNr) the recursive resolver can reply immedi-
ately. Otherwise it will make several (NQ

r) queries to
authoritative resolvers (each taking Lra) to fill its cache:

Lsa = Lsr + (1− PNr)NQ
r Lra (2)

Where Lsr and Lra follow from Equation 1. We
model recursive with the Level 3 data and authorita-
tive as B-Root. With our recommended timeouts (60 s
and 20 s), we get PCsr = 0.72 and PCra = 0.24. Prior
studies of recursive resolvers suggest PNr ranges from
71% to 89% [26].

We determine NQ
r by feeding the Alexa top-1000 sites

into BIND-9.9.3 and observing how many outgoing queries
emerge. We repeat this experiment 10 times, start-
ing each run with a cold cache. The mean value of
NQ
r = 7.24 (standard deviation 0.036) including 0.09

for query retries. We round NQ
r to 7 in our analysis of

estimated latency. Although this value seems high, the
data shows many incoming queries require multiple out-
going queries to support DNSSEC (and Lookaside Val-
idation). Some sites that use content-delivery networks

13

 0

 50

 100

 150

 200

 250

 300

 350
la

te
nc

y
(m

s)
local (Rsr=5ms)

public (Rsr=20ms)

s-r:
r-a:

udp
udp

tcp
udp

tls
udp

tcp
tcp

tls
tcp

tls
tls

Figure 9: Modeling end-to-end-performance for local
(Rsr = 5 ms) and third-party (Rsr = 20 ms) recursive
resolvers with different protocols. (Rra = 40 ms, PNr =
0.8, NQ

r = 7)

require several queries as they perform DNS-based redi-
rection.

Scenarios: With this model we can quickly compare
long-term average performance for different scenarios.
Figure 9 compares six protocol combinations deployed
at stub-to-recursive and recursive-to-authoritative (each
a group of bars). We consider two locations for the re-
cursive resolver: ISP-provided with Rsr = 5ms, and
a third-party resolver with Rsr = 20ms (median for
U.S. or Europe).

First we consider the local resolver. From the model
we see that use of TCP and TLS to the local resolver
adds moderate latency : current DNS has mean of 61 ms,
while TCP is 62 ms and TLS only 74 ms (21% worse),
and using UDP upstream. Second, we see that use of
connections between recursive and authoritative is very
expensive: TCP is 116 ms (1.9×), and TLS is 272 ms
(4.46×), with TLS to recursive. The recursive resolver
must make several queries to the authoritative servers,
at large RTTs, with a much lower connection hit frac-
tion. The extra round-trips for connection setup show
in the TCP/TLS case.

When we turn to a third-party resolver, we see a sim-
ilar trend, but the higher latency between stub and re-
cursive raises the cost of TCP and TLS. For example
TLS to recursive (with UDP to authoritative), is 39%
slower than UDP.

7. CONCLUSION
This paper shows that connectionless DNS has out-

lived its stay. We summarized the range of problems
that have accumulated due to DNS’ focus on single-
packet, connectionless communication: privacy limita-
tions, security concerns, and operational constraints.
Although work-arounds exist for individual problems,
DNS is too useful and today’s Internet too dangerous

to be limited to one packet.
Surprisingly, we show that end-to-end latency of con-

nection-oriented DNS approaches connectionless. Our
models show TLS to the recursive resolver is only about
21% slower with UDP to the authoritative server, and
90% slower with TLS to recursive and TCP to author-
itative. This performance depends on the design and
implementation we describe.

8. ACKNOWLEDGMENT
We would like to thank several that contributed data

to this effort: DNS-OARC DITL program, operators of
A, J, B root name servers, Level3 and Common Crawl.
Calvin Ardi extracted domain names from webpages
from the Common Crawl dataset. Xun Fan helped col-
lect data from PlanetLab. Christos Papadopoulos pro-
vided servers at CSU for our high-latency experiments.
John Wroclawski and Bill Manning provided comments
on the paper.

9. REFERENCES
[1] Alexa. http://www.alexa.com/.
[2] E. Allman, J. Callas, M. Delany, M. Libbey,

J. Fenton, and M. Thomas. DomainKeys
Identified Mail (DKIM) signatures. RFC 4871,
May 2007.

[3] Anonymous. The collateral damage of internet
censorship by DNS injection. SIGCOMM CCR,
June 2012.

[4] Arbor Networks. Worldwide infrastructure
security report. Technical report, Arbor Networks,
Sept. 2012.

[5] R. Arends, R. Austein, M. Larson, D. Massey,
and S. Rose. DNS Security Introduction and
Requirements. RFC 4033, Mar. 2005.

[6] R. Bellis. DNS Transport over TCP -
Implementation Requirements. RFC 5966, Aug.
2010.

[7] R. Beverly, R. Koga, and kc claffy. Initial
longitudinal analysis of IP source spoofing
capability on the Internet. Internet Society, July
2013.

[8] S. Bortzmeyer. DNS privacy problem statement.
Internet draft, Dec. 2013.

[9] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding website complexity:
Measurements, metrics, and implications. In IMC,
pages 313–328, Nov. 2011.

[10] J. Damas, M. Graff, and P. Vixie. Extension
mechanisms for DNS (EDNS(0)). RFC 6891, Apr.
2013.

[11] M. Dempsky. DNSCurve: Link-level security for
the Domain Name System. Internet draft, Feb.
2010.

[12] T. Dierks and E. Rescorla. The Transport Layer
Security TLS Protocol Version 1.2. RFC 5246,

14

http://www.alexa.com/

Aug. 2008.
[13] DNS-OARC. https://www.dns-oarc.net/.
[14] R. Droms. Dynamic host configuration protocol.

RFC 2131, Mar. 1997.
[15] H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang,

J. Jiang, K. Li, and V. Paxson. Hold-on:
Protecting against on-path DNS poisoning. In
SATIN, 2012.

[16] W. Eddy. TCP SYN flooding attacks and
common mitigations. RFC 4987, Aug. 2007.

[17] Electronic Frontier Foundation. Encrypt the web
with HTTPS everywhere. Web page
https://www.eff.org/https-everywhere, Aug.
2011.

[18] T. Faber, J. Touch, and W. Yue. The
TIME-WAIT state in TCP and its effect on busy
servers. INFOCOMM, 1998.

[19] L. Green. Common crawl enters a new phase.
Common Crawl blog http://www.commoncrawl.

org/common-crawl-enters-a-new-phase/, Nov.
2011.

[20] G. Greenwald. NSA collecting phone records of
millions of Verizon customers daily. The
Guardian, June 2013.

[21] A. Herzberg and H. Shulmanz. Fragmentation
considered poisonous. IEEE-CNS, Oct. 2013.

[22] P. Hoffman and J. Schlyter. The DNS-based
authentication of named entities (DANE)
transport layer security (TLS) protocol: TLSA.
RFC 6698, Aug. 2012.

[23] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, and
D. Wessels. Starting TLS over DNS. Work in
progress (Internet draft
draft-start-tls-over-dns-00), Jan. 2014.

[24] G. Huston. A question of protocol. Talk at RIPE
’67, 2013.

[25] ICANN. Root server attack on 6 February 2007.
Technical report, Mar. 2007.

[26] J. Jung, E. Sit, H. Balakrishnan, and R. Morris.
DNS performance and the effectiveness of caching.
ACM/IEEE ToN, 10, Oct. 2002.

[27] A. Jungmaier, E. Rescorla, and M. Tuexen.
Transport Layer Security over Stream Control
Transmission Protocol. RFC 3436, Dec. 2002.

[28] D. Kaminsky. It’s the end of the cache as we know
it. Presentation, Black Hat Asia, Oct. 2008.

[29] C. A. Kent and J. C. Mogul. Fragmentation
considered harmful. In SIGCOMM, Aug. 1987.

[30] J. Markoff and N. Perlroth. Attacks used the
Internet against itself to clog traffic. New York
Times, March 2013.

[31] J. Mauch. Open resolver project. Presentation,
DNS-OARC Spring 2013 Workshop (Dublin),
May 2013. https://indico.dns-oarc.net/
/contributionDisplay.py?contribId=

24&sessionId=0&confId=0.
[32] W. Meng, R. Duan, and W. Lee. DNS Changer

remediation study. Talk at M3AAWG 27th, Feb.
2013.

[33] C. Metz. Comcast trials (domain helper service)
DNS hijacker. The Register, July 2009.

[34] P. Mockapetris. Domain names—implementation
and specification. RFC 1035, Nov. 1987.

[35] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. Lie, and C. Lilley.
Network performance effects of http/1.1, css1, and
png. In SIGCOMM, Sept. 1997.

[36] OpenDNS. Dnscrypt. http:
//www.opendns.com/technology/dnscrypt.

[37] OpenDNS. Opendns website. www.opendns.com,
2006.

[38] H. P. Penning. Analysis of the strong set in the
PGP web of trust. web page
http://pgp.cs.uu.nl/plot/, Jan. 2014.

[39] P. Ramaswami. Introducing Google Public DNS.
Google Official Blog
http://googleblog.blogspot.com/2009/12/

introducing-google-public-dns.html, Dec.
2009.

[40] S. Reifschneider. 4.2.2.2: The story behind a DNS
legend. http://www.tummy.com/articles/
famous-dns-server/.

[41] E. Rescorla and N. Modadugu. Datagram
Transport Layer Security Version 1.2. RFC 6347,
Jan. 2012.

[42] J. Salowey, H. Zhou, P. Eronen, and
H. Tschofenig. Transport Layer Security (TLS)
Session Resumption without Server-Side State.
RFC 5077, Jan. 2008.

[43] K. Schomp, T. Callahan, M. Rabinovich, and
M. Allman. On measuring the client-side DNS
infrastructure. In IMC, Oct. 2013.

[44] S. Sengupta. Warned of an attack on the Internet,
and getting ready. New York Times, page B1,
Mar. 31 2012.

[45] A. Sullivan. More keys in the DNSKEY RRset at
., and draft-ietf-dnsop-respsize-nn. DNSOP
mailing list, Jan. 2014.
https://www.mail-archive.com/dnsop@ietf.

org/msg05565.html.
[46] R. Vaughn and G. Evron. DNS amplification

attacks. http://isotf.org/news/
DNS-Amplification-Attacks.pdf, Mar. 2006.

[47] P. Vixie. Extension mechanisms for DNS
(EDNS0). RFC 1999, Internet Request For
Comments, Aug. 1999.

[48] P. Vixie. What DNS is not. ACM Queue, Nov.
2009.

[49] P. Vixie and A. Kato. DNS referral response size
issues. Internet draft, May 2012.

15

https://www.dns-oarc.net/
https://www.eff.org/https-everywhere
http://www.commoncrawl.org/common-crawl-enters-a-new-phase/
http://www.commoncrawl.org/common-crawl-enters-a-new-phase/
https://indico.dns-oarc.net//contributionDisplay.py?contribId=24&sessionId=0&confId=0
https://indico.dns-oarc.net//contributionDisplay.py?contribId=24&sessionId=0&confId=0
https://indico.dns-oarc.net//contributionDisplay.py?contribId=24&sessionId=0&confId=0
http://www.opendns.com/technology/dnscrypt
http://www.opendns.com/technology/dnscrypt
www.opendns.com
http://pgp.cs.uu.nl/plot/
http://googleblog.blogspot.com/2009/12/introducing-google-public-dns.html
http://googleblog.blogspot.com/2009/12/introducing-google-public-dns.html
http://www.tummy.com/articles/famous-dns-server/
http://www.tummy.com/articles/famous-dns-server/
https://www.mail-archive.com/dnsop@ietf.org/msg05565.html
https://www.mail-archive.com/dnsop@ietf.org/msg05565.html
http://isotf.org/news/DNS-Amplification-Attacks.pdf
http://isotf.org/news/DNS-Amplification-Attacks.pdf

[50] D. Wessels and G. Sisson. Root zone
augmentation and impact analysis. Presentation,
NANOG 47, 2009.

[51] S. Woolf and D. Conrad. Requirements for a
Mechanism Identifying a Name Server Instance.
RFC 4892, June 2007.

[52] P. Wouters and J. Abley. The edns-tcp-keepalive
EDNS0 option. Work in progress (Internet draft
draft-wouters-edns-tcp-keepalive-00), Oct. 2013.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

number of unique domain names in a webpage, logscale

Figure 10: CDF of number of unique hostnames per
web page. (Dataset: 40584944 page sample from
CommonCrawl-002 [19]).

APPENDIX
A. DOMAIN NAMES PER WEB PAGE

To demonstrate the need for pipelining DNS queries
for end-users (§ 4.1), we examined about 40M web pages
(about 1.4%) from a sample of CommonCrawl-002 [19].
The sample is selected arbitrarily, so we do not expect
any bias. We count the number of unique domain names
per page.

Figure 10 shows the results: to confirm that 62% of
web pages have 4 or more unique domain names, and
32% have 10 or more.

B. ADDITIONAL DATA FOR SERVER-SIDE
LATENCY

Figure 11 and shows the number of connections over
the day for all three datasets, Figure 12 shows the hit
fraction over the day for all three datasets, expanding
on the data in Figure 3.

Figure 13 summarizes the data in Figure 12 by quar-
tiles.

C. ADDITIONAL DATA FOR CLIENT-SIDE
LATENCY

Figure 14 shows the data that underlies Figure 8.

16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0h 6h 12h 18h 24h
0

0.05

0.1

0.15

0.2

0.25

co
nc

ur
re

nt
 c

on
ne

ct
io

ns

av
er

ag
e

of

 c
on

ne
ct

io
ns

 p
er

 IP

time from trace start

480
360
240
120

60
50
40
30
20
10

(a) Dataset: DNSChanger

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

0h 6h 12h 18h 24h
0

0.05

0.1

0.15

0.2

co
nc

ur
re

nt
 c

on
ne

ct
io

ns

av
er

ag
e

of

 c
on

ne
ct

io
ns

 p
er

 IP

time from trace start

(b) Dataset: Level 3, cns4.lax1.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

0h 6h 12h 18h 24h
0

0.05

0.1

co
nc

ur
re

nt
 c

on
ne

ct
io

ns

av
er

ag
e

of

 c
on

ne
ct

io
ns

 p
er

 IP

time from trace start

(c) Dataset: B Root

Figure 11: The number of concurrent connections given by different time-out window sizes.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0h 6h 12h 18h 24h

co
nn

ec
tio

n
hi

t f
ra

ct
io

n

time from trace start

480
360
240
120

60
50
40
30
20
10

(a) Dataset: DNSChanger

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0h 6h 12h 18h 24h

co
nn

ec
tio

n
hi

t f
ra

ct
io

n

time from trace start

(b) Dataset: Level 3, cns4.lax1.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0h 6h 12h 18h 24h

co
nn

ec
tio

n
hi

t f
ra

ct
io

n

time from trace start

(c) Dataset: B Root

Figure 12: Server-side hit ratio (connection reuse) of queries given by different time-out window sizes

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nn

ec
tio

n
hi

t f
ra

ct
io

ns

time-out window (seconds)

(a) Dataset: DNSChanger, all-to-one

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nn

ec
tio

n
hi

t f
ra

ct
io

ns

time-out window (seconds)

(b) Dataset: Level 3, cns4.lax1.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nn

ec
tio

n
hi

t f
ra

ct
io

ns

time-out window (seconds)

(c) Dataset: B Root

Figure 13: Quartile plot of server-side connection hit fraction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

connection hit fraction

10
20
30
40
50
60

120
240
480

(a) Dataset: DNSChanger

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

connection hit fraction

(b) Dataset: Level 3, cns[1-4].lax1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

connection hit fraction

(c) Dataset: B Root

Figure 14: CDF of client-side connection hit fraction

17

	Introduction
	Problem Statement
	Background
	Problem: the Limitations of Single-Packet Exchange
	Avoiding Arbitrary Limits to Response Size
	Need for Sender Validation
	Need for DNS Privacy

	Threat Model

	Related work
	DNS Security Extensions (DNSSEC)
	DNSCrypt and DNSCurve
	Unbound and TLS
	Other Standards: DTLS and TLS over SCTP
	Specific Attacks on DNS
	Applying DNS for Trust: DANE/TLSA

	Design and Implementation of t-DNS
	DNS over TCP
	DNS over TLS
	Grounding Trust
	Upwards TLS Negotiation
	Implementation Optimizations

	Implementation Status
	Gradual Deployment

	Connection Reuse and Server-Side Resource Consumption
	Datasets
	Trace Replay and Parameterization
	Concurrent Connections and Hit Fraction

	Client-side Latency
	Computation Costs
	Latency: Stub-to-Recursive Resolver
	Typical Stub-to-Recursive RTTs
	TCP connection setup: stub-to-recursive
	TLS privacy: stub-to-recursive
	Overall Stub-to-Recursive

	Latency: Recursive Resolver to Authoritative Server
	Typical Recursive-to-Authoritative RTTs
	TCP connection setup: recursive-to-authoritative
	TLS privacy: recursive-to-authoritative
	Overall Recursive-to-Authoritative

	Client connection hit fractions
	Modeling End-to-End Latency for Clients

	Conclusion
	Acknowledgment
	References
	Domain names per Web Page
	Additional Data for Server-Side Latency
	Additional Data for Client-Side Latency

