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Abstract

Many academic sensornet systems consider the prob-
lem of tracking targets as they move through a fixed
field of sensors. Such applications must relate sensor
detections to specific targets, yet prior work has often
ignored this problem, assuming either a single tar-
get, sufficient spatial separation that target-to-sensor
mapping is clear, or some out-of-band detection-to-
target mapping. There has been little study of algo-
rithms to associate detections with targets, and ef-
fects of their accuracy on detection results, partic-
ularly in environments with dense targets. We ex-
plore the question of detection-to-target mapping in
the context of a wvehicle classification system for ur-
ban roadways, where vehicles pass fixed sensors at
varying but frequent rates. We develop several sig-
nature matching algorithms that relate detections at
different sensors to same or different vehicles. We
evaluate these algorithms with data taken in a field
test of live traffic compared against ground truth
obtained through manual analysis of video and the
resulting matching recall is over 78%. We investi-
gate the effects of mapping accuracy on length-based
vehicle classification. We show that accurate signa-
ture matching is critical to multi-sensor algorithms.
We compare our matching algorithms against an ora-
cle (perfect information), and find that all matching
reduces end-to-end accuracy somewhat, but a poor
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matching algorithm reduce accuracy by 21%, while
our best algorithm reduces it by only 10% in our case
study. Finally, we quantify the degree of correlation
between matching correctness and classification ac-
curacy.

1 Introduction

Object tracking is one of the canonical problems for
sensor networks. A fixed field of autonomous, inex-
pensive sensors observes their environment, identifies
objects, then compares observations to track objects
that move through the field [21} [11]. Object track-
ing has applications in military security, biology and
animal detection and counting, and in workplace sen-
sornet deployments [6],

An essential component of an object tracking algo-
rithm is how the sensornet relates one or more sensor
detections to one or more actual targets. However,
most current sensornet work pays little attention to
this sub-problem. Tests often assume as single tar-
get, sufficient spatial separation that target-to-sensor
mapping is clear [14]26,120], or that some out-of-band
source provides detection-to-target mapping (for ex-
ample, [25]). More specifically, there has been little
study of algorithms to associate detections with tar-
gets, and the effect of their accuracy on detection
results, particularly in environments with dense tar-
gets.

In this paper we explore the question of detection-



to-target mapping in the context of a wehicle clas-
sification system for urban roadways, where vehicles
pass fixed sensors at varying rates. We tie detections
at different sensors to individual vehicles by signature
matching algorithms using features of the signatures
or signature timing. Our goal is to understand how
imperfect detection mapping affects end-to-end accu-
racy.

Although our results are evaluated in the con-
text of this particular application, the observation
that matching affects sensor fusion accuracy applies
to other applications where multiple sensors observe
multiple targets.

Our work differs from most prior sensornet tracking
and systems because they assume an unconstrained
environment, sparse target identities with wide spa-
tial separation, and dense sensor deployment [21, 14,
26, 20]. We instead assume a constrained, environ-
ment (a public roadway), with dense, poorly sepa-
rated targets (rapidly moving cars), and sparse sen-
sors. Unlike vehicle re-identification systems [5, 4,
15,116, 2, 23,[13], we target an urban roadway with
easily deployable sensors. More detailed related work
is covered in Section [4l

The main contribution of this paper is the design
of signature matching algorithms (Section [2). We
propose several classes of algorithms, evaluating ap-
proaches to matching using different features: order-
ing, timing, target features, and raw target observa-
tions. Unsurprisingly, algorithms using little infor-
mation (such as ordering), are easily misled by miss-
ing readings. Surprisingly, full signature comparisons
are also easily mislead by overly specific details (Sec-
tion[2.4). We conclude that a fairly simple static time
window (STW) algorithm is the best choice, even
over algorithms that are more complex or use more
information (Section [3.2). We have integrated of sig-
nature matching into a multi-sensor vehicle classifica-
tion system. While prior researchers have considered
vehicle re-identification and vehicle-specific applica-
tions, to our knowledge we are the first to explore the
specific effects of signature matching in a multi-sensor
system.

The second contribution of our work is evaluating
signature matching as part of a full system on an
active roadway. We first evaluate matching by itself

(Section[3.2), comparing five algorithms and confirm-
ing STW as best considering both correctness and
simplicity, correctly matching 73% of the time. A
complete system must classify vehicles into different
categories (passenger car, SUV, truck, etc.), and so
complete system performance depends on both sig-
nature matching and sensor fusion. Since those al-
gorithms can have correlated errors, evaluation of a
full system on real data is essential to confirm our al-
gorithm choice (Section [3.4). We show that the cost
of imperfect matching (with STW) on overall classi-
fication accuracy is only 7-11% compared to perfect
(oracle) matching (Section[3.4), while a poor match-
ing algorithm can reduce end-to-end classification ac-
curacy by 21%. By testing signature matching in a
real-world system, we explore the high degree of cor-
relation between matching and classification errors in
real-world data, and we find that the accuracy of end-
to-end, multi-sensor classification accuracy with our
algorithms is consistent with theoretical predictions
of partial correlation (Section[3.4.5).

Finally, our third contribution is to generalize these
results to multi-sensor tracking algorithms and quan-
tify them in a real multi-sensor vehicle classification
systems. We find that defining metrics to compare al-
gorithms is surprisingly difficult (Section [3.4.3), be-
cause observations are not just right or wrong, but
also duplicated or omitted. Although similar prob-
lems occur in pattern recognition, this analysis has
been little explored in sensornets and we expect our
metrics are useful to characterize other matching
problems. Our numeric results are specific to our case
study, but we show the importance of good matching
algorithms through comparison of several algorithms
against a perfect (oracle). This result suggests future
multi-sensor tracking must consider error due to in-
dividual sensors, multi-sensor fusion, and detection-
to-target mapping.

2 Matching Algorithms

We here first formalize our matching problems and
then compare algorithms using sequential orders,
timestamps, and raw signatures. All can operate on-
line, and in experiments (Section [3.1) we do so, al-



though for simplicity our pseudocode describes post-
facto analysis.

2.1 Problem Formalization

The goal of signature matching is to determine when
observations at two sensors observe the same of dif-
ferent actual targets. Given two sensors, a match is
when they observe the same target and a non-match
as when only one sensor observes a target, perhaps
because the target does not intersect the view of one
of the sensors. We explore matching in the context
of vehicle re-identification on a roadway, where non-
matches indicate vehicles that park or turn between
Sensors.

Signature matching is trivial if ideal sensors gen-
erate two perfect event streams and all targets pass
both sensors. However, a real world application it
can be quite challenging: signatures are missed be-
cause vehicles straddle lanes; they can be merged by
tailgating vehicles; there may be no matching signa-
ture if a vehicle turns between sensors; or signature
timing may vary greatly if vehicles change speeds or
park. A reliable, real-world matching algorithm must
therefore detect matches and also report non-match
signatures when no counterpart can be found. Vehi-
cle classification algorithms can then build on it to
do multi-sensor fusion [16]).

2.2 Numbering Based

We start with two variants of a simple, order-based
algorithm: Naive Numbering (NN), and Numbering
with Resynchronization (NwR) handling missing sig-
natures.

2.2.1 Naive Numbering (NN)

With perfect sensors, ith signature detected upstream
should match the i*" downstream. Therefore in NN,
each sensor numbers its signatures, and then we
merge the detections sequentially.

NN suffers from the problem that any missing sig-
natures throw off the stream alignment and result
in mis-matches. We call this problem an avalanche,
since one observation error causes many incorrect
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Figure 1: Avalanche problem in NN but solved by
NwR.

matches (the left case in FigureI). In the real world,
signatures often are missing, either because of sen-
sor error (perhaps a transient fault), sensor-target
interactions (for example, a vehicle partially miss-
ing a sensor because it changes lanes), or targets not
passing both sensors (for example, vehicles turning or
pulling over between two stations). Since such errors
are common in the real world, we present NN as the
base to build our next algorithm.

2.2.2 Numbering with Resynchronization
(NwR)

NwR (pseudocode in Appendix/A) adapts NN to real-
world noise by periodically resynchronizing streams.
Like NN, each station numbers each signature it de-
tects, but with NwR, all stations reset their num-
bering at a coordinated regular interval. This reset
solves the avalanche problem, as shown in Figure/[l.
Suppose vehicle 1, 2, 3 and 4 pass both stations and
are detected as U; (upstream) and D; (downstream).
The mis-detection of Do causes following signatures
to match incorrectly. NwR can reset to a new num-
bering span after D3 and before Uy; Uy and D4 could
still be correctly matched.

NwR adds one parameter to NN, the duration be-
tween resets. We want to reset frequently enough
to prevent avalanches, but resetting makes it diffi-
cult to match vehicles in transit between stations, so
we do not want to reset too frequently. Reset fre-



quency depends on travel time between stations and
how many vehicles are detected by only one sensor.
The more frequent singletons occur, the shorter the
reset interval should be. The reset interval should be
in proportion to vehicle travel time. For our deploy-
ment, a large number—about one-third—of vehicles
are seen by only one sensor, and travel time is about
30 s, so we anticipate a reset interval of 3 x 30 = 90 s.
We verified this intuition with exhaustive analysis of
possible reset intervals, where we found 83 s was our
optimal reset interval.

We evaluate NwR in Section [3.2 and find that it
provides reasonable correctness (we define recall in
Section [3.2.1; its recall is 64%, Table [3). However,
it is fundamentally difficult to handle vehicles that
leave the roadway (for example, by parking) with
numbering-based algorithms. We therefore next con-
sider time-based algorithms to handle this case.

2.3 Time-Stamp Based

The next group of algorithms match using the ac-
tual detection times of vehicles rather than detection
order. Stations record a timestamp with each signa-
ture, and if we assume travel time between signatures
is predictable, we can use differences in these times-
tamps to match the signatures.

2.3.1 Static Time Window (STW)

STW assumes travel time between sensors is rela-
tively consistent (say, around ¢), and so it predicts
that an upstream signature at time ¢ corresponds to a
downstream signature in t4+J0+v, where v is the range
of variation allowed in travel time. This assumption
is true provided vehicles typically travel at consistent
average speeds between two sensors [12]. Depending
on the window is set, this assumption holds for 90%
of vehicles or more as described in Section [3.3]

This algorithm takes advantage of the reality that
vehicles in a normal traffic low tend to maintain a
constant speed. Drivers usually observe a 35 mph
speed limit in commercial district roadways and
25 mph in local residences in California. Hence a
coarse speed range can be easily determined.

Algorithm 1 Static (Dynamic) Time Window algo-

rithm

Input: Dy, and Dgown and time window [twio, twp;)

Input: *** a shift value sv

Output: M, Ny, and Nyown
// Note: activate lines with mark in dynamic time win-
dow algorithm; ignore them in static.

1: for sigyp in Dy, do

koK

2:  for sigiown in Dgown do

3: if twi, < Siggown.-timestamp — sigyp.timestamp <
twp; then

4: M — M U {(8igup; Si9down ) }

5: Dup — Dup\{sigup} and Dgown —

Ddown\{Sigdown}

6: *** Reset twp; and tw;,

T break

8: else if siggown.timestamp — sigyp.timestamp > twp;
then

9: Nuyp < Nup U{sigup} and Dyp < Dyp\{sigup}

10: *** both twy; and tw;, decreased by sv

11: break

12: else

13: Naown “— Naown U {Sigdown} and Dgown <

Daown \{51gdown }

14: *** both twy; and tw;, increased by sv

15: end if

16: end for

17: end for

18: Put remaining signatures from either D, or Dgown into Nyp
or Ngown correspondingly
19: return M, Ny, and Ngown

Our STW implementation works as follows (Algo-
rithm [T). The downstream station is responsible for
matching; it holds all pending signatures (not yet
matched) reported by upstream sensor. When the
downstream station detects a new signature, it ex-
amines upstream signatures in sequential order. If
the timestamp difference between downstream signa-
ture and the first buffered upstream signature falls
in the time window (6 4 v), a match is declared and
the upstream signature is removed from considera-
tion. If the time difference is less than the smallest
possible value, we declare the downstream signature
a non-match. If more than the largest, we declare the
upstream a non-match. STW is a simple algorithm,
well suited to on-line processing. We employ STW in
our experimental system (Section [3.1).

However, similar to NN, an incorrect match can
throw off future matches if alignment between signa-
tures becomes skewed, as shown in Figure[2l Suppose
a vehicle arrives every 2 s, travel time 6 = 5 s, and
v = 2 s. If each vehicle generates a signature at both
sensors, all will be correct matched. But if one sig-
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Figure 2: Avalanche problem in STW.

nature is not recorded (perhaps that vehicle is out of
its lane and misses the sensor), all subsequent signa-
tures will be mis-matched, since vehicle separation is
within the v window of variation. However, if two
vehicles are spaced slightly further apart, STW auto-
matically uses the gap to reset itself and so it is less
susceptible than NN to this problem.

A second potential weakness of the algorithm is
that the time window ¢ is fixed. In practice we set the
algorithm based on the upstream/downstream sensor
distance and typical vehicle travel times; this config-
uration can easily be automated. However, we next
describe two additional algorithms that adapt § dy-
namically to account for changing conditions, and we
later evaluate choice of parameters for all algorithms
in Section (3.3l

2.3.2 Dynamic Time Window (DTW)

STW’s fixed time window (4 and v) requires configu-
raiton. To avoid manual configuration, and to better
address the avalanche problem, we next dynamically
adjust these values with DTW (Algorithm I)). Since
non-matched signatures caused avalanches, we adjust
the time window after a non-match with the goal of
converging on a good value over time.

Figure[2 suggests adjusting the time window helps.
After we declared a non-match on D7, we decrease §

by 1 s. The reason is that we believe most down-
stream non-match is mainly caused by vehicles travel
too fast, and likewise, over-slow vehicles results in
upstream non-match. And speeds of vehicles in a
platoon is not independent, meaning follow-up ones
are likely to have a shorter travel time than & — v.
We shift the time window back to suppress the tran-
sient fast traffic flow. While the next signature U;
will also be incorrect (because the 7 s travel time is
outside the window [2,6] s), all further signatures will
correctly match.

To control how much the widow moves after a non-
match, DTW uses Shift Value (sv). This new param-
eter controls the amount of change to the travel-time
estimate each non-match. After a successful match
we reset § to the original value. The effect of sv is
discussed in Section [3.3.

Table [3 shows that DTW improves recall by 2%
over STW. However, vehicles that “legitimately”
pass a single sensor (for example, parking between
the sensors) trigger DTW incorrectly. We therefore
next consider the use of additional information to de-
termine accidental missed sensor readings from vehi-
cles that truly trigger only a single sensor.

2.3.3 Wheelbase-Enhanced Time Window
(WETW)

Prior algorithms consider only signature timing. We
next use signature features, such as number of wheels
or wheelbase length, to evaluate match correctness. If
features are reliable, they can select between multiple
potential matches, or rule out incorrect matches.
We choose wheelbase (distance from the front to
rear vehicle axle) as the feature for WETW. We al-
ready extract wheelbase for classification. WETW
starts with the STW algorithm to find a tentative
upstream/downstream signature match. However, it
then builds on this match by considering the signa-
tures immediately before and after the upstream one.
Each signature is tested to see if it falls within the
STW time constraints, and also if it approximately
matches the downstream wheelbase (plus or minus a
wheelbase window factor to account for observation
error). We then take the first signature that matches
both constraints, even if this means undoing a prior



match. Our goal here is throw out obviously poor
matches. WETW therefore also delays decisions by
one signature to allow this wheelbase-triggered re-
matching. The details are in Algorithm [2.

Algorithm 2 Wheelbase Enhanced Time Window al-
gorithm

Input: Pre-matched signatures via STW, M, Ny, and Niown-
‘Wheelbase window and time window.

Output: improved Matching results, M, Ny, and Ngown

1: repeat

2: for sigf”{ in N, do
3: if sigL;l is matched to sig4own then
4: if the wheelbase difference between sz’gffl against

$igdown is outside wheel window and the differences
between sigLP and $tgdown fall in both wheelbase and
time window then )

5: M — M U {(sigy, Sigdown)} and M

M\{(sigi;"s sigdown)}
6: Nup — Nup U {sigi;'}
T end if
8 else if sig%l has a match then
9: similar process as forgoing
10: end if
11: end for
12: until no new matching declared
13: for all signatures in Ny, and Ngown do
14: if the differences of two signatures Nyp and Ngown fall in
both wheelbase and time window then

15: transfer these two signatures from N,, and Ngown to
M

16: end if

17: end for

18: return M, Ny, and Ngown

Feature-based methods like WETW add an ad-
ditional dependency: feature extraction from signa-
tures is not perfect, so incorrect feature extraction
actually degrade matching. WETW works best when
most vehicles have different wheelbases (say, a mix of
cars and trucks). Finally, it considers one possible
feature (wheelbase length) in addition to timing, al-
though in principle one could use other or multiple
features. We next consider full signatures as a richer
feature.

2.3.4 Raw-Enhanced
(RETW)

The better recall of WETW, compared to STW (Ta-
ble [3), suggests that more information helps match-
ing. To determine if more information always im-
proves results, we replace the matching function in
WETW, changing it from wheelbase length to full

Window

Time

Figure 3: Four pre-scaled raw signature pattern com-
parisons. The horizontal axis is time and the vertical
is energy.

comparison of raw signatures. We call the new al-
gorithm Raw-Enhanced Time Window. Raw signa-
tures record the change of loop inductance as the ve-
hicle crosses, sampling at 300 Hz; thus they represent
the most complete information about what vehicles
pass a sensor. Figure/3/shows four example signature
pairs. Red and blue (darker) lines represent different
signatures.

One cannot directly compare raw signatures, be-
cause slight differences in vehicle speed or signature
segmentation result in different length signatures. To
correct for this distortion, we use Dynamic Time
Warp [19] to compute the similarity between raw
signatures. This approach has two steps. First, it
warps the time axis of one signature iteratively until
each data point in this sequence is optimally aligned
to a point in the other signature. Second, it evalu-
ates the similarity of the signatures by summing the
Euclidean distance of between all point-pairs in the
warped signatures. (This evaluation measure is also
used to evaluate the quality of warping.) Other than
this change of comparison function from wheelbase to
time-warped signature, RETW is similar to WETW,
using the same constraints on signature sequencing
and timing.

Surprisingly, Table [3] shows RETW has slightly
poorer recall than WETW, with one fewer correct
non-matches of the total 107 correct matches and
non-matches.

To evaluate if combining WETW and RETW
would yield better results, we compare vehicle-level
matching results between these two algorithm. We
find that the result are similar; only two matches out



of total 138 events are different. Therefore, an oracle
algorithm producing a union of the correct matches
of these two algorithms would improve by at most
2% in this study. We next evaluate if comparing full,
raw signatures helps.

2.4 Full Raw Signature Comparison

Our time-window family of algorithms use some fea-
ture to shift signature matches. However, potentially
one could compare all signatures against all other sig-
natures, as implemented by Cheung et al. [2]. In
Section [2.3.4 we modified the time window algorithm
to consider full signature comparisons. Here we re-
move the temporal constraints of RETW to see if
full matching freedom can improve results. How-
ever, it turns out that more information does not
help RETW do matching.

To test this question, Full Raw Signature Compar-
ison compares all signatures at the two sensors. This
algorithm works by testing each match against all sig-
natures at the other sensor side. We use the dynamic
time warp as the comparison function. This compar-
ison declares a tentative match as the closest possible
score. We then test this tentative match a threshold
to see if it is a good match, or instead to declare that
signature as a non-match. We determine the thresh-
old by training on known ground truth and using the
median distance score of true matching. Thus the
main difference against RETW is that full matching
always compares all signatures (using maximal infor-
mation), while RETW compares a time-constrained
subset.

We find full matching is much worse than RETW:
none of the 65 matchable vehicles find its true coun-
terpart. This somewhat surprising result is mainly
due to two problems. First, without temporal con-
straints (like RETW), raw matching relates many sig-
natures that are unreasonably earlier or later. Sec-
ond, full matching requires a threshold to determine
match /non-match, but there is no single fixed thresh-
old that identifies correct matches. When we train
with known correct matches, the median distance
score among the 65 true matches is four times higher
than that of all tentative matches. In otherwords, for
real data, incorrectly matched vehicles always look

more similar to each other than true matches—too
much information can mislead.

We see three causes raw signatures often fail to
match. First, environmental noise and measure-
ment error may distort signatures, sometimes causing
wheels to be mis-detected. Since distortion is usu-
ally independent at the two sites, signatures of some
true matches are inherently different from each other.
For example, while the top row of Figure [3] shows
two complete signatures, in the third row the darker
(blue) signature recorded only one wheel, likely be-
cause the car was straddling lanes. However, we can
sometimes compute a correct wheelbase for partial
signatures, even if one wheel is missed. Less informa-
tion (a partial signature) can still result in a correctly
matching feature (wheelbase).

Second, a large number of signatures make acci-
dental mis-identification easy, particularly with many
vehicles of similar general type (passenger car, truck,
etc.) or make. Table [1I shows that raw signature
matching often (about 30% of the signatures) finds
the best match as a vehicle of another category, even
though a human would detect that clear mistake.
With more than 100 potential signatures, acciden-
tal matches are increasingly likely. Thus time con-
straints (in the time-window algorithms) help focus
on plausible candidates. Finally, DTW can arbitrar-
ily warp signatures, and perhaps too much freedom
makes mis-identification easier. Our time-window al-
gorithm corrects for speed differences, but assumes
acceleration and higher order derivatives are zero,
perhaps a more reasonable assumption than allow-
ing on-zero higher-order derivatives.

We examine raw signature comparison to get a best
possible result by using all available information. In
doing so, we ignore the network bandwidth and en-
ergy requirements of sending around full signatures.
We conclude that, for our sensors, careful chosen fea-
tures (such as wheelbase) represent vehicles better
than full information, because feature detection fil-
ters out noise.

Other researchers have reported better results com-
paring full signatures (Cheung et al. report 100% re-
identification [2, 3], details in Section [4). We believe
they succeed because their test set is smaller (seven
vehicles), their sensor spacing closer (several meters



Table 1: Category-level matching results by full raw signature comparison

105 vehicle passed

# of whose best match in downstream is a

upstream site passenger car SUV truck
24 passenger cars 15 8 1
64 SUVs 4 57 3
17 trucks 0 15 2

away), and their sensor provide informative (three-
axis magnetometer). While their results suggest the
need for more work, to see if their results general-
ize to larger datasets, and more distant or different
Sensors.

Because of these challenges, we conclude that both
full signature comparison, both with all signatures
and time-limited signatures, is not desirable—too
much information hurts more than it helps. Instead,
wheelbase or other extracted features can provide
better results by effectively filtering out noise, and
time constraints help avoid improbable matches.

2.5 Algorithm Discussions

The advantages of algorithms diverge upon matching
correctness, parameter sensitivity, complexity, real-
timeness and applicability to different monitoring set-
tings. DTW, WETW and RETW should have higher
recall than STW. STW might not be able to do well
under heavy traffic, because vehicles are lack of tem-
poral separation, while DTW could handle the prob-
lem. If the traffic is promiscuous, WETW is sure
to utilize wheelbase difference to make better deci-
sion. If no intersection amid the road and vehicles
keep driving order, NwR could yield satisfactory re-
sult. Several parameters have to be embedded into
each algorithm, but we want to keep the sensitivity
minimized. Section [3.3]briefly concludes the relation
between parameter and performance. One merit of
all these algorithms, except RETW is low complexity,
comparing to raw signature comparison.

In all, from the simulation result in Table [3]as well
as our description above, we draw the conclusion that
STW is the most appropriate algorithm for our short
term experiment, while others could be analyzed in
post-facto processing. STW yields a high-enough re-

call (about 73%) without losing applicability and sim-
plicity. A more comprehensive performance analysis
is in Section 3.2

3 Evaluation

To evaluate our matching algorithms we collected a
3-hour traffic dataset with our prototype system sup-
plemented by human observers and videotape ground
truth data. This section describes the details of that
field test, compare matching result among and within
our algorithms, examine algorithm parameter sensi-
tivities and finally the effect of matching over vehicle
classification.

3.1 Data Collection Experiment

From 8 a.m. to noon, February 19, 2009, we carried
out a field test and traffic data are collected at USC
campus. During the nearly 3-hour long field test,
we collected about 300 detections of vehicles at up-
stream and downstream locations on a public road
on our campus. We also took videotape of traffic
and later manually examined this record to gener-
ate ground truth. The collection stations were on
one of USC campus internal streets, with two sta-
tions 90 m distant, each with two adjacent Blade
sensors. Figure |4 shows real deployment—each sta-
tion has a laptop, an IST-222 detector and two loop
tapes. Stations were connected by a wireless router,
8 dB wireless dish adapter and 15 dB high-gain an-
tenna. Although our campus has campus-wide wire-
less coverage, we deployed our own LAN to mimic
the same kind of deployment that would be used on
a city street. The downstream site both detected ve-
hicles and did signature matching and sensor fusion



Figure 4: Real deployment.

from upstream signatures. We used sensor calibra-
tion as described previously [16], and each station
ran local single-sensor classification, while the master
(the downstream node) performed on-line signature
matching using STW (Section 2.3.1) and then sensor
fusion.

Before we report our results, we describe the traffic
and on-line processing. First, we observed a mix of
traffic including general automobiles, campus busses,
shuttle vans, construction vehicles, delivery and semi-
trailer trucks. We observed 33 passenger cars, 86
SUVs and 19 trucks, and a number of carts, mo-
torcycles, and bicycles. Our system automatically
discards the signatures of carts, motorcycles, and bi-
cycles from our dataset because our goal is to clas-
sify cars. Second, although we did on-line processing
in the field, the results reported here have been re-
evaluated post-facto. This re-evaluation is necessary
because our field experiment was mis-calibrated with
incorrect typical vehicle speeds.

3.2 Matching Algorithm Correctness

Although we evaluated STW on-line, to compare all
of our signature matching algorithms (Section|2), we
replayed the data off-line through each one of the al-
gorithms. Our goal is to maximize matching correct-
ness in the face of real-world noise, and to compare

matching algorithm performance and overhead. Our
expectation is that exchange of more information (up
to full signatures) would enable better matching, but
instead we find that real-world noise fundamentally
limits the correctness of matching.

3.2.1 Defining Correctness

Before looking at numerical comparisons we must
first define our measure of correctness. Within the
final output of matching system, there are four ma-
jor situations: (i) Both sites detect a signature of a
vehicle respectively, and the system declare a match
on these two signatures, a True Match, or M; (ii)
The system incorrectly declare a match on two signa-
tures corresponding to two different vehicles, a False
Match; (iii) One signature of a vehicle is missing at
either site, and the system declared a non-match on
the detected one, a True Non-match, or N; (iv) The
system incorrectly declared a non-match for a signa-
ture which does have a counterpart detected by the
other node, a False Non-match.

Case (iii), where signatures are missing from one
site, is important because it shows how real-world
conditions can violate the assumption that every sig-
nature must be matched. In practice, not every sig-
nature should be matched, for a variety of reasons.
Signatures can be missing from either site because of
sensor or algorithm error, undesirable vehicle/sensor
interaction (for example, if the vehicle is half in the
lane), or driver choices that violate our assumptions
(for example, a vehicle that stops and parks between
our sites). While sensor or algorithm errors can per-
haps be corrected with better software or hardware,
matching is impossible if vehicles never pass both
sites.

We break vehicle detections into five groups (Table
[2] shows how many of each we see):

Normal: vehicles drive continuously across two sites
at a reasonable speed (say 10 to 40 mph)

Singleton: vehicles only pass one site

Over-Segmented: vehicles have more than two sig-
natures generated on one node at the same time

Pull-Over: vehicles pull over in between the two
sites and are overtaken by others. But they pass
both sites. Tirqver > 200s



PONO: (Pull-Over, Non-Overtaken) pull-over vehi-
cles where no other vehicles overtake them (the
relative order of vehicles maintained)

To evaluate correctness, we must normalize our
results by number of true events. An event is an
oracle-defined true match or true non-match (M+N).
We determine oracle events by manual analysis of
videotape to get accurate oracle results representing
ground truth.

To evaluate our currects, we draw terms from infor-
mation retrieval [24]. IR defines recall as tp/(tp+fn),
characterizing how much of the true result is found.
In our case, tp + fn is the number of events, as de-
fined above, since for orcale matching, the number
of incorrect non-matches is always zero, while true
positives represent correct matches and non-matches.
The output of our algorithm is therefere evalutated
by: recall = (CM + CN)/(M + N), where CM rep-
resents the number of correct matches output by a
matching algorithm, and CN the output of correct
non-matches.

We also report precision, to charcaterize how
often a matching algorithm’s output is incorrect:
precision = (CM + CN)/(CM + CN + IM + IN)
where IM are the number of incorrect matches (and
IN are incorrect non-matches). In general, we focus
on recall to evaluate our correctess, but we also report
precision.

3.2.2 Observations

Table [3 shows our evaluation of matching for this
experiment. We draw several conclusions from the
comparison among all of the algorithms. First, all
algorithms are generally good—the poorest algorithm
has matching recall above 60%.

Second, time-stamp based algorithms generally
yield better correctness than others, with recall above
73%, 10% better than the 64% or lower rates of al-
ternatives.

Considering the different time-stamp based algo-
rithms, we observe that DTW, WETW and RETW
provide only slight improvements over STW (a 2%
or 5% improvement over STW’s 73% recall). We
therefore recommend STW as the preferred algorithm

overall, because it is much simpler to implement and
configure than DTW, WETW and RETW and nearly
as accurate.

The three derivatives appear to have no significant
improvement over the base time-stamp algorithm
(only 3%—4%). If we examine more carefully, the
change of actual matching correctness numbers indi-
cates we have achieved our designing goal in Section
[2.3.2 and[2.3.3] DTW has better recall and fewer in-
correct matches but more incorrect non-matches than
STW. WETW successes in correcting its base ver-
sion’s a few incorrect matches into correct matches.

Surprisingly, we find more information does not
always help. RETW has slightly lower recall than
WETW, meaning comparison of full signatures do
not improve on evaluation of signature similarity by
extracted wheelbase length.

3.3 Parameter Sensitivity

Each matching algorithm is controlled by several pa-
rameters. We have studied parameter selection and
find that, in general, our time-stamp based algo-
rithms are insensitive to internal parameters. We
omit details here due to space constraints; full details
are in Appendix/B. STW yields reasonable recall over
a wide range of time windows. If our parametes are
off by 50% from optimal setting in STW, we lose only
about 20%, and a 20% change of window only causes
about 10% lower recall. DTW and WETW too are
insensitive to exact values of sv and wheelbase win-
dow. We observe only a 10% change in recall when
sv ranges from 1 to 10 s. While parameters are rela-
tively easy to configure, additional autoconfiguration
is an area of future work.

3.4 Impact of Matching on Classifica-
tion

The goal of signature matching in our system is to
support multi-sensor fusion, or more generally, to
synthesize conclusions from detections from multiple
sensors. In this section, we study how the match-
ing correctness affects multi-sensor fusion. Our hy-
pothesis is that better matching algorithms result in
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Table 2: Event types for matching

Expected Events  Occur-
Types per Occurrences ences Events
Normal 1 match 65 65
Singleton 1 non-match 46 46
Over-Segmented 1 match 13 13
Pull-Over 2 non-matches 7 14
PONO 1 match 0 0
total events 131 138
Correct Incorrect Reported
Algorithm Recall matches non-matches | matches non-matches | signature# Precision
STW 101 (73%) 46 55 23 28 152 66%
DTW 103 (75%) 41 62 17 43 163 63%
WETW 108 (78%) 51 57 19 24 151 72%
RETW 107 (78%) 51 56 19 25 151 1%
NwR 8 (64%) 31 57 18 65 171 51%
oracle 138 (100%) 78 60 0 0 138 100%

Table 3: Matching correctness of algorithms

better multi-sensor classification. However, classifica-
tion and matching have a non-linear interaction since
errors that make matching difficult also make classi-
fication difficult, so studying real data is important.

3.4.1 Multi-sensor Classification Review

Park et al. previously showed that classification can
benefit from multi-sensor fusion [16]. Combining
readings from multiple sensors can correct some, but
not all, classes of errors. For example, although a
vehicle may temporarily leave a lane and so be mis-
detected by one sensor, it likely returns to its lane
later. Park et al. examine the accuracy of several sen-
sor fusion algorithms relative to human observation
and show that sensor fusion can allow automatic clas-
sification rates exceeding that of human observers.
Accuracy depended on how many groups were clas-
sified (2 or 3, with more categories having lower ac-
curacy because there is more opportunity to error),
and the sensor fusion algorithm. They found the best
accuracy was for their quality-best fusion algorithm,
giving 97% for 2-category and 74% for 3-category.
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By comparison, human observation had 87% for 2-
category and 83% for 3-category, and 100% accuracy
is actually impossible because of overlap in the cate-
gories themselves.

This prior work, however, assumed a perfect
(oracle-based) signature matching algorithm. We
next evaluate classification accuracy with a realistic
and therefore imperfect matching algorithm.

3.4.2 Evaluation Baseline

Building on prior work [16], we consider two classifi-
cation tasks: three-category of passenger cars, light
trucks (SUVs or pickups trucks), large trucks (FHWA
classes 2, 3, and 4-13) and two-category of trucks
and non-trucks (FHWA classes 2-3 and 4-13) [§].
Three-category is inherently harder because many
light trucks can easily be confused with cars and
even humans have difficulty to make a perfect judg-
ing (when small SUVs blur into cars) [16]. Our goal
here is to evaluate how matching effects results of re-
alistic classification, so we set as our baseline oracle
matching, and then compare to realistic matching al-



gorithms. We use quality-best fusion, the best choice
from [16]. Each sensor assigns a quality value for each
signature it extracted, based on wheel detected, sig-
nal strength and other factors. Hence when fused, a
matched vehicle could have 2 candidate classifications
and we choose the one with higher quality value.

Table[4 summarizes our baseline. For two-category
and three-category, the baseline accuracies are 80%
and 57% respectively. In general, improvement of
oracle matching on two-category classification is in-
significant (4% over upstream alone and 0% over
downstream alone), However, it partially fixes the
poor result from downstream sensor in three-category
test (a 14% boost), because the better classifications
from upstream suppress downstream ones with lower
quality value in most matched cases.

3.4.3 Metrics

With this baseline we now must define how to
quantify multi-sensor classification accuracy. Single-
sensor classification accuracy is easily defined as
the fraction of correctly-classified vehicle number by
the total. Multi-sensor fusion with perfect (oracle)
matching can also be defined similarly.

However, just as matching correctness is compli-
cated by duplicate or undercounts (Section [3.2.1)),
those cases make it difficult to provide a simple ac-
curacy metric for classification with imperfect match-
ing. For example, if two detections of one true vehicle
are not matched, and one is correctly classified and
the other is not, does these two reports represent (i)
two errors (since it was mis-matched and we cannot
determine which is correct), (ii) one error and one
correct result, or (iii) one correct result (taking the
correct classification as overriding the incorrect dupli-
cate)? Or what if a single vehicle was reported twice
and classified correctly both times, is this (iv) incor-
rect, since it is over-reported, or (v) correct, since
both reports are consistent? We can define the num-
ber of vehicles in each case as V.5, where ¢ indicates
how many times a true vehicle was correctly classi-
fied, and m indicates how many times it was reported.

We therefore define two levels of accuracy: strict
and relaxed. Strict Accuracy is the most demanding;:
we require that each vehicle be correctly classified
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exactly once—conclusions (i) and (iv) above. If we
define V}! as the number of vehicles seen and classified
exactly once, and V as the set of all true vehicles
(events), strict accuracy is: Accusyrice = ViH/|V].

Relaxed accuracy is relevant if, instead of demand-
ing perfect counts, our goal is to approximate the
percentages of each vehicle class. Here we consider
overcounts due to incorrect matching to be correct
provided both signatures are classified correctly, thus
taking cases (ii) and (v) in the examples. If a vehicle
is seen twice and classified correctly for twice, we de-
fine it as one V2. We further define relaxed accuracy:
Accuretazea = (VI +V5)/|V].

Although we talk about V;! and Vi? here, there are
actually a number of specific cases. We enumerate
how we handle each case of Vi' in Table5.

3.4.4 Matching Algorithm Effects on Classi-
fication

We next consider the effects of matching accuracy on
end-to-end classification accuracy. For this evalua-
tion, we compare against the baseline of perfect (ora-
cle) matching, shown in Table[6. Each algorithm uses
optimal parameters (as defined in Table[3)). The re-
sulting signatures use quality-best fusion [16] to gen-
erate the final classification result.

The comparison proves our hypothesis, confirm-
ing that correctness in signature matching has a
large, but correlated effect on end-to-end classifi-
cation. (Here we refer to three-category classifica-
tion; two-category classification is similar.) First
of all, with our algorithms, the strict accuracy can
approaches that of the baseline (50% for WETW
vs. 57% oracle, with a 7% penalty due to incorrect
matching). Categorization with oracle matching is
not perfect because the underlying single and multi-
sensor classification methods are imperfect. The ad-
dition of realistic matching further lowers classifica-
tion accuracy because mis-matched signatures can re-
sults in signature duplication, omission, or incorrect
multi-sensor classification. We further study this cor-
relation in Section [3.4.5.

Second, as expected, accurate matching helps im-
prove classification while poor matching hurts. We
find WETW matches signatures most accurately



Table 4: Classification accuracy, multi vs. single

Categories

Classification Veh. two three
single sensor:

upstream alone 105 0 (76%) 68 (65%)

downstream alone 99 9 (80%) 43 (43%)
oracle matching

oracle fusion: 138 117 (85%) 90 (65%)

quality-best fusion: 138 111 (80%) 78 (57%)

Table 5: Reported once and correctly classified once

signatures matching classification
ups. downs. correct? result
U; D; correct matches C(1)=F(Us, D;)=G(i)
Ui X incorrect C(1)=F (U:,X)=G(i)
U, D; C(x)=F(Us, D;)
Ui Dz incorrect Cl)=F(U:, D)
X D; C(1)=F(X,D;)=G(i)
Us; - correct non-matches C(i)=F(U;, -)=G(i)
U; Dy incorrect matches  C(i)=F(U;, Dy)=G(i)
- D; correct non-matches C(i)=F(—, D;)=G(i)
Uz D; incorrect matches C(i)=F (U, D;)=G(i)
U;,D;: upstream and downstream signatures
generated by vehicle 3
X: ”don’t care”, i non-matches or
matches against a fake signature (noise)
or a signature of some other vehicle
: means non-match
G(i):  the ground truth category of vehicle ¢ is
X
C(i):  multi-sensor classification result of vehi-
cle 4
F(x,y): fusion of one or two signatures
Table 6: Multi-sensor classification accuracy
Matching 2-cat. accu. (%)| 3-cat. accu. (%)
Algor. Recall (%) | strict relaxed | strict  relaxed
STW 73 (-27) 69 (-11) 73 (-7) | 49 (-8) 50 (-7)
DTW 75 (-25) 68 (-12) 76 (-4) | 47 (-10) (-7)
WETW 78 (-22) | 70 (-10) 75 (-5) | 50 (-7) 51 (-6)
RETW 78 (-22) 70 (-10) 75 (-B) | 50 (-7) (-6)
NwR 64 (-36) 59 (-21) 74 (-6) | 39 (-18) 46 (-11)
oracle 100 (0) 80 (0) - 57 (0) -
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(78% against 64%, the worst case with NwR). Higher
matching recall here shows a corresponding im-
provement in end-to-end classification accuracy, with
WETW allowing 50% classification accuracy (vs. 39%
worst-case, NwR). WETW’s improvement is due to
more correct matches (51 of 78 cases, Table 3), while
poorer matching algorithms cause duplicated or omit-
ted signatures.

Finally, our multi-sensor classification has moder-
ate improvement over single-sensor in terms of both
accuracy and robustness, even when coupled with
realistic (imperfect) matching algorithms. We see
that the downstream sensor is less accurate than up-
stream, possibly due to differences in vehicle speeds
and channelization at the two sites. However, multi-
sensor fusion improves downstream classification ac-
curacy result by 7%, even with imperfect signature
matching (WETW), showing that multi-sensor fusion
can be more robust to deployment or sensor error.

While Table[6 shows how end-to-end classification
accuracy changes due to matching, it doesn’t show
why the results differ. We look at that question next.

3.4.5 Understanding Correlation between
Matching and Classification

We next look more deeply at why signature matching
and classification accuracy affect each other. Both
matching and classification use the same sensor data,
so inaccurate data at one sensor (perhaps due to
target or environment noise, or deployment differ-
ences) can both make matching difficult and affect
multi-sensor classification accuracy. If the algorithms
were completely correlated, then end-to-end accuracy
should be the minimum of either algorithm’s correct-
ness. If they were strictly uncorrelated, then end-to-
end accuracy should be their product.

Table [7 shows there is partial correlation be-
tween matching correctness and classification accu-
racy. We report matching recall for each match-
ing algorithm, and three-category vehicle classifica-
tion accuracy (with oracle matching), then compare
expected accuracies with no and full correlation to
experimental results. We find that the end-to-end
multi-sensor classification accuracy with our match-
ing algorithms is always between what would be pre-
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Table 8: Matching vs. classification in STW

correct? categories

matching classification two three
yes yes 83 (60%) 59 (43%)
yes no 18 (13%) 42 (30%)

no yes 12 (9%) 8 (6%)

no yes/double 6 (4%) 2 (1%)

no no 19 (14%) 27 (20%)
138 events (100%)

dicted by no or full correlation. These experimental
results suggest that accuracy of the two algorithms
is partially correlated. This correlation shows up
in end-to-end accuracy, where uncorrelated WETW
would predict a 13% classification penalty (from in-
correct matching), but correlation means that exper-
imentally the penalty is only 7%.

To understand what causes these correlations, we
next reanalyze the STW case from Table[6: Table[§]
shows STW accuracy grouped by correctness in ei-
ther or both matching and classification. The first
case (yes, yes) is both matching and classification are
correct, our goal. The second (yes, no) includes vehi-
cles that are correctly matched or non-matched, but
where multi-sensor classification gives an incorrect re-
sult. Presence of the third category where match-
ing fails but classification succeeds (no, yes) is unex-
pected, but in these cases multi-sensor fusion selects
the correct signature and result to recover. Vehicles
in the fourth case (no, yes/double) are correctly clas-
sified, but because matching fails there appear to be
two vehicles (one at each sensor), so we over-count
(the Vi case from Section [3.4.3). In final case (no,
no) both matching and classification fail. A more
detailed dissection of Table [8]is in Appendix|[Cl

We draw three conclusions after comparing match-
ing against end-to-end classification result. First,
incorrect matches do not always result in incor-
rect classifications. In 8 out of 138 (6%) (no, yes)
cases, matching fails but classification is correct. in
three-category classification. The cases of incorrect
matches or non-matches in Table [5] can still result
in correct classification when C(i) = G(¢). Should
matching and classification are completely correlated,



Table 7: The correlation between matching and classification.

Match. Class. Correlation
recall accu. | none full
Algor. (m) (c) m-c  min(m,c) | experiments
STW 73% 57% 42% 57% 49%
DTW 5% 57% 43% 57% 47%
WETW 78% 57% 44% 57% 50%
RETW 8% 57% 44% 57% 50%
NwR 64% 57% 36% 57% 39%

these incorrectly matched signatures would never be
correctly classified. Second, in the (no, yes/double)
case matching fails and we overcount one vehicle
twice, at each sensor. This case prompted us to
consider strict and relaxed accuracy (Section ,
although with only 2 cases of 138 (1%), this event
is rare. The only exception is with NwR matching,
where 65 incorrect non-match (more than other algo-
rithms, Table [3) results in more of these Vi events
(7% vs. others 1-3%, Table[6). Finally, we find cor-
rect matches do not always result in correct classifi-
cation, either. Unfortunately, although our STW al-
gorithm did well on 42 out of 138 (30%) (yes, no), our
imperfect single-sensor classification and fusion fail to
turn them into correct classification. We see opportu-
nity that with better vehicle classification and sensor
fusion might help us to achieve a 30% improvement.

Overall, these results demonstrate that correlation
between these algorithms has significant, quantifiable
effects on end-to-end performance. While both algo-
rithms can be studied and improved independently,
we conclude that a full evaluation must consider both
in the context of real data, and good overall accuracy
requires a balance of good algorithms for matching,
classification and multi-sensor fusion.

4 Related Work

Our work builds on prior work in target tracking in
unconstrained and constrained environments.

4.1 Unconstrained Environments

Much early work in sensornets considered target
tracking in unconstrained environments. Early work
used dense networks of sensors tracking relatively
sparse targets, |21, (18, 14]. Zhao et al. use informa-
tion theoretic techniques for better vehicle path esti-
mation [26]. Shin et al. consider overlapping targets
and use information about distinct targets to clarify
the status of targets near each other [20]. As with
this prior work, we are concerned with confusion of
observations about target near each other (the mis-
segmentation in road traffic [16]); although for us the
roadway constrains target location (a simplification),
greater speed and lower separation complicate our
problem. We will discuss our approaches in Section

Computer vision provides an alternative approach
to tracking. Pahalawatta et al. employ Affine Gaus-
sian Scale Space to match image according to the
feature point detected [15]. The technique was intro-
duced by Baumberg to cope with the situation that
naive direct correlation coefficient comparison is not
enough or even impractical [1]. In Section|2.4, we face
a similar problem. Besides, they are using “Best-n-
match” method, which is infeasible in our scenario
because of the uncertainty of incoming vehicle num-
ber.

4.2 Constrained Roadways

Our work builds on prior work in vehicle tracking or
re-identification. Unlike most of them, we focus on
the effects of signature matching on correctness, not
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the application of re-identification for classification or
speed estimation.

Coifman proposes a system for freeway deploy-
ment [5, [4]. His algorithm looks for short sequences
of measured vehicle lengths that exhibit a strong cor-
relation between two stations, namely downstream
and upstream sensor nodes. The algorithm is sim-
ilar to our Numbering with Resynchronization (Sec-
tion , although he employs vehicle length and
pattern matching to correct for lane changes. He
get about 65% vehicle matching accuracy at highway
speeds. We show better correctness (up to 78%), but
at much slower speeds.

Cheung et al. consider vehicle classification [2, (3],
and study the matching problem. They use an array
of seven, close spaced, three-axis magnetometers and
study seven vehicles on an arterial. They show an
impressive 100% re-identification rate. Our results
show lower accuracy, but over more than 100 real-
world vehicles with sensors at 100 m separation.

Kwong et al. use a statistical model of signatures
for vehicle re-identification for travel time estima-
tion [10]. They claim no ground truth is needed
and their estimated matching rate is about 69%. We
instead assume vehicle travel time is relatively sta-
ble and our time-stamp based algorithms have recall
above 73%.

Oh et al. use heterogeneous detection systems for
vehicle re-identification [13]. They extract rich fea-
ture information from each individual vehicle, match
them with a lexicographic optimization algorithm,
then use the matching for travel-time estimation.
Their approach can be computationally expensive;
our approaches are quite simple by comparison and
generally suitable to run on-line. Our WETW is sim-
ilar to their prioritized time window algorithm; but
we show other algorithms can do almost as well as it,
even without extensive features.

Sun et al. use a combined inductive loop detec-
tor and image processing [22]. Their result is en-
couraging, with up to 91% matching rate in the best
case. However, the performance is sensitive to fusion
weight and video quality from two stations. We dis-
cuss parameter sensitivity of our algorithms in Sec-
tion[3.3. As with Coifman [5], they consider platoon-
comparison and assume highway conditions, while we

instead study slower traffic.

Three other groups have proposed different method
travel time estimation, a part of our time-stamp
based algorithms. Jeong et al. provides a method by
the frequency of the vehicle time stamp difference be-
tween sensors |9]. Dailey |7] and Petty et al. [17] have
looked at cross-correlation of raw signatures. Because
of signature size, they look at options to downsample
or aggregate raw signatures. We show that much less
information can provide better correctness (Section
2.4).

We have previously looked at sensor fusion to im-
prove classification accuracy [16]. This work assumed
perfect signature matching (an “oracle”) and showed
that sensor fusion can improve classification accu-
racy. Here we re-evaluate that work using a realistic
signature matching, showing that errors in matching
and classification are correlated, so overall accuracy
is higher than expected.

5 Conclusions

This paper explores multi-sensor target tracking,
evaluating both signature matching algorithms in a
multi-sensor vehicle classification system. Our re-
sults show that a simple static-time window algo-
rithm (STW) is both efficient and the most accurate
of a range of algorithms, including full raw signa-
ture comparison. We show that signature matching
has significant effect on the end-to-end accuracy of
a multi-sensor classification system. An important
effect is the correlation between matching and clas-
sification; we quantify that the algorithms are par-
tially correlated. Ultimately, we show that real-world
matching algorithms can reach end-to-end classifica-
tion accuracies within 90% of perfect matching when
evaluated in real-world field tests.
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The Numbering with Resyn-
chronization Algorithm

In Section [2.2.2 we introduced our Numbering with
Resynchronization (NwR) algorithm and described it
in text. Here we provide additional details and pseu-
docode for this algorithm.

Algorithm [3 shows psuedocode for NwR using

post-facto analysis.

The algorithm works as fol-

lows: We sort signature streams from upstream and



Algorithm 3 Numbering with Resynchronization al-
gorithm

Input: Dataset D,, and Dgown (signatures are sorted in their
time-stamp ascending order) and numbering span length
resync &~ Overall_Detection_Time/Numbering_Span#

Output: M (matching set), Nyp and Ngown (non-match set on
upstream and downstream)

1: starty, <« Min(time-stamp in Dyp) and startgown <«

Min(time-stamp in Dgown )

2: numbering_span « 1 and index «— 0

3: for sigyp in Dy, do

4: if sigyp.timestamp < start,, +numbering_span X resync
then

5 index «— index + 1

6 else

T numbering_span «— numbering_span + 1

8 inder «— 1

9 end if

10: SiGup-serialNo «— index

11: Sigup-ns < numbering_span

12: end for

13: numbering signatures in Dgown likewise

14: for sigyup in Dyp and Siggown in Dgown do

15: if sigup.serialNo = sigiown-.serialNo and sigyp.ns =
S$19gdown -ns then

16: M — M U {(sigup, 8igdown )}

17: Dyp — Dup\{Sigup} and Dgown Ddown\{Sigdown}

18: end if

19: end for

20: Put remaining signatures from either Dyp or Dgown into Ny,
or Ngown correspondingly
21: return M, Ny, and Naown

downstream in timestamp ascending order. Then for
each stream, we segment it into multiple span groups
based on the length of numbering span. After the seg-
mentation, we assign span number and relative index
within its span group for each signature. If two signa-
tures from two streams have the same span number
plus intra-span index, we declare a match. And for
those cannot find such counterpart, we declare non-
matches.

B Parameter Sensitivity

In Section we briefly summerized how sensitive
the accuracy of our algorithms are to settings of var-
ious parameters. Here we present a more detailed
evaluation of this issue. We focus on time-stamp
based algorithms because they are most successful.
An ideal algorithm is insensitive to parameter set-
tings, so even if mis-configured it will perform rea-
sonably.

We begin by considering STW, where the time win-
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Figure 5: Travel time distribution of the 65 Normal
vehicles.

dow size and location are the only parameters. Figure
[6] shows how STW'’s matching accuracy varies for all
possible window configurations. The x-axis and y-
axis are the lower bound and upper bound of time
window, while the grayscale value indicates STW'’s
recall for our experimental dataset. The best ac-
curacy (73%) occurs for range [14,44] s (6§ = 29 s,
v = 15 s). As can be seen in Figure [5] this time
window accepts most vehicles, since the window cen-
ter (0 = 29 s) is near the median vehicle travel time
(32 s). However, other outliers, which have a re-
ally long travel time is fundamentally difficult for any
time-stamp based algorithm.

STW is fairly robust to an imperfectly set window.
However if our parameters are off by 50%, we lose
about 20% accuracy. And a 20% change of window
only causes about 10% loss (accuracy 62%). In all,
we draw three conclusions from above observations.
First, as we expected, we have to locate the time win-
dow center (J) close to median travel time to get opti-
mal parameters. Second, the time window size should
be adjusted according to vehicle speed variance. The
reason is that the broader the window (large v), the
more incorrect matches and less correct non-matches
since it is easier to mistakenly match a singleton ve-
hicle to another one. And the narrower the window
(small v), the more incorrect non-matches and less
correct matches because a small travel time range
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Figure 6: Accuracy % of STW.

of Normal vehicles is accepted. Finally, STW works
surprisingly well (above 60% accuracy) over a wide
parameter ranges — upper/lower bound could vari-
ous in ranges [30,50]/[10,20] s approximately.

DTW adds an additional parameter, the Shift
Value (sv). To evaluate sensitivity to different shift
values, we search the entire parameter space (shift
value and window bounds). For each sv, we pick the
best accuracy over 2-D TW space and show them in
Figure [7. We see that DTW is quite insensitive to
sv, although accuracy drops when sv > 8 s and even-
tually lower than STW. The reason explains this is
that traffic is sparse and hence our premise in Sec-
tion [2.3.2 does not always hold. We assert that in a
short platoon, vehicle speeds are not independent but
in the experiment, most vehicle travels alone. Shift-
ing time window too much makes it harder to match
follow-up normal vehicle.

We also evaluated WETW using the same ap-
proach as DTW (with optimal other parameter) and
found it is quite insensitive to the wheelbase window.
We omit RETW discussion since it performs similarly
to WETW.

Reviewing how parameters affects the matching
accuracy shows us that our time-stamp based algo-
rithms, in general, are insensitive to internal param-
eters. STW yields reasonable accuracy over a wide
range of time windows. Besides, those parameters
are easy to configure under certain rules. For exam-
ple, time window should center around the estimated
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common vehicle travel time. The upper/lower bound
of time window should be chosen close to (1£50%)
of the travel time. We leave the parameter auto-
configuration as an open issue.

C Details about the relation
between matching and clas-
sification

We summarized the correlation between our match-
ing algorithm and classification in Section[3.4.5. That
summary omitted the details of the many cases we
considered.

Table 9 shows the full details of all cases we cons-



Table 9: Matching vs. classification in STW (dissection)

multi-sensor ups. downs. matching reported correct in multi- # in STW

class. result sig. sig. correctness veh. class. sensor class. 2-cat. 3-cat.

Vi U; D; correct match C(1)=F(Us;, D;)=G(i) 37 29
1 Us; X . C(1)=F(U:,X)=G(i)

Vi U, D, incorrect CEX; EUzv D, g ) 3 2
1 U, D, . C(x)=F(Ui, Dz)=G(i

Vi X Di incorrect C(i)=F(X,D;)=C(i) strict; relaxed 0 0

Iz Us; - correct non-match  F(U;)=G(i) 22 18

Vi U; D, incorrect match F(U;, D;)=G(i) 6 5

v — D; correct non-match  F(—, D;)=G(i) 24 12

Vi U, D; incorrect match F(Uz, D;)=G(i) 3 1
2 Us; X . F(U;,X)=G(i)

Vs X D, incorrect F(X,D,)=G(i) relaxed 6 2
1 Us; X . F(U;,X)=G(i)

% X D, incorrect F(X, Di)) #G((l)) 3 5
1 U, X . F(U;, X)#G(1

Vs X D, incorrect F(X,D,)=G(i) 0 0

VP Us; D; correct match C(1)=F(Us, D;)#G(i) 9 17
o U; X . C@1)=F (U, X)#G(1)

Vi U, D, incorrect C(x)=F(U., Dy) 4 5
0 Ui DI . C(X)ZF(U»;,DI)

Vi X D, incorrect C(H)=F(X,D,)=G(i) none 0 0

VP Us; - correct non-match  F(U;,—)#G(i) 6 10

VP U; D, incorrect match F(Us, D2)#G(1) 1 2

12 - D; correct non-match  F(—,D;)#G(i) 3 15

% U, D; incorrect match F(Uz, D;)#G(1) 0 2
0 Ui X . F(U;,X)#G(i)

1% X D, incorrect F(X,D,)£G(i) 1 3

VY — — - - 10 10

total vehicles 138 138

diered, and how we classified them. This table sup-
ports our prior results and illustrates the complexity
in evaluating correctness when faced with two sen-
sors, each of which may omit or duplciate or incor-
rectly detect a vehicle.
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