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Abstract

Sensornets promise to extend automated monitor-
ing and control into industrial processes. In spite
of great progress made in sensornet design, deploy-

ment and operational cost impedes use of sensornet
in many real-word scenarios—these challenges are so
great that industries often continue with infrequent,
manual observations over automation, even for key
business processes. In this paper we propose two
novel approaches to reduce system deployment cost,
and test those approaches in a real-world monitoring
of steam pipelines in oil industry. First, we make use
temperature differences between the pipeline’s surface
and the atmosphere reliable source of harvestable en-

ergy for sensornet operation. We demonstrate that
for temperature differences of 80 � or more, bat-
teryless operation is possible using only a low-cost
40x40mm thermoelectric generation module; thereby
significantly reduce costs of deployment and opera-
tion. Second, we show that non-invasive sensing can
infer blockages in water and steam pipelines, and
partial blockages in steam pipelines. Non-invasive
sensing eliminates the need to pierce the pipeline,
greatly reducing deployment cost. Finally, we evalu-
ate our “steam-powered sensing” system in an appli-

cation monitoring blockage in steam pipeline chokes

in a production oilfield. To our knowledge, this is
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the first industrial field sensornet deployment that
employ non-solar energy harvesting. To broaden
our results, we also show our approaches also ap-
ply to blockage detection in lower temperature water
pipelines through laboratory experiments.

1 Introduction

Automated monitoring and control of industrial pro-
cesses are becoming increasingly important as in-
dustrial operations grow in complexity and size.
Since 1960s, supervisory control and data acquisition
(SCADA) systems have been used to automate mon-
itoring and control of industrial processes in applica-
tions ranging from water management, power grids,
chemical refining and processing, to oil production
[14]. Today, SCADA systems are a multi-billion-
dollar-per-year industry, and the need for wireless
and distributed sensornet techniques is growing.

One effective use of SCADA systems can be seen in
oil industry. While the fabled “gusher” produces oil
from internal pressure, in most cases this kind of pri-
mary production can only extract a fraction (5–10%)
of oil in the ground. Today many older fields depend
on secondary production techniques, where water,
steam, or CO2 is injected to force out oil, allowing ex-
traction to approach 30–60% of reserves. While such
techniques are essential to meet energy demands, the
key limiting factor is cost, not technology. The cost of
automation needed for effective secondary production
guide SCADA and sensornet deployments. Although
oil companies have great technical sophistication, so-
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lutions as simple as monthly human monitoring of
a service are often seen as sufficient and more cost
effective than expensive automation. Even with rel-
atively inexpensive hardware, the cost to install the
sensor to monitor a pipe can easily top US$10k to
power it and tap the pipe.

In this paper we propose an inexpensive sensor-
net system to monitor steam injection in oilfields.
We directly address the cost of current approaches
through two contributions. First, we demonstrate a
new approach to harvest energy from temperature dif-

ferential inherent in the phenomena we are studying.
We exploit the Seebeck effect induced by heat that
is naturally present in the steam injection system to
generate enough power for sensor nodes, eliminating
any need for external power or batteries. Although
many prior systems have demonstrated energy har-
vesting, they have typically been from solar power or
vibration. We are the first to exploit heat for large-
scale industrial sensing and to show operation solely
on harvested power without batteries operating as
buffer. Our approach is important for extended op-
eration where solar is ineffective (for example, the
north shore of Alaska) vibration is insufficient, and
batteries are not easily replaceable.

Second, we employ non-invasive sensing techniques

to detect problems in steam distribution. Current ap-
proach to determine steam flow rate typically requires
direct measurement of differential pressure within the
pipeline. Installation of pressure sensing devices re-
quire production halt and piercing of the pipelines;
costing thousands of dollars. We, instead, observe
that external temperature observation is sufficient to
detect problems such as blockage or flow constric-
tion, and with care, even to infer flow rates, provided

we can observe at multiple locations. We argue that
pervasive industrial sensing requires this sort of non-
invasive sensing to reduce deployment cost.

Our final contribution is to demonstrate that our
approach to non-invasive, steam-powered sensing
works as a complete system, through both labora-
tory experiments and field tests. Although low-power
sensing and energy harvesting have been demon-
strated before, we are the first to demonstrate an
integrated targeted at a new application. To provide
this system, we added a custom thermoelectric energy

harvesting/conditioning unit and a custom amplifi-
cation board with calibrated thermocouples to sense
temperature using a standard Mica-2 motes, and de-
veloped new detection algorithms that run on this
platform.

Although we validate our approach with a very
specific oilfield deployment, the approaches are ap-
plicable to a wide range of industrial sensing. Many
industrial processes have moderate or large tempera-
ture differentials that could support energy harvest-
ing, and non-invasive sensing is important to bring
the cost of sensing in line with inexpensive commu-
nications and computation.

2 Problem Statement and Sys-

tem Overview

In this section we describe the sensing needs in mod-
ern oilfields followed by an overview of our prototype
sensor node. In later sections we cover the details of
our energy harvesting (Section 3) and sensing algo-
rithms (Section 4).

2.1 Sensing needs in an Oilfield with

Secondary Production

Most modern oilfields employ secondary production,
where water, steam, or CO2 is injected into the
ground to release otherwise difficult to extract oil.
In addition to helping release trapped oil, injection
helps maintain underground pressure to avoid ground
subsidence, a potential environmental problem and a
source of damage to wells. While secondary produc-
tion is essential to extracting oil in older fields where
the natural pressure is insufficient for primary (un-
aided) production, it greatly adds to the complexity
of the field.

Figure 1 depicts a simplified oil production scenario
with steamflood-based secondary production. Steam
is produced at a central site, (often a co-generation
facility that also provides electrical power) and is dis-
tributed throughput the field at high temperature
and pressure (250 � and 5000k Pa or more) [5].
Steam in the distribution network is actually an ap-
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Figure 1: Steam injection (right) and oil production
(left) in oilfield.

proximate mix of 70% steam and 30% water. Main-
taining this ratio (called steam quality) is important
to control injection characteristics. Special devices
called splitigator are necessary to maintain steam
quality at any pipeline branch. In addition, steam
pressure is regulated by a choke, a small, controlled-
size hole (about 1 cm or more in diameter) just before
an injection well. In the ground, steam helps heat oil
and bitumen, and provides fluid pressure to release
and drive oil to a nearby production well.

On the production side, an oil well extracts oil from
underground and sends it downstream towards the
refinery. It is important to monitor each well’s pro-
duction, both to understand the field’s behavior, and
because individual wells are often leased from differ-
ent owners, each of whom must be paid. In some
fields, each well’s production is individually instru-
mented. However, in most production fields, each
production line is directed to an automatic well test-

ing (AWT) facility before being merged in order to
reduce cost. The AWT allows multiple wells to share
common monitoring hardware for periodic produc-
tion audits. Wells also occasionally need to be flushed
with steam to remove blockages, so the steam distri-
bution system connects to the AWT, and a produc-
tion well can be isolated and its flow reversed to inject

steam when needed.

This brief description highlights the essential role
instrumentation plays in an oilfield. Steam quality
must be monitored in the steam distribution network;
flow rates at injection wells and chokes must be ob-
served; well monitoring is essential at the production
side; the ability to inject steam in production sys-
tems means the injection and production sides are
cross-linked and must be monitored for leaks. Yet all
this work must be accomplished cost-effectively, even
for wells that produce only a few barrels of oil per
day, and in fields that have hundreds or thousands of
production and injection wells!

2.2 Target Problem: Blockage at the

Steam Injection Choke

In this paper we focus specifically on the problem of
blockage at the injection-well choke in a steamflood

field. We define blockage as the decreasing of the
choke’s cross section due to obstructions. Field engi-
neers report that choke blockage is a serious problem
in field operation. Chokes are easily clogged by small
objects because their small bore is a natural point
of blockage. Sources of blockage occur naturally in a
steam distribution system due to scaling and corro-
sion in the pipe, buildup of any impurities or mineral
content in the water, and aging of the network and
choke. Partial or total blockage at a choke is a se-
rious problem because it alters the steam injection
rate, throwing off field management, reducing pro-
duction, and potentially eventually causing ground
subsidence.

Although our current work focuses of blockage at
the choke for steamflood fields, we expect that the
work also applies to several related problems as well.
Other points of operational concern include splitiga-
tor operation and AWT monitoring; both could use
systems similar to ours. We focus on steamflood sys-
tems, but we also show that our sensing algorithm
applies to waterflood networks (Section 5.6), and we
believe that our energy harvesting system could be
adapted for different thermal conditions.
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(a) A mica2, a custom am-
plifier board, a helio-mote
and a hose-clamp thermo-
couple.

(b) Deployed mount, in a
pelican box with lid open.

Figure 3: Mote system hardware.

2.3 System Overview

The goal of our sensing system is to detect blockages
at the choke of steam injection wells, and to do so
at a cost much lower than current invasive sensing.
We next briefly review the hardware and software we
have taken into the field to evaluation solutions to
this problem.

Figure 2 shows our system in the field deployed in
March 2010, with a logical diagram on the left and
a photograph of the deployment on the right. Each
sensor node in our system includes a mote with two
temperature sensors, a thermal energy harvester, and
a wireless network connection. Figure 3 shows a de-
ployment with two such sensor nodes and a base sta-
tion that is connected to the field SCADA system.
We review the hardware and software below, and dis-
cuss details of this field experiment in Section 5.7.
By comparison, Figure 16 shows as a current inva-
sive pressure sensor; we compare deployment costs of
our approach to current approaches in Section 5.8.

Each sensor node consists of a compute platform
based on a Mica-2 running TinyOS-1. Figure 3(b)
shows a mote packaged for field deployment, and 3(a)
individual system components and sensors. The sen-
sors themselves are NANMAC J-type thermocouples
with hose clamps to attach to the pipeline; Section 5.3
discusses the care that must be taken to get accu-
rate, calibrated temperature readings. Because the

voltage output by thermocouples is quite small (less
than 15 mV), we add a custom amplification board
to boost this signal 100-fold. The whole package is
powered by a custom-built thermo-electric generator
described in Section 3.

Software on our sensor node includes our new prob-
lem detection algorithm (described in Section 4), We
run the sensing algorithm locally on the mote and re-
port alerts as they occur to the field SCADA system
via the base station. In addition, we log tempera-
ture over the radio to the base station, and locally
to flash memory for debugging and long-term anal-
ysis. In our field experiments we disable logging to
flash as described in Section 5.2, but in operation, we
would expect local logging to serve as backup in case
of temporary network outages.

The base station should be a devices with wireless
communication with the sensor nodes that bridges
data into the field network and SCADA system. In
principle, a mote with a wired network connection, or
a multi-hop mote network could service this purpose.
We do not currently have permission to integrate with
the field SCADA system, so for our experiments our
base station is a mote that connects directly to a
laptop that logs data to disk.

2.4 Future System Design

Although we have built and tested our prototype sys-
tem, work remains before the system can be fielded
for long term operation. Open issues include fully
weatherizing the packaging and fully integrating it
with field-wide SCADA systems. In addition, addi-
tional packaging work would be required to insure the
system is explosion proof (Class I, Division 1) to be
safe for use near production wells.

3 Steam-Power: Harvesting

Thermal Energy

We now describe our motivation and design choices to
build a energy harvesting system exploiting the ther-
mal energy present in the oilfield’s steam distribu-
tion network. This “steam-powered” system will then
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(a) Logical view of deployment. (b) Physical view of deployment.

Figure 2: March 2010 field deployment of our sensing system.

provide the energy to power the blockage-sensing sys-
tem we describe in Section 2.3.

3.1 The Opportunity

The main reason for injecting steam into certain sec-
ondary production oil field is so that heat from steam
can cause the crude oil to drain into the underground
reservoir. The collected oil in the reservoir is then
pumped out from the well. The goal of our project
is to persistently monitor the flow of steam into the
injection sites and report any problems when they
occur. While framing our research problem, we ob-
served that heat from steam can be harvested to
sufficiently operate our sensors without any external
power source. In our system steam-power is obtained
by exploiting the Seebeck effect to generate electric-
ity from a temperature differential. Steamflood pipes
operate at around 260 �, while the ambient temper-
ature averages from 0–38 � over the course of the
year at our location, providing a significant temper-
ature differential. An electric circuit converts this
temperature differential into a flow of charge with a
small voltage differential; many such circuits in paral-
lel form a thermoelectric generator (TEG) to provide
usable voltage and current [15, 21]. While prior work
has looked at TEG for automotive applications or to
augment other power sources, we are one of the first

to look at powering sensors in production oil field
application. Also, due to efficient TEG, high tem-
perature of the steam, and a large thermal mass of
the pipelines, our prototype sensor node is the first
of its kind operated directly off the energy harvester
without a use of energy buffers such as batteries. We
will discuss other TEG related work in more detail
on Section 6.1.

Although we explore TEGs to monitor a steam
distribution network, many industrial applications
have temperature differentials that can be tapped,
including many pipeline systems, many systems with
engines or motors (even the ones that do not di-
rectly produce electricity) and exothermic chemical
processes. Although the high temperature differen-
tial in our scenario provides significant energy with a
relatively small TEG, other scenarios can use larger
surface areas coupled with energy buffers.

Our system demonstrates the concept of energy

sufficiency, beyond energy-efficiency, for ambient-
powered sensor networks. Energy-sufficiency argues
designing ambient-energy harvesting systems that
trade-off a more efficient design for lower cost but
that generate energy sufficient to sustain the moni-
toring system. Thus, while thermal-to-electric power
generation is inefficient, our cost-conscious design
(Section 3.2) sufficiently powers our sensing sys-
tem (Section 5.1). In fact, Section 5.2 shows that
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we can go further to batteryless operation. Before
those experimental results, we next describe our ba-
sic TE harvester (Section 3.2), power conditioning
(Section 3.3), and the physical mount (Section 3.4).

3.2 Thermo-electric harvester Design

We had several system requirements for our TEG-
based power harvesting system to satisfy. First we
need a thermo-electric module that works at the
250� plus temperature typical of the steam injection
pipes. Secondly we want the TEG module to harvest
sufficient energy to directly power mote-class devices.
Lastly, we want the power-harvesting module to be
low-cost to engender dense deployment.

To satisfy the first two requirement we choose the
1261G-7L31-04CQ thermal power generation module
from Custom Thermoelectric [15]. This module has
a maximum temperature rating of 260 � and, under
ideal conditions, is rated to generate up to 5.9 W.
With transmit power at highest gain (+10 dBm) re-
ported to be 82 mW [6] we should have sufficient
energy a mote-class device.

We do not use active cooling, or any buffer en-
ergy in batteries, to minimize the cost of deploy-
ment and maintenance. The cold side of our TE-
harvester mates to an aluminum heatsink, measuring
53/8 × 53/8 × 13/8 inches, While we apply a relatively
cheap thermal paste on the cold side, for heat trans-
fer to the heatsink, we did not use any thermal paste
on the hot side of the TE-harvester due to its high
cost. In Sections 5.1.1 and 5.1.2 we show that our
efficiency-cost trade-off in TEG design is sufficient to
meet our application needs.

3.3 Power Conditioning the TEG

Output

We add power conditioning circuitry to adapt elec-
tricity from the energy harvester to voltage and cur-
rent usable by our sensor node.

For this purpose, we chose the heliomote board
designed to power motes using solar power at
UCLA [23] for an off-the-shelf solution. Under nor-
mal operation, the heliomote board trickle charges 2

NiMH AA batteries from its solar panel input and
regulates power to a sensor node.

Given the Heliomote as the power conditioning
unit of our system, our first challenge was to adapt it
to work with the thermo-electric power. Since elec-
trical property of a typical TEG drastically differs
solar panels, simply replacing it with TEG did not
work. The heliomote needs an input voltage > 2.4 V
to charge the batteries that then supply the energy
to be conditioned to mica2. While a solar panel can
produce this voltage, a typical TEG generates much
lower voltage. We considered charging a single bat-
tery at 1.2 V, but some IC’s in the heliomote were
unable to operate at that voltage. Finally, we config-
ured one of our heliomote unit such that it directly
regulates the output voltage of the TEG to 3.0 V.
With this modification, the TEG directly powers the
mica2 and thus needs to provide all instantaneous
power requirements. We verify this capability in Sec-
tion 5.2.

A final concern is the system behavior during
the times when the thermo-electric power is insuf-
ficient for our prototype system run properly. (for
example, see Section 5.2). To gracefully handle
brownout, we enable the brown-out detection on the
Atmega128 processor to proactively shutdown if the
voltage drops below a user specified threshold.

While our application scenario provides continu-
ously available thermal energy and directly powering
our system is acceptable, we are currently also look-
ing into using capacitors (super- or otherwise) to ride
any load transients (Section 5.2). We plan to look at
modifying existing power regulation circuit designed
specifically for thermal power [27] and incorporate
design into our thermocouple board.

3.4 Mounting Design

A final step for the deployment of the thermal energy
harvesting system is the pipe mounting design. We
want a robust and stable design harvesting sufficient
energy to power motes. However there were several
constraints regarding the pipe mounting.

First, the outside pipe diameters in many oilfields
vary between 23/8 and 31/2 inches. Second, most steam
pipes are insulated to prevent heat loss. While we
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Figure 4: Mounting design for TEG

have permission to remove the insulation at locations
of interest, the insulation thickness varies between 2
to 4 inches at different locations. Since we want the
heat sink to be exposed to airflow, we prefer it is
located above the surrounding insulation. Third, we
wanted a mechanism to securely clamp our system to
the heated pipe.

Our solution to the above constraints is shown in
Figure 4. The base block of our TEG mounting sys-
tem is curved to match the exact pipe diameter at
our target site (23/8 inches). This base block also has
a height of 23/4 inches, to allow it to extend past an
expected 2 inches of insulation. A separate additional
block can be added to accommodate deployment to
locations with thicker insulation. Finally, the base
block also has curved grooves going through its one
side allowing us to pass two hose-clamps on either
side and clamp the entire apparatus securely to the
pipe.

4 Non-invasive Sensing of

Blockages in Pipelines

Our goal is to develop a low cost solution for pipeline
blockages detection in steamflooding injection sys-
tem. The energy harvesting unit (Section 3) reduces
the cost to bring power to our system. In this sec-
tion, we describe how our non-invasive sensing and
anomaly detection algorithms reduce the cost of sens-
ing by avoiding piercing of the pipeline. We could
network our upstream and downstream sensors, but
we did not do that for the ease of prototyping and

field-testing.
First, we describe the physics behind steamflood

blockages in Section 4.1. Then, in Sections 4.2 and
4.3 we describe our basic detection algorithm and an
extended algorithm which has lower false positives.

4.1 Background: pipeline physics

Our hypothesis is that pipe surface temperature can
indicate internal choke blockages. In this section we
summarize the physics of fluid flow in the pipe to
show how a blockage decreases downstream pressure,
which in turn decreasing surface temperature, a phe-
nomena we can detect.

To understand what happens in the pipe, we
must understand what happens when supersaturated
steam passes through the choke (see [34] and [8] for
general background). The choke is an intentionally
narrow opening in the pipe (a choke bean) designed
to keep steam at critical flow, where the fluid reaches
sonic velocity, effectively isolating pressure upstream
and downstream of the choke [8]. This isolation is es-
sential for oilfield operation, since downstream and
downhole conditions may vary, and also our algo-
rithm since we can observe temperature differences on
upstream and downstream of the choke (TU and TD)
to detect blockage. As we described in Section 2.2,
scaling inside the pipe, steam impurity, and device
wear can all cause blockages, which change the cross-
sectional size (A) of the choke. We write this change
as:

A′ < A (1)

where A′ indicates the value after a blockage oc-
curs. The volume of steam passing in a unit time
(ṁ, the mass flow rate) is determined by the choke
aperture size, so a partial blockage reduces steam
volume. The Thornhill-Craver choke rate equation
shows mass flow for straight-bore chokes [9]:

ṁ = 73Y A(1− 0.00625L√
A

)
√

ρPU (2)

The flow rate depends on gas expansion factor (Y ),
aperture size (A), choke length (L), upstream pres-
sure (PU ) and steam density (ρ), calculated by vapor-
phase and liquid-phase specific volumes. Field oper-
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ations keep ρ constant during normal operation. By
the definition of choked flow, PU is constant as well.

From Equation 2, we see that a partial blockage
(d′ < d) reduces flow rate:

ṁ′ < ṁ (3)

Since steam is compressible, a decrease in mass flow
decreases pressure [34]:

P ′

D < PD (4)

A lower downstream pressure reduces internal steam
temperature (TD,i) and therefore pipe surface tem-
perature. Experimental data shows this relationship
with internal temperature [13], as shown by the the
following empirical equation provided by field engi-
neering:

TD,i =
7006.3

9.48654− ln PD

144.9

− 382.55 (5)

Since we know that surface temperatures follow in-
ternal temperatures (TD ∝ TD,i), drop in pressure
implies drop in temperature:

T ′

D < TD (6)

and upstream temperature and pressure are not
changed (T ′

U ≈ TU , because it is choked flow),
so we can therefore detect blockage by looking for
relative temperature differences:

T ′

U − T ′

D > TU − TD (7)

The above reasoning suggests why choke block-
age is visible in our system. However, oilfields are
complex, and choke blockage is not the only possible
cause of pipe temperature changes. Weather changes
on the surface, and downhole pressure changes are
both potential sources noise. Our detection algo-
rithm (Section 4.2) triggers on sudden and relative

temperature differences, so it should not trigger on
surface changes that affect both sensors (such as
weather, since the relative differences between the
sensors are unchanged), or gradual downhole changes
(such as reservoir changes, since they take place over
days or weeks).

In this section we summarized how blockage even-
tually reduces downstream pipe skin temperature
and we provide theoretical and empirical equations
to prove that. Griston et. al. observes simi-
lar phenomenon that smaller choke bean size does
not affect upstream temperature much while signifi-
cantly reduces downstream temperature in their ex-
periments [13]. These results are consistent to our hy-
pothesis that we can use temperature to detect choke
blockage remotely. This background is used in our
algorithm design to provide good detection accuracy
(Section 5.5).

4.2 Design of the base algorithm

We next apply our observation that pipe temperature
relates to flow rate to detect choke blockage (Sec-
tion 2.2). Since blockages represent changes in flow
behavior, the principle of our algorithm is to look for
changes in temperature upstream and downstream of
a possible point of blockage, and to comparing short-

and long-term temperature averages. Our algorithm
adaptively learns the temperature model of a normal
pipe from long-term history. The short-term history
filters out noise while detecting rapid changes in pipe
temperature that indicate blockage events.

We study two kinds of blockages, each with its own
inference derived from Section 4.1:

partial blockage The pressure before the blockage
site remains relatively constant since it is part
of the large steam network and some steam still
flows through the choke. However, downstream
from the choke pressure decreases because of a
smaller effective orifice size. Therefore a large
drop in downstream temperature relative to up-
stream indicates a partial blockage.

total blockage Downstream of block, steam stops
flowing, so pressure and temperature immedi-
ately drop, and eventually it converges to am-
bient temperature. Upstream temperature also
drops because steam cannot flow through the
pipe, although because upstream remains con-
nected to the steam network it may remain
higher than ambient temperature.
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Figure 5: up/down-stream temperature and ∆T fluc-
tuation upon different blockages. Letters on the
graph show approximate status of the valve simulat-
ing blockage: F : full blockage, NF : for nearly full, P :
partial, and O for valve open (no blockage).

We show experimental results validating this hy-
pothesis in Figure 5, with letters indicating degree
of emulated blockage. (Definition of blockage lev-
els in our experimental system are in Section 5.4.)
We see that upstream temperature is relatively sta-
ble, although it dips slightly upon full and nearly full
blockage. Down-stream one is much more sensitive to
pipe status and hence we observe 10 distinct temper-
ature differential (∆T ) peaks for 10 blockages (3 × 3
+ 1) respectively. We evaluate our base algorithm in
Section 5.4 to test under various blockage.

We show the algorithm pseudo-code in Algo-
rithm 1. We first compute the short- (s(∆T )) and
long-term (l(∆T )) history of the difference between
upstream (Tu) and downstream(Td) temperature via
exponential weighted moving average. We choose
EWMA because it is light weight and easy to imple-
ment our 8-bit mote platform; short- and long-term
EWMAs may use separate gains (αs and αl). When-
ever the difference (δ) between two history exceed
pre-defined threshold (th block), the system declares
pipe blockage.

After a blockage is detected, we expect responders
to investigate the problem and reset the algorithm
after it is corrected. Since in our field tests (Sec-
tion 5.4) we artificially induce blockages rapidly (in
tens of minutes), we employ two addition rules for
rapid testing. One is that after blockage detected,

when two history series converge (δ = 0), we au-
tomatically reset pipe state in order to precede to
follow-up tests. The other is that we stop updating
the long-term history when the pipe is in anomaly
state (i.e. any non-normal state). These rules allow
our short-term tests to mimic long-term operation
with response teams.

Our algorithm successfully detects pipe clog at
choke, as shown experimentally in Section 5.4. Al-
though this algorithm is correct, upstream mainte-
nance can cause false alarms because they too cause
pressure drops. The next section shows an improve-
ment to avoid these false alarms.

Algorithm 1 Blockage detection algorithm.

Require: Tu, Td, th block, th maint, th norm,αs

and αl.
Ensure: Pipe state s.
1: s← NORMAL
2: while system on do

3: ∆T ← Tu − Td

4: s(∆T )← s(∆T ) + αs × (s(∆T )−∆T )
5: l(∆T )← l(∆T ) + αl × (l(∆T )−∆T )
6: δ ← s(∆T )− l(∆T )
7: if (δ ≥ th block) ∧ (s = NORMAL) then

8: s← BLOCKAGE
9: print “Pipe blocked”

{*** below are extensions from Section 4.3.}
10: else if (δ ≤ th maint)∧(s = NORMAL) then

11: s← MAINTENANCE
12: else if (δ ≥ th norm) ∧ (s =

MAINTENANCE) then

13: s← STABILIZATION
14: start timer
15: else if (timer fired) ∧(s = STABILIZATION)

then

16: s← NORMAL
17: end if

18: end while

4.3 Avoiding false positives

The above algorithm detects blockages around the
target, but regular steam distribution maintenance
will also change system pressure and temperature.
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Figure 6: The cause of false positives and our so-
lution. N, U or S means the pipe is in normal ,

upstream maintenance or stabilization state respec-
tively. A slashed-out B shows a false blockage detec-
tion suppressed.

Our base algorithm is unable to distinguish mainte-
nance from choke blockage, thus incurring false posi-
tives. We can avoid false positives by employing net-
worked sensor readings from other parts of the steam
distribution system. We next describe how we extend
our base detection algorithm to distinguish system-
wide changes from local blockages.

The lower plot of Figure 6 excerpts a particular
false alarm example and illustrates how our exten-
sion works. We distinguish upstream maintenance
from blockage by detecting the both start and stop of
maintenance period. We decide maintenance start if
δ < 0 because of the inertia at the choke making the
upstream temperature drop before the downstream
(time ≈ 3800s). Likewise, we detect the stop at the
next δ > 0 since the same inertia causes a reverse pro-
cess (time ≈ 4700s). Our extended algorithm then
gives the pipe a stabilization time period and sup-
presses any following potential δ peak, which the base
one would misinterpret as blockage (the cross marker
at 4710s). We detect blockage by any δ that larger
than th block but falls out of the stabilization period
(i.e. not preceded by a sign of maintenance start).

We discussed how we extend our base algorithm to
avoid false positives. The evaluation in Section 5.5

shows it successfully distinguish upstream mainte-
nance from blockage. We then discuss the method
of parameter tuning in the next section and shows
our algorithm is generic to applications other than
steam pipe.

4.4 Tuning for different environments

We developed the algorithm to detect steampipe
blockages, but will also show in Section 5.6 that, with
proper tuning, the same algorithm applies to hot wa-
ter distribution networks. We next show how to tune
parameters to work in either case.

The detection thresholds (th block, th maint and
th norm) are critical to trade-off accuracy, respon-
siveness and reliability. We assume ∆T follows a
normal distribution N(µ, σ2). Usually th block is
set higher than 3σ, according to 3-sigma rule [11].
The water in PVC pipe has lower temperature and
hence we observe less significant ∆T variance upon
anomaly. To make accurate detection, we set both
th block and th maint closer to 0. th norm could be
simply configured to a small enough value to ensure
hysteresis in our algorithm and we by default set it
to 0.

Short and long-term gain (αs and αl) determine
how our algorithm reacts to noise and how fast it
could response to blockage. Long-term history should
be relatively stable while short-term agile. Pipe ma-
terial (metal vs. PVC) fluid type (steam vs. water) or
ambient environment all affect how quick the temper-
ature reacts to pipe status change. With PVC and
water, the pipe material has better heat insulation
than metal, and hence we want to keep long-term his-
tory more stable because of the sluggish short-term
change. Observing the forgoing rule, we propose that
1/2 for short-term EWMA gain and 1/64 for long-term
in steam application while 1/4096 in water one.

Finally, the stabilization time period helps avoid
false positives. We find that a 360s timer is enough
for suppressing most noisy jitter when upstream
maintenance done. The reason is that it takes δ about
950s to subsides, with αl of 1/64 and the peak usually
happens within the first half of the period. For wa-
ter pipe, since we are using smaller αl and non-metal
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pipe, we set a longer timer because it takes accord-
ingly longer to stabilize.

5 Evaluation

This section describes the methods of evaluation and
their results for our problem detection system. We
begin by considering energy harvesting: how much
energy does it require and can steam-power provide
(Section 5.1) and whether we can operate our sen-
sor nodes without batteries (Section 5.2). In terms
of sensing, we consider sensor accuracy and cali-
bration (Section 5.3). Finally, we show that the
algorithm also applies to lower-temperature water
pipelines (Section 5.6) and that it works in the field
(Section 5.7) at much lower cost than today’s systems
(Section 5.8).

5.1 Long-term harvesting and con-

sumption potential

The steam-power system requires two things, sensor
nodes that are able to sense temperatures and ex-
ecute the blockage detection algorithm and energy
harvesters that are capable of producing sufficient
electricity for their corresponding sensor node. To
evaluate this, we next look at both TEG energy gen-
eration as a function of temperature difference and
load, and the energy consumption of our application.
We show that there is ample energy available for har-
vesting to drive a mote-class sensing system, even
with relatively small temperature differentials.

We first describe the result of experiments validat-
ing the energy harvesting potential of our TEG sand-
wich at two location: in-lab and on-site.

5.1.1 Energy Production: In-Lab Prototype

We simulate steam-pipes using a laboratory hotplate
(Thermolyne Type 900). This rectangular hotplate
can be heated up to the desired 260 �. For our lab
prototype, we used a small “hot”-block, 0.5 in high
and about the size of the TEG itself, for the contact
between the TEG hot-side and the hotplate. The

close proximity of the hotplate (with a larger sur-
face area than the hot-block) , however, results in a
hotter heat-sink due to heat convection. Thus the
thermal differential across the TEG actually starts
to fall with time and the TEG produces little power.
A similar observation has been made in a separate
previous work [41].

In order to simulate an expected temperature dif-
ferential of 80-100 �, we made two changes to our
setup. First, we increased the height of the col-
umn supporting the TEG sandwich (consisting of the
heat-sink, TEG, and the hot-side mount) to around
1.5 inches above the hotplate (Figure 7(a)). Increas-
ing the distance from the heat source, paradoxically,
results in better energy generation due to lesser heat
convection from the hot-plate. We also use a small
fan to simulate breeze to maintain a low equilibrium
temperature at the heat-sink.

With a test harness providing a stable temperature
differential, we next observe the voltage, current and
power characteristics of our TEG sandwich. We built
a high wattage resistor network, where we can vary
the load and measure voltage to infer power (Fig-
ure 7(a)). An ammeter was not used as the range of
current sourced by the TEG varies between 3 mA to
800 mA and requires switching the Ammeter contacts
in between this range.

We measured the characteristics of the TEG at dif-
ferent temperature differential across the TEG. Fig-
ure 7(b) shows power characteristics of our proto-
type TEG sandwich in lab. We observe that un-
der most operational conditions (temperature and
load), our prototype can provide greater than the
approximately 100 mW needed to power mote-class
devices [6].

5.1.2 Energy Production: on-site

Our final TEG mounting design is significantly dif-
ferent from the prototype (details in Section 3.4) to
allow fitting on the steam-pipes. Moreover the am-
bient temperature at our intended deployment loca-
tions reaching 50 � in summers.

To verify that our deployment version also harvests
sufficient energy we visited an operational oilfield of
our partners and deployed the TEG mounting appa-
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(a) TEG power measure-
ment harness: hotplate,
cooling fan, and the resis-
tor network (load) shown
here.

(b) TEG power curves at different tempera-
ture differentials. For even a 46 � differen-
tial, the TEG can output > 80 mW.

(c) Periodic sampling application: The top line
(channel. 2) shows voltage of TEG and the bottom
line is voltage across a 1.2Ω resistor (for current
measurement).

Figure 7: Setup for Power measurement and results: With optimal loads and depending on temperature
differential, TEG can provide between 0.3-0.8 W. The average power consumption of our steam-sensing
application, meanwhile, is ≈70 mW.

ratus on an steam pipe in December 2009. With our
sensing platform still under development, we simply
logged the open-circuit voltage of our TEG and spot-
measured the temperature. We observed a nearly
constant temperature differential of 100 � and open
source voltage of 3.8 V. Our measurement result from
a three hour deployment verify that our pipe-mount
TEG can harvests energy comparable, if not greater,
than the lab prototype. They also confirm, con-
sistent with theory, that power generation increases
both with temperature differences and higher abso-
lute temperatures. We now compare this harvested
energy with the energy consumption of our blockage
detection system.

5.1.3 Energy Consumption of Sensing

Our steam-sensing systems employs mica2, with
power regulation using a modified heliomote board
and a custom amplifier board to interface with ther-
mocouples. The entire system, therefore has ad-
ditional components beyond the mica2 for which
their are published energy consumptions results [6].

We therefore measured the power draw of our sys-
tem running the blockage detection algorithm (Sec-
tion 4.2). by adding observing the voltage drop across
a 1.2Ω resistor in series with our TEG and the load.

Figure 7(c) shows the consumption profile featur-
ing periodic sampling of temperature. We observed
an average current drawn of 25 mA and an average
voltage output from TEG of 2.8 V. Hence the long-
term power consumption is 70 mW, close to the high-
est power transmission of 80 mW reported for mica2
here [6].

The above result, coupled with the power harvest-
ing results in previous sections show that our TEG
can harvest significantly greater energy than needed
to meet the long term requirements of our sensing
system.

5.2 Batteryless operation?

While Section 5.1 shows there is ample available en-
ergy to operate our sensing system, our system elimi-
nates the battery completely (Section 3.3) to directly
power it. For such batteryless operation, energy
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(a) Logging to flash (erase-
write) causes two load spikes.

(b) At temperature differen-
tial below 80 � these spikes
cause failure and result in a
reboot.

Figure 8: Instantaneous load can cause failure.

harvesting must not only meet the average energy
demands over long-term but also the instantaneous

power requirements during continuous operation.
Given the large amount of headroom we showed

previously, we expected that batteryless operation
would be straightforward. Unfortunately, we found
that writing to flash has a high short-term power
draw. Figure 8(a) shows the erase-write spike typical
when writing to flash. These instantaneous spikes
consume, at their peak, around 0.26 W.Using the
hotplate and fan to create a temperature differential
across our TEG sandwich, we observed that when
this difference drops below ≈ 80 �1 the mote re-
booted (Figure 8). We conclude that tasks with large
short-term power draw make batteryless operation
difficult. In our case, we chose to disable flash log-
ging in favor of logging to the network.

An alternate approach is to temporarily buffer en-
ergy in a capacitor after the power regulation by
heliomote. This approach avoids use of a chemical
battery, but the capacitor provides some ability to
tolerate bursty energy requirements that occur dur-
ing flash write due to data logging. In order to test
whether capacitor covers peak energy usage, we carry
out a two-step test. First, we want to know if our
system can work under a lower TEG power output.
Using the hot-plate based test harness (described in
previous section) we observe that our sensing sys-
tem (mica2, heliomote, amplifier board, and ther-
mocouple) needs a baseline of 50 � TEG temper-

1temperature difference measurement is imprecise with +/-
5 � range due to variable contact using a manual thermocou-
ple

Table 1: Energy buffering test at TEG δT = 83.1 �
Add-on

capacitor (µF) System operation status

No capacitor always reboots upon logging

1000 logs 2 packets before rebooting

3300 logs 12 packets before rebooting

4300 no rebooting and works fine

6600 no rebooting and works fine

9900 no rebooting and works fine

ature differential (δT ) to simply turn on. We add a
1000 µF (to store the 2.3 mJ of energy needed for the
spikes) capacitor and observe that, with logging en-
abled, the system now reboots around a δT of 60 �.
Thus, including a capacitor allows us to log with just
20% higher operational δT from the baseline; how-
ever without any capacitor we need 60% higher op-
erational δT .

Knowing a capacitor with moderate capacity
(1000 µF) do help reduce the system operational
TEG δT , we proceed to the next step – whether ca-
pacitor capacity matters. Table 1 shows the corre-
lation between capacitor and system robustness. In
general as we expected, bigger capacitor buffers more
energy and hence logging fails less frequently as TEG
output power fluctuating (mainly because of hotplate
temperature oscillation). We here assume the charg-
ing time for capacitor with any capacity is always
sufficient, since our current scan interval is 10s while
it takes only tens of milliseconds to fully charge a
3000 µF capacitor in our system. In all, we conclude
that a large enough capacitor do improve our system
robustness.

5.3 Can we measure temperature ac-

curately?

The premise of non-invasive sensing is that pipe sur-
face temperatures are able to predict blocking and
constriction inside the pipe, and that we can evalu-
ate pipe surface temperature reasonably accurately.
We next evaluate this claims, examining how we cali-
brate temperature sensing in spite of several potential
sources of observation error. We breakdown the cal-
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ibration into following steps, from pipe raw temper-
ature to thermocouple output, to mote input value
and finally to mote ADC readings. We show that
our system is accurate enough in each steps to detect
problems without careful calibration, but that with
calibration we can predict internal temperature ac-
curately enough to infer internal flow rates given a
known fluid.

The first step of calibration is from pipe temper-
ature to thermocouple with two major factors. One
is the pipe insulation because it significantly affects
measured temperature distribution (µ and σ). To
mount thermocouple on pipe, we have to temporar-
ily tear down the insulation material, usually thermal
sponge and aluminum wrap. We test temperature
collected before and after insulation re-apply from
the same sensor and we find that mean temperature
rise from 244.86 � to 265.37 � and σ drops from
3.00 � to 0.78 �, with all other condition remain-
ing the same. In other words, we observe less envi-
ronmental noise and closer to steam temperature, if
pipe properly insulated. The other is thermocouple-
to-pipe contact. We believe hose-clamp style pro-
vide firmest contact than other styles, say magnet or
general-purpose (stick) probe. In the field, we ob-
serve that our hand-held Sper Scientific thermome-
ter with general-purpose probe could not measure
repeatable temperature, mainly because of the pipe
curvy and rusty surface.

Another calibration concern is thermocouple
voltage-to-temperature (V-T) non-linearity. We want
to know whether V-T relation approximates linear in
a small temperature range, since in the entire space,
usually we have to use high order polynomial conver-
sion [36]. From J type thermocouple calibration refer-
ence table [12], we pick up all points of which temper-
ature ranges between [0, 310] �. We then use linear
fitting find the gradient for V-T relation is 18.259 and
the y-intercept is 2.852. The R-squared value of the
fitting is 0.99995 and the standard deviation of error
between look-up table and fitting points is 0.887 �.
This shows the V-T relation is linear enough for our
algorithm.

The second step is from thermocouple output to
mote input voltage. We find that to run our de-
tection algorithm, it is unnecessary to do the cali-

Figure 9: Amplifier board repeatability test result.

bration. According to Seebeck effect, a voltage po-
tential at the two ends of a conductor when a tem-
perature gradient could be established along it [36].
When two different material soldered at one point,
we measure its temperature gradient by the voltage
difference between two legs of the custom thermo-
couple. We need the reference point temperature
(Tr) to calibrate each thermocouple because of the
thermocouple-to-voltmeter connection. However, we
are more interested in the reading difference between
two thermocouples than individual accurate reading.
Hence, no Tr calibration is required here because we
find the reference junction errors from two thermo-
couples cancel each other if both in the same isother-
mal box.

The last step is mote input voltage to mote ADC
value. There is one last variable in this step, our cus-
tom amplifier board. We first verify the two op-amp
channels connected to thermocouples behaves the
same. We connect thermocouples, amplifier board
and mica2, feed the same voltages to both op-amp
channel and record ADC values returned from mica2.
We sample different voltages and repeat the test for
four times. We report test result from one of the am-
plifier boards since they are fairly close. The mean
difference between two channel is 1.17 and σ is 0.68.
Next we quantitatively test the board repeatability
(Figure 9). From the four test, we conclude the two
channels are stable enough.
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Figure 10: temperature measured by mote and CR1k.

T = 18.259× ADC × 3× 1000

210 × β
+ 2.852 (8)

Finally, we combine and test all calibration steps.
Figure 10 shows that if we direct convert ADC to
temperature with minimum calibration, according to
Equation 8, we would only have near constant error
for each channel. V is voltage in mV and β = 100 for
the amplifier board gain. This clearly proves that we
can run our detection algorithm directly over ADC
value returned by mica2.

In all, we draw 2 conclusions. One is that our
system is linear enough to run our algorithm with-
out calibration. The other is that with post-facto
calibration we can predict temperature accurately.
Further, according to Equation 5,we believe accurate
pipe skin temperature eventually helps us estimate
in-pipe pressure and steam flow rate.

5.4 Does our detection algorithm

work?

Given our inexpensive, fully wireless platform, our
next step is to show we can detect problems. We
expect our base algorithm to work on all kinds of
blockage level: full, nearly full and partial.

Figure 11: Similar base and extended algorithm re-
sult on the sensor pair straddling the valve with
th block = 15, th maint = −16, αs = 1/2 and αl =
1/64. The bottom plot shows the raw up- and down-
stream temperature with pipe status mapping.

Since it is difficult to simulate blockage by choke,
we alternatively use valve on steam pipe to carry out
our experiment. Field engineers helped us to toggle
the valve between fully blocked (flow rate ṁ = 0),
open (ṁ = 100%) , nearly fully blocked (ṁ ≈ 10%),
open, partially blocked (ṁ ≈ 50%) and open again.
We repeated the procedure three times and finally,
we slowly but continuously shut off the pipe within
9 min to observe a gradual blockage. The dash line
in the bottom plot of Figure 11 depicts the whole
procedure. We deployed Campbell Scientific CR1k
datalogger with NANMAC D60 hose-clamp thermo-
couple and collected more than 12-hour long tem-
perature trace (1pm Mar 4th through 1am Mar 5th).
Figure 2(a) shows our sensor placement.

Figure 11 presents the result of our base algorithm
with th block = 15 �. The top plot clearly shows
how δ peaks triggers detection under our threshold
setting and the bottom plot provides the raw up- and
down-stream temperature data mapped to pipe sta-
tus change. Short- and long-term EWMA gain are
fixed to 1/2 and 1/64 respectively for this analysis ac-
cording to Section 4.4. We have examined choices of
both long- and short-term gain (evaluation omitted
due to space) and believe that these parameters are
suitable for our application.

A general observation is that our algorithm cor-
rectly detects all of the blockages (we ignore the final
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gradual blockage in the following evaluation). All 3
level blockages yield δ peaks higher than 15� and are
captured by our system. If we examine the bottom
plot of Figure 11 more carefully, we find that, first,
as we expected, up-stream temperature is relatively
stable under all kinds of blockages, although slight
drop upon full and nearly full ones. Down-stream
one is much more sensitive to pipe status and hence
we observe ten distinct peaks for ten blockages (3 ×
3 + 1) respectively. Second, surprisingly, that nearly
fully blockage yield the most down-stream temper-
ature drops and corresponding up/down difference,
even more than complete cases. And the top three
δ peaks belong to this type of blockage. We believe
that this is caused by choke flash – when the valve
is closed small enough it starts choking fluid. On the
contrary, total blockage completely shut-off the flow
and occupies downstream side pipe with “back” pres-
sure from reservoir through injection well, accord-
ing to field engineer. Third, partial blockage is the
hardest to detect. Insignificant downstream temper-
ature drop constrains our th block selection. Fourth,
our algorithm is highly responsive. For example, it
takes averagely around 6 samples (60s) to correctly
detect problems when th block = 15. Larger th block
may affect the detection delay, but not too much.
Finally, carelessly configured parameter would trig-
ger false alarms. An over-aggressive th block value
(≤ 5 �) mistakes normal temperature fluctuation for
pipe anomaly. However, one could easily avoid the
problem by taking temperature intrinsic property in
account, e.g. mean and deviation.

In all, we conclude that our base algorithm is ca-
pable of detecting all 3 kinds of blockage, especially
nearly full and full easily. According to the field en-
gineer, partial blockage is exceptionally rare in real
field. However, when we run our algorithm over the
sensor pair straddling the choke, our base algorithm
triggers false alarms as we discussed in Section 4.3.
The same blockage threshold captures seven out of
ten positive δ peaks in Figure 12. We next evaluate
our extended algorithms for avoiding false positives.

5.5 Can we avoid false positives

Section 5.4 shows that our base algorithm has good
accuracy on target choke blockage detection. How-
ever, it fails under the second scenario, MAINTE-
NANCE and triggers false alarms, which we show and
discuss later. In order to distinguish both scenarios,
we proposed extension to our base algorithm in Sec-
tion 4.3. In this section, We evaluate the extended
algorithm over the valve-straddling sensor pair (Tu

and T 1

d ) first and then the choke-straddling pair (T 2

d

and T 3

d ). We expect the extension should work on
both scenario, i.e. successfully detect target block-
age and MAINTENANCE while suppress the false
positives at the end MAINTENANCE state.

For the same threshold and EWMA gains, the
extended algorithm yields exactly the same result
as that of the base one over valve-straddling pair
for target choke blockage detection (Figure 11).
th block still successfully captures all blockages while
th maint triggers no false alarms. In short, we prove
that the extensions does not impair our base algo-
rithm performance.

We then evaluate how the extended algorithm
avoids false positives over the second sensor pair and
Figure 12 shows the result. As we discussed in Sec-
tion 4.3, each upstream valve operation incurs a pos-
itive δ peak after a δ valley because of the asyn-
chronous temperature drop on both sides. The base
algorithm with same threshold as we used in the first
sensor pair evaluation (th block = 15) captures seven
out of ten positive δ peaks upon up-stream valve op-
eration, although the actual choke remains open all
the time. However, the extended version triggers no

false alarms any more (seven slashed-out “B” tags).
The stabilization period (dotted stripes tagged as “S”
in the top plot) successfully suppress all positive δ
peaks as soon as MAINTENANCE anomalies are re-
set and δ rises back above 0. Besides, the system with
th maint detects all ten MAINTENANCE events
(tagged as “U”). Contrary to target valve blockage
scenario, fully up-stream blockage is the easiest to de-
tect. The reason is that the sensor pair is deployed far
downstream to the blockage spot (the valve) and the
choke effect subsides. Fully blocked pipe has no flow
while heat is still near-constantly dissipating, creat-
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Figure 12: Extended algorithm result on the sen-
sor pair straddling the choke with th block = 15,
th maint = −16, αs = 1/2 and αl = 1/64. The bottom
figure shows the raw up- and down-stream tempera-
ture with pipe status mapping.

ing the largest ∆T drop.

We carefully evaluate our improved algorithm in
two different scenarios — target blockage and up-
stream maintenance with temperature data strad-
dling the valve and the choke. We demonstrate that
our extended algorithm yields good accuracy and
triggers minimum false alarms. We next considers
applying our generic algorithm to other applications.

5.6 Generalizing to other applica-

tions: low-temperature, incom-

pressible fluid

We have shown our approach works for applications
in steamflood fields. We further believe our general
approach of non-invasive sensing can apply to other
kinds of pipelines. However, the physics of what is
being distributed affect the sensing: steam is a high-
temperature, high-pressure, compressible mix of wa-
ter vapor and fluid. Water has very different physical
properties: most importantly it is incompressible, as
well as lower pressure and temperature. These differ-
ence make detection of partial blockages difficult, but
we next show that we can still detect full blockage in
hot water distribution networks.

Figure 13 shows our testbed prototype and sensor
placement schema. Our hypothesis is that we should
detect both partial and total pipe blockage by our
algorithm in Section 4, with a different parameter
set from oilfield. It is composed of a tankless water
heater, a hot water recirculation pump, a plastic lid-
less tank, PVC pipes and valve fittings. During the 7-
hour long experiment, we used Go!Temp USB-based
temperature sensors [16] to collect pipe skin, ambient
and reservoir water temperature and different levels
of blockage are simulated by manual valve control.
For example, we turned valve on artery line n% off
and leave other branch pipes 100% open to mock up
a n% partial blockage.

Figure 14 shows how up- and down-stream pipe
temperature changes and Figure 15 gives detailed ag-
gregated temperature history and difference. The
sampling rate is 1 Hz and we set short- and long-
term EWMA gain to 1/2 and 1/4096 respectively. Ta-
ble 2 lists our procedure and compares median tem-
perature upon different pipe status. The first ob-
servation is that large downstream temperature drop
occurs upon total blockage. Temperature decrease
from about 44 � (dot-shadowed region in both fig-
ures) and finally converges to 39 � in about 1,500s.
As soon as the pipe status is back to normal, down-
stream temperature restores to 44 � immediately
(about 300s). The second observation is somewhat
surprising. Unlike that of total blockage, the temper-
ature change upon partial blockage (2040s–4914s and
14790s–23314s) is insignificant, except upon near-
total (90%) blockage at the end of the experiment.
Third, we find that contrary to downstream temper-
ature, the upstream temperature remains relatively
stable all the time. It is expected because, accord-
ing to the placement schema in Figure 13, the up-
stream sensor is before the branch point, and hence
regardless the artery pipe status, fluid always flow
undisturbed at least through the branch pipe.

From above observations, we reach raw following
conclusions. First, our algorithm successfully detect
total blockage (or near-total) in low temperature, low
pressure and incompressible fluid pipe. When flow in
pipe stops, although some fluid still trapped in it,
the downstream pipe eventually converges to ambi-
ent temperature as steam pipe. Figure 15 shows that
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Table 2: Experiment procedure and results

Time (s) Pipe Median up/down
start end status ∆T (�)

0 2039 Normal 2.7

2040 4914 50% blockage 3.1

4915 10074 total blockage 8.2

10075 14789 Normal 3.0

14790 16394 25% blockage 2.7

16395 18199 50% blockage 2.7

18200 19814 60% blockage 2.7

19815 21569 70% blockage 2.7

21570 23314 80% blockage 2.7

23315 25199 90% blockage 7.0

Figure 13: In-lab water-based pipeline prototype.

the difference of short- against long-term tempera-
ture history (∆T ) rises significantly from 0 � to a
peak of 5 �. And a threshold could be easily set to
detect the pipe status change. Second, it is difficult
to detect partial blockage on our water-based testbed,
contrary to steam distribution pipe. The main rea-
son is that water is incompressible, and hence par-
tial blockage has only insignificant influence on fluid
pressure as well as temperature. We expect different
flow-rate, velocity and pressure fluctuation respond-
ing to partial blockage for steam. Another reason is
that PVC pipe buffers more heat and dissipate slower
than copper pipe.

5.7 Evaluation of complete sensing

system

We have conducted several field experiments that
were designed to evaluate, develop, and verify three

Figure 14: Up/down-stream temperature and differ-
ence in water-based experiment.

Figure 15: Short/long-term history difference in
water-based experiment

.
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aspects of the overall system operation: (1) suffi-
ciency of the thermal electrical generator for modified
mote class systems, (2) effectiveness of the steam-
flood choke blockage detection algorithm, and (3) ro-
bust operation of the complete system in the oper-
ational oil field. Our experiments included iterative
in-laboratory experiments followed by a number of
oil field trips to Bakersfield, California.

For our prototype hardware design, we surveyed
and obtained a number of inexpensive commodity
components. In the laboratory, we conducted con-
trolled experiments on TEGs on a hot plate to col-
lect range of generated power. Based on our mea-
surements and survey of the mote class system, we
determined that the electricity generated by our pro-
totype would be sufficient under a typical condition
at the oil field. Then we made some simple modifi-
cations to the Helimote and Mica2 and successfully
operated the sensor node with electricity generated
by the TEG placed on the hot plate at lower than
expected temperature. Through this experiment, we
verified in the laboratory that our TEG system will
be sufficient to power the prototype node.

As a parallel effort, we designed a generic block-
age detection algorithm based on a simple principles
of thermodynamics. Due to non-trivial access to the
actual steam pipelines in field, we designed our al-
gorithm to be parametrized and easily tunable. As
a precursor to our field experiment, we also built a
scaled down version of a hot water pipeline to test
our algorithm. Using the experimental results on the
testbed, we were able to tune the parameters to ef-
fectively detect water pipeline blockage in the labo-
ratory.

During this time, we visited Bakersfield steam-
flood oil field to make the initial measurements on
the pipelines. We instrumented the steam pipelines
with the thermocouples and TEG and collected the
changes in temperature and generated power with a
datalogger. Using the steam valve, we also emulated
the blockage conditions by opening and closing the
valves over different durations. The data was ana-
lyzed to make tune the parameters of our algorithm.
Based on the range of temperature seen in the actual
data set, we designed a custom amplifier board and
connected range specific commodity thermocouples

to measure temperature information at a sufficient
resolution without causing damage to the prototype.

Then, two set of prototype systems were trans-
ported to Bakersfield for more complete system op-
eration experiments. The prototype system was pro-
grammed to run our algorithm as well as take logs
of all the measurements. For this experiment, we
instrumented our prototype around the steam pipe
valves and the choke. As in the previous in-field ex-
periment, we emulated the choke blockage by clos-
ing the valves. During this time, results of the algo-
rithm and temperature data were transmitted wire-
lessly and recorded on a laptop. Although secondary
battery was connected to the laptop, its limited bat-
tery life cause the laptop to fail sometime in the mid-
dle of the night. However, data collected during the
day proved to be sufficient and we verified that our
batteryless prototype did not reboot and continued to
transmit correct measurement data by reconnecting
the laptop to the system in the following morning.

In addition to the logging difficulties, we found
that the data collected by the sensor node around
the valve was not correct due to electrical coupling
of the thermocouple sensors. Therefore, we could not
confirm the correct workings of algorithm in the field.
However, the ground-truth temperature sensors were
instrumented right next to these thermocouples and
successfully recorded all the data. In the laboratory,
we were able to adjust the parameters to the algo-
rithm and verify the correct response of the system
using the recorded data.

5.8 System cost

Our claim is that our shift to small, non-invasive sen-
sors driven by harvested power can significantly re-
produce deployment costs. To evaluate this claim, we
next compare typical deployments today with cost es-
timates for our system.

Currently deployed systems: Figure 16 shows
as a current invasive pressure sensor: the circular pipe
fitting in the left of the figure with two large protrud-
ing taps. Installing a tap costs several thousand dol-
lars (mostly due to skilled labor) and requires shut-
ting down that portion of the steam pipe. Installation
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Figure 16: Invasive flow sensing with solar panel for
power.

costs of pressure sensing points and power to the sen-
sor can be as high as US$20,000 per site. Not shown
is the sensor itself, a device costing several thousand
dollars that takes differential pressure readings from
these taps. The figure does show the large (about
30×30 cm) solar panel and car-sized battery needed
to support this traditional, power-hungry sensor. Ac-
cording to the field engineers, the estimated cost of
the pressure sensors, a datalogger, and a solar panel
based battery packs is from US$5000 to US$10,000.

Because of these expenses, a great deal of sensing
in oilfields remains human-centric. Because of the
high cost of installation, not all the steam injection
sites are equipped with the monitoring points. Due
to high cost of the sensors, sensors are often moved
from one site to another manually. Accordingly, a
field technician visits the site about once a month, at-
taches sensors and a datalogger to the sensing point
to records pressure data over some duration, and up-
loads this to the field SCADA system via a laptop
computer. This task requires at least three person-
hours per test sites. Such human-driven sensing
reduces deployment costs, since the sensing points
are installed when the line is built and the cost of
the pressure sensor is amortized over many measure-
ment points. Human-in-the-loop makes the opera-
tional cost of each measurement fairly high when la-
bor, equipment, and travel time are considered: eas-
ily hundreds of dollars per measurement. This high

cost for each measurement discourages frequent mea-
surements and so prevents easy detection of problems
before they occur. In addition, we expect this recur-
ring cost to rise in future years as the workforce ages
and so the cost of human monitoring rises.

Our sensor-network-based system: By com-
parison, the capital cost of our system is quite mod-
est. Our prototype unit consists of a Mica2 (US$100)
for control, a modified heliomote (US$125) for power
conditioning, a custom amplifier board (US$50) and
two thermocouple sensors (US$70 in total) for sens-
ing, the TEG (US$50) and a custom heatsink and
mount assembly (US$200). Despite the system be-
ing a research prototype and so not benefiting from
economies of scale, component costs are less than
US$600. We expect these costs would be reduced
in volume.

More importantly, both the deployment and opera-
tional costs of our system are quite low. Deployment
can be done by a technician in an hour or two (deploy-
ment time for our field experiment was 2 hours, and
we expect future deployments to be half that). Since
deployment is non-invasive, steam flow need not be
interrupted and new plumbing is not required; since
it is self-powered, electrical expertise is not required.
The primary technical skills are SCADA integration
and skills for working safely around high tempera-
ture pipes. We estimate deployment cost at around
US$300.

We see no recurring operational costs for sensing.

We believe these significant reductions in both ac-
quisition and operation will allow much greater de-
ployment of sensing with systems such as ours than
are possible today.

5.9 System robustness

Although we showed our system works in the lab and
for short-term field deployments, a long-term, real-
world deployment raises a number of questions about
system robustness. We next look at two questions re-
lated to system reliability under different conditions.
Do environmental changes or sensor location affect
our algorithm accuracy.
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Table 3: Pipe temperature variation along time.
Tu Td ambient

(�) (�) temp. (�)
time (s) µ σ µ σ µ σ

Noon 258 2.7 261 2.1 19 1.4

Evening 261 0.8 262 1.0 17 0.7

Midnight 258 1.0 263 1.0 10 0.23

5.9.1 Diurnal effects

In many locations, outside temperature can vary by
30 � or more between day and night, and by 50 � or
more over the course of a year. We therefore looked at
our system to evaluate if environmental temperature
changes affect TEG or sensing performance.

During our overnight deployment the ambient tem-
perature varied between a high of 22 � and a
recorded low of 9 �. However the system was up-
and-running, without a single reboot, when we re-
turned next morning. Hence our thermal harvester
can demonstrably support the sensing application
through-out the day, irrespective of the affects of the
diurnal variation in ambient (and possibly pipe) tem-
perature.

We then verify the correlation between pipe tem-
perature we measured and ambient temperature, es-
pecially diurnal amplitude. We choose three time
series sections to represent noon (12:30pm–1:00pm),
evening (4:40pm–6:00pm) and midnight (11:00pm–
0:40am) scenario, We discuss mean temperature first.
The ambient temperature drops from 19 to 10 � but
pipe temperature remains relatively constant. Next
we find that in day time the pipe temperature mea-
sured has more jitter than night time, according to
the standard deviation comparison, but the differ-
ence is still insignificant. Up-stream co-generation
power cycle or distribution branch valve is likely to
have more impact. We finally conclude that there is
no strong correlation between pipe temperature and
diurnal amplitude and our pipe has similar tempera-
ture distribution at any time of the day. And hence,
our algorithm should work all the time.

According to forgoing discussion, the diurnal am-
plitude does not interrupt TEG function and has no

Figure 17: Mote radio packet loss distribution. Each
marker represents one sample missing from data set.

significant impact over pipe line temperature. We fi-
nally conclude that diurnal amplitude does not affect
our system performs.

5.9.2 Radio transmission reliability

Next, we want to verify that the communication be-
tween our system and base station is reliably. Since
we hide the mote antenna inside the pelican box to
prevent potential environmental hazard to our de-
vice, we expect packet loss. The distance between
base station and sensor is about 4 m.

Figure 5.9.2 clearly shows the distribution of trans-
mission failure. Each red cross represents one packet
loss and we infer the data from discontinuities in re-
ceived packet sequence number. We find that the loss
is uniform in the whole time space with slight bursti-
ness. And no significant evidence shows that the loss
of two motes is correlated. The total packet loss
rate is 0.61% (31/4914) at mote-1 and 0.67% (33/4914)
at mote-2. And we conclude that the wireless com-
munication channel is robust enough to ensure base
station meaningful data series.

5.9.3 Sensor location

Finally, exact sensor location can effect system oper-
ation. The physics of steam flow in a pipeline have
unusual properties around points of constriction: a
phenomenal known as flashing. Sensor placement can
therefore affect results.

Figure 18 compares temperature fluctuation at dif-
ferent downstream spot (after valve) upon blockage.
In order to clearly plotting all three series, we ag-
gregated them by a 50-sample long window. T 1

d is
temperature right after valve. T 2

d is after T 1

d but be-
fore the choke and T 3

d is after the choke. In gen-
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Figure 18: Aggregated all three down-stream tem-
perature.

eral, all three series shows distinguishable drop at
three level blockages, in different magnitude. How-
ever, more careful contrast reveals some other inter-
esting results. Contrary to T 1

d and T 3

d , T 2

d shows that
temperature upon full blockage is lower than that of
nearly full blockage. The reason is that T 2

d is far-
ther down-stream than T 1

d to the valve and hence
the “choke flashing” transient after the valve or choke
does not exist at T 2

d but affects T 1

d and T 3

d .

In all, we find that sensor placement affect result
to some extent, but we may adjust our algorithm
parameter to cope with peak ∆T value variation.

6 Related Work

Our work builds on prior research results in energy
harvesting, ,change detection algorithms ,and sen-
sor networks for industrial monitoring. We consider
these areas in the following sections.

6.1 Energy Harvesting Systems

Energy harvesting for sensor network has been an ac-
tive area of research. Today, electricity can be imme-
diately harvested from several types of energy sources
at a relatively low cost. These include light, wind,
vibration, heat, magnetic, and radio [7]. Low-power
sensor nodes can be powered by even a small frac-
tion of ambient energy. Accordingly, there have been
a number of research on scavenging ambient energy

to operate wireless sensor nodes, some using tradi-
tional sources such as sunlight, vibration, and me-
chanical [35, 46, 32] while others using more exotic
methods as body heat, radio fields, and multiple en-
ergy sources [28, 39, 37]

One of the first research in energy-harvester
based sensornet used solar power to drive individual
nodes [22, 44]. Heliomote was the first system to in-
tegrated solar-power and power conditioning to drive
mote-class hardware [35]. We leverage this prior work
and use a modified version of the heliomote to con-
dition the output of our TEG. Prometheus replaced
rechargeable batteries with supercapacitors to reduce
energy loss during the conversion process [19]. Am-
biMax platform further increased efficiency by per-
forming maximum power point tracking (MPPT, es-
sentially matching the source and load impedance)
and adds multi-modal (solar and wind) energy har-
vesting [33]. Each of these prior platforms employ
battery or supercapacitor to isolate energy harvest-
ing from consumption. We show that this buffer can
sometimes be eliminated or reduced.

Researchers have looked at optimizing the effi-
ciency of energy harvested with large (25 W) waste
water systems [38]) to lower power generators using
automobile waste-heat(4 W) [29] and even for micro-
generators that use soil-to-air thermal gradient gener-
ating a maximum of 0.35 W [26]. Our work provides
a cost-efficient and energy-sufficient solution for pow-
ering an embedded system. Other researchers have
investigated harvesting thermal energy for storage in
energy buffers. Mateu et al. harvest about 5 mW
using the thermal gradient between human body and
ambient temperature but use NiMH battery to store
energy [28]. Sodano et al. argues that TEG modules
can generate greater power while charging batteries
quicker than piezo-electric system under typical con-
ditions [41]. Our work provides a batteryless solu-
tion and focuses on integrating thermal harvesting
with sensing, optimized for low-power, low-cost, sen-
sor network applications.

The Micropelt TE-node is most closely related to
our work. The Micropelt platform low-power (sub-
10 mW) sensor node [30] with an internal 100 µF
capacitor for energy storage, with harvesting from a
custom thermo-electrical generator [4, 3]. Our work
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differs in that we use a general purpose senor plat-
form, evaluating the potential and trade-offs for bat-
teryless operation. We also explore a general pur-
pose platform (running TinyOS) which allows us to
experiment with variety of sensing and sensor fusion
algorithms.

6.2 Change-point detection Algo-

rithms

Many real-time monitoring systems use abrupt detec-
tion [2] or change-point detection [1] to detect prob-
lem from observed. For example, change point detec-
tion is used to detect anomalous behavior in Internet
for the purpose of security [45]. Several change-point
detection algorithm exist; many adapt exponential-
weighted moving average (EWMA) because it is re-
liable, adaptive and easy to implement and config-
ure [18, 43, 24].

Our mote software leverages the implementation of
bit-shift-style EWMA. Trifa et al. develop an adap-
tive yellow bellied marmot alarm call detection al-
gorithm based on EWMA of the environment noise
monitoring [43]. Our work uses similar concepts to
detect significant change in pipe skin temperature us-
ing EWMA. Kim et al. proposes several interesting
EWMA-based algorithms to optimize streaming de-
tection [24]. One of their algorithm, called flip flop fil-
ter, keeps both agile and stable EWMA and switches
between the two to find the best baseline to use in
the algorithm. Although our algorithm also main-
tains two EWMAs, we directly compare these two
traces to detect sudden changes in temperature of
the pipeline.

6.3 Pipeline monitoring systems

The key difference between a sensor in a tradi-
tional SCADA system and a sensor in a sensornet
is that each sensornet node contains a programmable
processor[31, 10]. The sensornet nodes are designed
to be inexpensive and consume little power to oper-
ate. In a most traditional sense, wireless sensornet
nodes are programmed to form a network and routes
to efficiently sample and aggregate sensor data. Since

these nodes are programmable, researchers have pro-
duced various useful applications over the last decade.
Highly successful examples of the wireless sensor net-
works include UC Berkeley Motes and Smart Dust.

Most pipeline monitoring research works are tar-
geting low-temperature, incompressible fluid [42, 25,
20, 40], while we are focusing on high temperature,
high pressure and compressible steam. Besides, we
employ a different sensing modality —temperature,
while others do vibration or acoustic. Pipenet [42]
prototypes an urban sewage monitoring system based
on wireless sensor and demonstrates that they can
detect water leakage by vibration frequency analysis.
NAWMS [25] instead focusing on personal water us-
age. Although they use similar hardware, but their
linear programming based algorithm is still different
from ours. Jin et al. [20] and Sinha [40] both exploit
acoustic sensor for pipe line monitoring. Jin focuses
on a general sensor network platform while Sinha’s
work is mainly about instrumentation and calibra-
tion.

Zhu’s work relates to ours most in terms of sensing
modality and target fluid. He shows the feasibility
of temperature monitoring for blockage detection of
pulverized coal injection system [48]. He mount ther-
mometers on branch pipes to furnace and run detec-
tion algorithm based on temperature variation along
pipe. His algorithm takes input of instantaneous pipe
skin temperature and up/downstream ∆T , ignoring
long-term trend, and then compares them to pre-
configured thresholds. Our approach is similar, but
we examine ∆T alone to avoid extra configuration
and employ long-term EWMA to build baseline in
order to be adaptive. Finally, we use inexpensive and
portable hardware (less than US$600) comparing to
his centralized system. Although not explicitly men-
tioned in his paper, we estimate it is likely to cost
around US$1000 for industry control computer, spe-
cialized signal processing module and signal transmis-
sion wires. Additionally, our system has potentially
good scalability and low deployment cost.

We described the potential of sensor networks in
oilfield production systems previously [47]. While
that work identifies the potential, in this paper we
demonstrate a field-tested system, evaluate specific
sensing algorithms, and demonstrate that the whole
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system can operate on steam-power.

7 Conclusions

We have described a system for steam-powered sens-
ing to detect pipeline blockages. The work showed
the potential to power a sensor network by the phe-
nomena being sensed, to operate without any bat-
tery. We developed an algorithm to detect prob-
lems in pipelines using non-invasive sensing. We have
demonstrated the effectiveness of this system and its
components through laboratory tests and field exper-
iments. Although we have developed this system to
match the needs of sensing blockage in steam dis-
tribution networks, the principles of thermal energy
harvesting and non-invasive sensing apply to a range
of industrial sensing applications.
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A Proof of reference point tem-

perature cancellation

In Section 5.3 we assert that we do not have to cali-
brate the reference point temperature on thermocou-
ple We here provide a formal proof about how the
errors from two thermocouples cancel each other, as-
suming both in the same isothermal box.

Figure 19 shows a J-type thermocouple connection.
Here Vu and Vd are the voltage generated by Tu and
Td at Ju and Jd.

2 while there are other four reference

2For modeling simplicity, we treat the voltage potential

junctions to voltmeter in a isothermal box. V ′

u and
V ′

d are the actual voltmeter readings. If we compare
theoretically real thermocouple voltage output ∆V
against practical voltmeter readings ∆V ′, we have

∆V = Vu − Vd

= ρ(Tu)− ρ(Td)

V ′

u = ρ(Tu − Tr)

V ′

d = ρ(Td − Tr)

∆V ′ = V ′

u − V ′

d

= ρ(Tu − Tr)− ρ(Td − Tr)

= ρ(Tu − Td) + ρ(Tr − Tr)

= ρ(Tu)− ρ(Td)

= ∆V

And ρ is the thermocouple pseudo-coefficient. The
reference junction errors from two thermocouple can-
cel each other if we ensure that they are all in a
isothermal box. More clearly, when two reference
junction pair (J1 and J2 against J3 and J4) has the
same metal combination under same temperature,
their voltage potential is constantly equal.

B Parameter sensitivity of the

basic sensing algorithm

Section 5.4 and Section 5.5 have shown that our algo-
rithm is able to detection steam choke blockage under
certain parameter settings. We next study how sen-
sitive those results are to the parameters settings, to
learn how tolerant the application is to different sit-
uations or potential misconfiguration

Figure 20 shows our algorithm performance with
different upper threshold (th block). Short- and long-
term EWMA gain is fixed to 1/2 and 1/16 respectively
for this analysis according to Section 4.4. We con-
figure αl < 1/64 to reset the long-term history to

along different wires as a single point voltage source, although
this is a common misunderstanding that voltage is generated
entirely at the soldering junction of dissimilar material. In re-
ality, voltage or electromotive force is introduced by the tem-
perature gradient along each wire separately. Differences ins
wire material leads to the voltage difference between the two
ends when the wires are connected.
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Figure 20: Accuracy and false alarm at different
th block (αl = 1/16) .

normal level between any two controlled blockages
We have examined choices both long- and short-term
gain (evaluation omitted due to space) and believe
that these parameters are suitable for our applica-
tion. The whole experiment give us three times for
each type of blockage and we are also presenting false
alarms when th block ≥ 2 �.

We draw two observations from Figure 5. First,
carelessly configured parameter triggers false alarms.
An over-aggressive th block value (≤ 5.3 �) would
mistake normal temperature fluctuation for pipe
anomaly. However, one could easily avoid the prob-
lem by taking temperature intrinsic property in ac-
count, e.g. mean and deviation. Finally, our algo-
rithm is not sensitive to long-term ∆T history gain,
αl, as long as it is reasonably small. Figure 21 shows
that larger αl yields higher δ peak, because long-term
history are more sluggish, but also takes more time
to subside when pipe back to normal. However, ac-
cording to those δ peak values, it is easy to optimize
parameter set for all 3 αl’s.

In all, we conclude that our algorithm is sensitive
to detection threshold but not to history gains. How-
ever, parameter configuration is still easy and We find
a range of parameters to yield 100% accuracy and
limited detection delay within limits.

Figure 21: δ fluctuation influenced by different αl.

Figure 22: Evaluation of improved algorithm run-
ning between Tu and T 1

d for choke blockage detection.
th maint is fixed at 16 �.

C Parameter sensitivity of the

extended algorithm

Section 5.5 shows that our extended algorithm suc-
cessfully avoids false alarms caused by pipe mainte-
nance. Similar to the sensitivity evaluation of the ba-
sic algorithm (Section B), we next study the extended
algorithm’s robustness to parameter variations. We
apply our algorithm to two different sensor pairs and
evaluate blockage and maintenance threshold sepa-
rately.

We first evaluate our improved algorithm param-
eter sensitivity between Tu and T 1

d , straddling the
valve for blockage detection scenario. Our hypothe-
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sis is that the new algorithm should performs similar
to the base algorithm, or better. We fix th maint
at 16 � to simplify the analysis, since this parame-
ter is not critical for blockage detection (Likewise, we
set th block as 16 � in the next scenario evaluation).
This number is not randomly chosen, we prove that
it works well for MAINTENANCE detection and is
good for our algorithm robustness test. Figure 22
shows that generally, the algorithm tweak does not
affect the detection of this scenario comparing to
Figure 20, although we have some MAINTENANCE
false alarms. We still find a range of th block, [8,
18], which yields perfect detection — 100% detection
accuracy for all three level of blockage and 0 false
alarm occurrence. Another similarity is that larger
threshold makes it harder to trigger detections and
the system fails all detections if th block ≥ 27.

We separate two kinds of false alarms — false
blockage and false MAINTENANCE into two dotted
lines in Figure 22 and discuss them here. Similar to
the base algorithm, an over-aggressive (small) thresh-
old is likely to mistake signal series jitters for block-
age anomaly. But a reasonable parameter configu-
ration, th block ≥ 8 easily eliminates the problem.
The occurrence of MAINTENANCE false positive is
because of the asynchronous history variation. Upon
blockage, both short- and long-term history would
rise in different speed but parameter misconfigura-
tion (th block ≥ 22) may prevent the system detects
at the first time. After a certain time, if the anomaly
settles, the drop of ∆T would make short-term his-
tory drops below long-term history. This δ valley
would then be captured by the system and report as
MAINTENANCE.

We next evaluate the algorithm on T 2

d and T 3

d ,
straddling the actual choke. Our hypothesis is that
since the valve is far upstream to the both spots
and we use it for blockage simulation, our algorithm
should be able to distinguish this anomaly from choke
blockage. Figure 23 shows that the algorithm success-
fully detects the MAINTENANCE scenario at rea-
sonable false alarm rate. The first observation is a
smaller perfect detection parameter range — [15,17]
of th maint, comparing to the previous case. How-
ever, we believe this problem is fundamentally harder
than choke blockage scenario for two reasons. First,

Figure 23: Evaluation of improved algorithm running
between T 2

d and T 3

d for MAINTENANCE detection.
th block is fixed at 15 �.

for MAINTENANCE the inertia of the choke cause
more unpredictable ∆T variations, which is the pur-
pose of the choke — regulating and separate down-
stream pressure from the upper one. The other is that
valve is relatively farther to the two sensors and we
believe distance somehow absorbs the valve operation
impact and incur more noise to the data (briefly dis-
cussed in Section 5.9.3). Therefore, parameter mis-
configuration, say th maint ≤ 7 or th maint ≥ 24
triggers a certain number of false blockage or MAIN-
TENANCE alarms. Another observation is that,
contrary to previous scenario, full upstream block-
age is the easiest to detect, easier than nearly-full.
The reason is similar to that of the last observation,
two sensor are far downstream to the blockage spot
and the choke effect subsides. The full blockage cre-
ates the most ∆T drop while partial one has only
insignificant.

We carefully evaluate our improved algorithm in
two different scenario — blockage and upstream
maintenance with temperature data straddling the
valve and the choke. We demonstrate that our al-
gorithm yields good accuracy and reasonable false
alarms in a wide range of parameters for steam pipe.
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