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Abstract— State-of-the-art anomaly detection systems deployed
in the oilfields are expensive, not scalable to a large number
of sensors, require manual operation, and provide data with a
long delay. To overcome these problems, we design a wireless
sensor network system that detects, identifies, and localizes major
anomalies such as blockage and leakage that arise in steamflood
and waterflood pipelines in oilfields. A sensor network consists of
small, inexpensive nodes equipped with embedded processors and
wireless communication, which enables flexible deployment and
close observation of phenomena without human intervention. Our
sensor network based system, SWATS (Steamflood and WAter-
flood Tracking System), aims to allow continuous monitoring of
the steamflood and waterflood systems with low cost, short delay,
and fine granularity coverage while providing high accuracy
and reliability. The anomaly detection and identification is
challenging because of the inherent inaccuracy and unreliability
of sensors and the transient characteristics of the flows. Moreover,
observation by a single node cannot capture the topological
effects on the transient characteristics of steam and water fluid
to disambiguate similar problems and false alarms. We address
these hurdles by utilizing multi-modal sensing and multi-sensor
collaboration and exploiting temporal and spatial patterns of the
sensed phenomena.

I. I NTRODUCTION

State-of-the-art anomaly detection systems deployed to
monitor pipeline (oil, steam, water, and sewer) networks have
major shortcomings. Supervisory Control And Data Acquisi-
tion (SCADA) systems [1] for pipeline network in oilfields,
for example, are expensive (equipment and maintenance), less
scalable (low density in time and space), not flexible (protocol
change and software update), not interoperable (hardware and
software), and provide the data or result with long delay.
Moreover, field engineers need to control and maintain the
equipments manually. Furthermore, because SCADA systems
utilize long-range point-to-point communications between the
control room and each well, they are less energy efficient to
operate for long term, and do not support collaboration among
wells for in-situ automation for monitoring.

Wireless Sensor Networks (WSN) is an attractive tech-
nology for applications in extreme environments such as

This research has been funded in part by NSF grants EEC-9529152 (IMSC
ERC), IIS-0238560 (PECASE) and the NSF Center for Embedded Networked
Sensing (CCR-0120778), and partly funded by the Center of Excellence for
Research and Academic Training on Interactive Smart Oilfield Technologies
(CiSoft); CiSoft is a joint University of Southern California - Chevron initia-
tive. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of any of the above organizations or any person connected with them.

oilfields which have dangerous chemicals at high pressure and
temperature. Furthermore, equipments are located in downhole
or sometime under the sea. Production and injection wells can
be distant from power, control, and operator. Once system is
deployed, it is difficult to physically access the sensors, so it
is desirable to be able to maintain and monitor the systems
remotely as much as possible. Such a network of sensors
consists of battery powered nodes that collaborate to observe
and conclude the health of an oilfield. If we use inexpensive
sensors, it becomes economically feasible to deploy a large
number of sensor nodes over a large area to cover the entire
oilfield, providing much higher spatial and temporal resolution
in sensor readings. Fig. 1 depicts a conceptual diagram of
steamflood monitoring using WSN.

We have designed a system using WSN, called SWATS,
to detect, identify, and localize major problems that arisein
steamflood and waterflood pipeline networks in oilfields. Our
system aims to allow continuous monitoring of the steamflood
and waterflood system with low cost, short delay, and fine
granularity coverage while providing high accuracy and re-
liability. Our system detects and identifies major anomalies
in steamflood pipeline networks: blockage, leakage, outside
force damage, generator and Splitigator malfunction. These
anomalies are disambiguated from many false alarms: genera-
tor outage, downhole pressure change, phase splitting at piping
tees, change in two-phase steam quality, sensor noise and
sensor fault, and environmental effects. SWATS also detects
and identifies major anomalies in waterflood pipeline networks
such as blockage and leakage with minor changes.

Detecting problem in the steam and water pipeline networks
is challenging because sensors inherently have inaccuracies.
Erroneous sensor readings coupled with transient changes in
flow rate, temperature, or pressure might trigger false alarms
which makes it challenging to confidently detect a problem in
steam and water pipeline networks.

Challenges in identification arise from the complexity in
pipeline topology (split, merge, etc.). A single sensor cannot
capture the topological effects on the transient characteristics
of steam and water fluid to disambiguate similar problems and
false alarms. Low energy, processing, and storage availability
in sensor nodes create further constraints in the design of
our system. Designing intelligent collaboration algorithms is
challenging with the conflicting requirements such as low-end
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Fig. 1. A conceptual diagram of steam distribution system and monitoring
it using WSN.

hardware, long lifetime, and the accurate result.
We address these challenges by creating a multi-modal sens-

ing and multi-sensor collaboration algorithm which utilizes
the decision tree for anomaly identification and localization.
We build a decision tree to capture the salient pressure and
flow characteristics of each problem and distinguish them from
false alarms. Even though we use low-fidelity sensors, we
increase accuracy by combining the sensor readings from mul-
tiple sensors and exploiting the underlying data correlations.
We forms clusters of wireless sensor networks with energy-
efficient short-range multi-hop communication for wells phys-
ically close each other, and deploy IEEE 802.11 mesh network
with a long-range, highspeed communication network among
the clusters and the control room.

We make three contributions in this study. First, we propose
to use wireless sensor networks to monitor oilfields. Steam-
flood and waterflood pipeline monitoring is anovel application
for WSN. Second, SWATS introduces thefirst domain-specific
correlation-based decision treealgorithm to automate detec-
tion, identification, and localization problems in the steamflood
and waterflood pipeline. Third, SWATS improves on state-
of-the-art steamflood and waterflood pipeline monitoring. By
using WSN, it enables dense and continuous steamflood and
waterflood pipeline monitoring cost effectively.

II. RELATED WORK

We classify some studies related to SWATS in two dimen-
sions: applications and techniques.

A. Applications

There are two kinds of monitoring applications closely
related to SWATS: pipeline monitoring and target tracking.

1) Pipeline Monitoring:Pipeline monitoring is widely used
in industry applications to monitor pipelines conveying wa-
ter [2], oil [3], multiphase gas [4], and two-phase steam [5].
Most of these pipeline monitoring systems, however, are

expensive, manually maintained, little scalable, not flexible,
and not interoperable, and provide the data or result with
long delay. Kimet al. [6] proposed a household water usage
monitoring system by measuring the flow on each water outlet
in a household using vibration sensors. Like Pipenet [2],
SWATS is an emerging application using WSN which has
complementary characteristics with above systems. SWATS
monitors steamflood and waterflood pipeline in oilfields cost
effectively.

2) Target Tracking:SWATS, though similar, is fundamen-
tally different from the target tracking applications [7],[8]
in sensor networks. SWATS attempts to localize the static
location of a problem while target tracking localizes the
position of a moving object. The problems in an oilfield are
confined within a pipeline while an object being tracked in
a tracking application might move in an undetermined and
open path. In SWATS, cross-check only across the neighboring
sensors along the trajectory of the fluid is required to validate
a reading, while in target tracking such comparison and
correlation is done across all the neighboring nodes. Many
explicit rules are used to identify and classify problems and
many types of false alarms in SWATS, while very few, if
any, rules are used in target tracking. SWATS performsin-
situ sensing while target monitoring performs remote sensing.

B. Techniques

There are three main techniques related to SWATS in the
literature: SCADA, collaborative fusion, and decision tree.

1) SCADA systems:SCADA [1] is a computer system for
gathering and analyzing real time data which usually consists
of remote telemetry and sensors, controllers, networks, data
server, and user interface. SCADA systems are used to monitor
and control a plant or equipment in industries such as water
and waste control, energy, oil and gas refining and transporta-
tion. This system is neither flexible, nor interoperable, and
also expensive to deploy and maintain. Table I compares the
differences between SCADA and WSN systems.

Liou [3] proposed a software-based pipeline leakage de-
tection system for crude oil and refined petroleum using
SCADA system. Unlike SWATS, this system only detected
the pipeline leakage. Erickson and Twaite [4] developed a
Pipeline Integrity Monitoring System (PIMS) which helps
detect pipeline leakage and track the gas composition of the
wet gas pipelines. However, PIMS only considers a single
problem of pipeline leakage.

There are new approaches to replace expensive SCADA
systems. Stoianovet al. proposed Pipenet [2], a WSN-based
prototype pipeline monitoring system deployed at Boston
Water and Sewer Commission (BWSC). Three on-line moni-
toring applications (hydraulic and water quality monitoring,
remote acoustic leak detection, and monitoring combined
sewer outflows) feature high sampling rate, fine-time synchro-
nization, and complicated signal processing. Although Pipenet
and SWATS detect anomalies based on the correlations in
sensor readings, Pipenet did not provide in-network processing
algorithm such as SWATS which reasons about the sensor data



System Architecture Storage & Control Flexibility Cost Node Density Data Rate Network Protocol

SCADA Centralized Central site Inflexible Expensive Low Low Proprietary

WSN Decentralized Local sensor node Versatile Inexpensive High High Non-proprietary

TABLE I

COMPARISON BETWEENSCADA AND WSN SYSTEMS FOR OILFIELD MONITORING.

and makes decision atlocal sensor node through collaboration.
Thus, existing systems are limited to data collection or are
specifically designed to address a single class of problem.

2) Collaborative fusion:Collaborative fusion is the process
of combining (fusion) and evaluating information obtained
from multiple heterogeneous sensors into a single composite
picture of the environment.

Gu et al. [7] built a distributed surveillance application
satisfying requirements of low-end hardware, long-lifetime,
and processing sophisticated functions such as signal pro-
cessing and classification functions. Liuet al. [8] proposed
a distributed and dynamic group management method for
multiple target tracking. Both approaches utilize collaborative
sensor fusion and conserve energy by trying to maximize the
local computation and minimize communication. They have
simple problem sets (a few different objects or multiples ofthe
same object) to be classified. Unlike SWATS, these approaches
did not use the decision tree algorithm to detect, classify,and
localize the tracked objects.

3) Decision tree: Decision tree takes as input a set of
properties describing object or situation, and outputs a yes/no
decision (Boolean outcome) or classification tree (discrete
outcome) or regression tree (continuous outcome) [9]. Im-
plementation of decision tree is simple and computationally
efficient, which makes it appropriate for the complicated on-
line diagnosis applications in WSN. However, understanding
the domain knowledge is crucial to build a decision tree.

Ramanathanet al. [10] designed a debugging tool called
Sympathy which detects, classifies, and localizes the sensor
network failures. Sympathy uses the empirical decision tree to
determine the most likely cause of packet loss in the network,
while SWATS uses theoretical decision tree based on fluid
dynamics to determine the anomaly in the steam and water
pipelines. Sympathy uses simple binary decision tree (yes/no
decision), while SWATS uses complicated multi-dimensional
decision tree (classification tree). Zhaoet al. [11] proposed a
prototype diagnostic system which integrates both approaches
of the model-driven signature analysis and the utility-driven
sensor queries. However, this system detects and classifies
problems occurring in a single node, but does not diagnose
problems over WSN. Thus, they do not explore the localization
problem because all problems occurs at the designated node
in their case studies.

III. M OTIVATION

Heat delivery to the oilwell is a major cost in the operation
of thermally heated oilwells. This cost can be significantly
reduced by finer and faster control of heat delivery to the
malfunctioning equipment or pipelines.Steamfloodingis one

of the Thermally Enhanced Oil Recovery (TEOR) techniques,
which utilizes the heat contained in the steam to make heavy
oil (< 20

◦ API) more fluid for easier oil recovery [12]. This is
an economic-driven problem because the steam generation and
distribution uses about half of the total budget for the entire
oilfield operation. The goal of steamflooding is to optimize
the quantity of steam injected to each injection well so that
the amount of heat delivered by the stream pipeline networks
is fair and constant.

Waterfloodingis the dominant method for Enhanced Oil
Recovery (EOR) [12]. Water is an effective fluid for main-
taining reservoir pressure and driving oil towards a producer
for non-heavy oil. The goal of waterflooding is similar to
steamflooding; maintaining fair and constant delivery of water
to each injection well in maximum efficient rate for cost
reduction.

Critical flow rate refers to the flow rate when it reaches a
sonic velocity in the throat of an orifice or a choke [5], [13].A
property of critical flow is that the flow rate is dependent only
on the upstream conditions and the physical description of the
orifice or a choke. Maintaining the critical flow rate is im-
portant in steamflood systems, because it ensures the delivery
of constant amount of heat to each well. Providing constant
delivery of water to each target well is important, because
the amount and angle of individual injection is designed for
maximal production by understanding the correlation among
various factors: the level of permeability, the geologicalfor-
mation and heterogeneity, the angular unconformity, and the
degree of subsidence and uplift. Oilfield engineers want to
detectthe situation where the actual flow rate is out of target
injection in steamfloods and waterflood,identify its causes,
localize its origin, trigger alarm immediately, and provide
feedback to the machines that control steam or water injection
to halt steam or water injection until further diagnosis. Fig. 2
shows the equipments currently used in SCADA steamflood
monitoring system.

The problems resulting in the out of critical flow rate in
steamflooding can be due to blockage, leakage, equipment
malfunction both in generator and Splitigator, and outside
force or third-party damage (Table II). The problems resulting
in the out of target injection can be leakage, plugging, and
equipment malfunction.

Blockage and leakage are the major concerns which can
result in out of critical flow rate of steam. Blockage, which
is often observed at the Splitigator and choke, is often caused
by the scale deposition from the saturated steam or left-over
debris and foreign objects after construction, etc. Leakage,
often observed near pipeline flange, and joint, is caused by



(a) Overview of oilfield in Kern River
field, Bakersfield.

(b) Injection well (top part). (c) Downstream pressure meter (left) and
upstream Orifice flow meter (right) of
Choke (middle).

(d) Orifice flowmeter.

(e) Splitigator which controls steam quality
constant between upstream and
downstream.

(f) Steam generator. (g) Co-Gen(erator) of steam and electricity. (h) Steam stimulator.

Fig. 2. Equipments currently being used in SCADA system for steamflood pipelines monitoring in oilfield.

pipeline corrosion and loose junction. Blockage and leakage
are also the primary concern in waterflood monitoring. The
incipient detection of these problems is challenging because
at the early stage of problem the pressure and flow rate change
is difficult to distinguish from the those of normal or transient
fluctuations and false alarms. Moreover, in real environment,
multiple problems can happen simultaneously in addition to
various false alarms which makes anomaly detection and
identification even more challenging. Generator malfunction
and Splitigator malfunction are equipment-specific problems
for which we strategically deploy multiple sensors near those
equipments. The outside force or third party damages happen
less frequently than the blockage (plugging) and leakage, and
they are easy to detect because they show a sudden change in
pressure and flow rate.

The anomaly detection system in use in the steam and water
pipelines has prohibitive cost, long delays in measurement,
coarse measurements, and requires periodic manual inspection
of system. Field engineers are interested in automating this
manual and slow detection and correction process with a
system that can detect problems fast, make decisions rapidly,
and take actions to fix the problems quickly. The economic
consideration dictates that such a system has to cost less than
the current manual system and eventually save cost in oilfield
operation by detecting and fixing problems in a timely manner.
Our goal is to design a system which detects, identifies, and
localizes the problems reliably, quickly, and accurately while
reducing cost.

IV. RESEARCHCHALLENGES

In this section, we describe the main research challenges in
monitoring of steam and water pipeline networks in oilfields.

Reliable detection: Detecting problem in steam pipeline
network is challenging because sensors inherently have inac-

curacies. The erroneous sensor readings might trigger false
alarms which makes it challenging to confidently detect a
problem in steam pipeline network. Moreover, our measure-
ment of the pressure and flow rate of steam in a pipeline
changes even under normal operation because of pipeline
friction and difference in pipeline diameters at differentplaces.
The transient characteristics of two-phase steam changes the
steam quality even without any anomaly.

Correct identification: There are several causes of false
alarms which make correct identification of problem challeng-
ing (Table II). The transient physical characteristics of steam
and water fluid also makes distinguishing problems from false
alarms difficult. Due to the multiple problems and false alarms,
and the complicated steam properties and pipeline topology,
the physical phenomena of each anomaly and false alarm
can only be distinguished by 1) comparison over nodes at
a certain distance upstream and downstream in the pipeline,
and 2) the multi-modal sensing and validation at each node.
Since we cannot identify problems nor distinguish problems
from false alarms using a single node processing, we need to
design accurate and efficient collaboration algorithms which
is challenging.

Timely localization: The localization is less challenging
than detection and identification, once the system detects and
identifies the problem correctly. One of the benefits from using
the decision tree algorithm such as SWATS is simplifying the
localization; The origin of the problem is at the best matching
node for the rule identifying the problem.

Efficient Network Protocols: Because the anomalies can
occur anywhere in the pipeline network in oilfield,in-situ
in-network processing capability is needed on each node to
support multi-well collaboration for automated monitoring.
However, de facto SCADA systems commonly used in oil



Events to detect Physical phenomena Where to deploy sensors Reasons

Problems

Blockage Blockage Splitigator (water leg orifice, valve,
steam leg orifice), choke

Scale, something left over after
construction

Leakage Leakage Flange, joint Pipeline corrosion, pipeline junc-
tion loose

Generator malfunction Leakage or blockage Generator Generator breakdown
Splitigator malfunction Phase splitting Before and after Splitigator Splitigator malfunction
Outside-force or third-party
damage

Leakage Flange, junction, near obstacles Earthquake, stone

False alarms

Change in steam supply Leakage or blockage Generator Generator outage, shortage in
steam supply

Downhole pressure change Downhole pressure change Injector Vertical permeability, geological
formation, heterogeneity

Change in steam quality Change in steam quality Inlet of pipeline, Before and after
Splitigator, obstacles, and pipeline
elevation

Due to the elevation or pressure
change, or 2-phase transient prop-
erty of steam

Phase splitting at piping tees Phase splitting All the branches including Spliti-
gators

difference in steam quality be-
tween upstream and downstream of
branches

Sensor noise and sensor fault Inaccuracy in sensor read-
ings

A pair of close-by sensors in the
middle of pipeline for sanity check

Inaccurate and unreliable pressure
meter, thermometer, and flow meter

Environmental effects Inaccuracy in sensor read-
ings

A pair of close-by sensors in the
middle of pipeline for sanity check

Environmental noise unique to this
system such as pipeline friction,
ambient temperature, etc.

TABLE II

CLASSIFICATION OF ANOMALIES IN STEAMFLOOD MONITORING IN OILFIELD. ALL THE EVENTS NEED MULTIPLE SENSORS FOR DETECTION.

fields utilize expensive, inefficient, long-range point-to-point
communications between the control room and each well,
and do not support communication among wells. In order to
address these problems, we form clusters of wireless sensors
located near wells physically close to each other. All the nodes
in a cluster conduct peer-to-peer communications because
the problem is ubiquitous and all the nodes are expected
to sense and process data with approximately equal level
of intelligence. With energy-efficient short-range multi-hop
communication protocol rather than less efficient long-range
communication, the system will be able to run over batteries
and solar power for years. More importantly, sensor network
enables multi-well interaction and collaboration, so thatin-
telligent sensing and control algorithms such as SWATS can
be implemented over multiple wells in an area. A long-range,
highspeed communication network such as IEEE 802.11 mesh
network can be used to relay communication from clusters
to the control room. Fig. 1 illustrates our proposed wireless
network architecture.

Designing energy efficient MAC protocol with low duty-
cycle accompanied by semantic communication protocol cou-
pled with intelligent processing of SCADA data is critical for
optimizing energy efficiency of the resource constrained wire-
less nodes. We can achieve energy efficient communication by
utilizing the domain knowledge such as the frequency of each
anomaly. Customized sleep schedule accordingly will save the
energy spent due to idle listening.

Reliable Delivery: The importance of a single data from in-
network processing is incomparable to a raw data. Moreover,
an alarm notifying anomaly from the processing of SCADA
data is time critical. Sometimes, system designer might have
to decide to trade precious energy for guaranteed delivery.
To make an inherently unreliable low power networks re-

liable, the system must be robust against the interference
from the physical structure in oilfield such as pipelines and
generators, the interference from the existing point-to-point
SCADA communication radios, and the interference between
low power wireless networks and 802.11 networks. We need to
design a network protocol which delivers data reliably in low
power wireless networks even with concurrent 802.11 mesh
networks.

In short, the reasons the above challenges are difficult are:

• Low-cost sensors can be unreliable, inaccurate, and inef-
ficient in its use of limited energy supply.

• False alarms can be mistaken for real anomalies.
• Topological effects of pipeline must be taken into con-

sideration.
• Transients in steam and waterflood must be taken into

consideration.

There are other constraints, such as limited energy and pro-
cessing power on each node, that may complicate the design
of system and algorithm. Evaluating different design tradeoff
and parameter selection is also a challenging issue. We planto
investigate the tradeoff between the centralized and distributed
algorithms. Various parameters, such as sampling rate, the
duration of sample window, and the size of neighboring group,
should be tuned for correctness, timeliness, and efficiencyof
algorithm.

V. PIPELINE MONITORING SYSTEM IN OILFIELD USING

WIRELESSSENSORNETWORKS

A. Overview of our approach

The key technique of our algorithm is the identification of
both real problems and false alarms with decision tree by
collaboratively exploiting spatial and temporal correlations in



the sensor readings. We define the decision tree by capturing
the salient characteristics of the pressure (or temperature) and
flow rate in space and time as a consequence of each problem
and false alarm.

The intuition behind our approach is that the neighboring
sensor nodes in a pipeline should observe a coherent impact
for each anomaly on pressure and flow rate in steam and water
flow. We assume that inexpensive temperature, pressure, and
acoustic flow meters are strategically placed in the pipeline
network.

Because of possible inaccuracy in sensor readings, we use
multi-modal multi-node collaboration to improve the cor-
rectness in problem diagnosis. Although we may detect the
problems and false alarms correctly at a single node, the
single node processing is not enough for correct identification
of problems and false alarms. Most of the problems and
false alarms present the same phenomena in pressure and
flow rate in a node such as gradual drop, sudden drop, or
ephemeral change. Several problems and false alarms areonly
distinguished by analyzing physical signature over upstream
and downstream nodes, and by comparison with multiple
modalities such as pressure and flow rate simultaneously.
We create spatial and temporal patterns in our decision tree
algorithm by understanding those unique indications of each
problem in fluid dynamics.

B. Steamflood Monitoring Algorithm in SWATS

Our steamflood monitoring algorithm tries to determine the
potential causes resulting in out of critical flow rate at the
critical flow choke which can be blockage, leakage, equipment
malfunction, or outside force damage. Because a decision
tree algorithm can be sensitive to the choice of thresholds,
thresholds used in this steamflood monitoring algorithm are
tuned with the domain knowledge such as the parameters of
pipelines, equipments, and the out of critical flow rate. We plan
to optimize these threshold values offline using reinforcement
learning techniques such as Markov Decision Problem (MDP).

Our proposed algorithm consists of two stages (single-node
processing and multi-node collaboration) with 6 components.

1) Single-node Processing:At each node, SWATS performs
the following tasks:

• In-node sensor readings validation: In order to check the
validity of sensor readings, we cross-check data in a node
from multi-modal sensing(pressure and temperature) at
given sampling frequency,f .

• Noise reduction: In order toclean the raw data samples,
we compute the average pressure and the average flow
rate using sliding window,W , which is tuned to optimize
detection and identification accuracy and latency.

• Event detection: For thetemporal trendingat a local node,
we capture the temporal pattern of pressure and flow rate
by performing the linear regression of sensor readings
over W and classify the trends as: big increase, small
increase, constant, small decrease, and big decrease.

2) Multi-node Collaboration: Our proposed decision tree
algorithm in SWATS utilizes collaboration of neighboring

Local node

Downstream node

Big 
decrease

Small 
decrease

ConstantSmall 
increase

Big 
increase

Small 
decreaseN/A

Upstream node

Small
increase

Small 
decrease

Upstream node

Constant

Temporal duration

Persistent

Temporal duration

Persistent

Temporal duration

Ephemeral

LeakageBlockageDownhole pressure change

Persistent

Unidentified

Fig. 3. An example of decision tree on pressure for blockage, leakage, and
downhole pressure change.

nodes to reach a consensus in their detection and identification
results using these steps:

• In-network event detection validation: We cross-check the
classified local trend with a certain number of upstream
and downstream neighbors.

• Problem identification: To identify the anomalies in the
pipeline and disambiguate problems from false alarms,
we use the decision tree algorithm that describes spatial
and temporal characteristics of problems and false alarms.
We provide the classes of trends for pressure and flow
rate over the neighbors as inputs to our decision tree
algorithm. We identify the cause of anomaly by com-
paring each local classes of trends with upstream and
downstream neighbors.

• Problem localization: To localize the problem, we find the
best matching node with the rule for identified problem
in the decision tree. The node satisfying the specific
condition in decision tree is considered to be the origin
of the problem.

C. Decision Tree Algorithm

SWATS classifies the anomalies into 5 types of problems
and 6 false alarms (Table II). The decision tree checks from
critical to trivial causes: problems to false alarms. Algorithm
first compares the problem set using the rules in the decision
tree. Then it tries to distinguish the candidate problems from
the related false alarms using 1) in-depth comparison of
phenomena using decision tree that is programmed on all the
nodes, 2) the prior information such as scheduled outage or
pipeline elevation disseminated from the central database, 3)
the reported event from other nodes, and 4) the information
about proximity to equipments.

We now present an example of a decision tree used to
identify blockage in a pipeline. Blockage causes a gradual
drop over a long time (small decrease) in both pressure and
flow rate at the local and downstream nodes, while the pressure
at upstream nodes increases due to the constant injection with
a valve and the flow rate drops. Alternatively, if the pressure
at upstream nodes drops and the flow rate increases, while
all other conditions are the same as with blockage, then the
algorithm considers the problem as leakage. On the other hand,



if both the pressure and flow rate for the upstream node do
not change and those readings for local node do change (either
fluctuate or increase or decrease), then the algorithm identifies
the event as a downhole pressure change, a false alarm. Fig 3
depicts the part of the decision tree for this example.

VI. CONCLUSION

We described a new problem and designed an in-network
processing system that successfully monitors a steamflood
and a waterflood pipeline to detect, identify, and localize
anomalies such as blockage and leakage. In SWATS, we
created a decision tree algorithm for problem and false alarm
identification by collaboratively exploiting spatial and tem-
poral correlations in the sensor readings. SWATS represents
a new approach for oilfield monitoring that has the benefits
of low cost, flexible deployment, continuous monitoring, and
accurate problem detection, identification, and localization
quickly, reliably, and accurately, thereby improving the current
SCADA system. Because SWATS utilizes the changing pattern
of flows over time and space, it works better in a scenario in
which anomalies introduce non-negligible change in flow rate.
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