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Abstract— State-of-the-art anomaly detection systems deployed oilfields which have dangerous chemicals at high pressute an
in the oilfields are expensive, not scalable to a large number temperature. Furthermore, equipments are located in dolenh
of sensors, require manual operation, and provide data with a - g5 metime under the sea. Production and injection wetis ca

long delay. To overcome these problems, we design a Wirelessb di f | d o .
sensor network system that detects, identifies, and localizes nogj P€ distant from power, control, and operator. Once system Is

anomalies such as blockage and leakage that arise in steamflooddeployed, it is difficult to physically access the sensoosits
and waterflood pipelines in oilfields. A sensor network consists of is desirable to be able to maintain and monitor the systems

small, inexpensive nodes equipped with embedded processors andemotely as much as possible. Such a network of sensors
wireless communication, which enables flexible deployment and consists of battery powered nodes that collaborate to wbser

close observation of phenomena without human intervention. Our e . .
sensor network based system, SWATS (Steamflood and WAter- and conclude the health of an oilfield. If we use inexpensive

flood Tracking System), aims to allow continuous monitoring of S€Nsors, it becomes economically feasible to deploy a large
the steamflood and waterflood systems with low cost, short delay, number of sensor nodes over a large area to cover the entire
and fine granularity coverage while providing high accuracy jlfield, providing much higher spatial and temporal resiotu

and reliability. The anomaly detection and identification is in sensor readings. Fig. 1 depicts a conceptual diagram of
challenging because of the inherent inaccuracy and unreliability I .
steamflood monitoring using WSN.

of sensors and the transient characteristics of the flows. Moreer,
observation by a single node cannot capture the topological \We have designed a system using WSN, called SWATS,
f’ﬁ‘a‘?ts on thettrar_lsigint Chagf‘CteriSti%SfO‘; stea|1m a”dv\‘;"ate(;dfr'gisds to detect, identify, and localize major problems that aiise

o disambiguate similar problems and false alarms. We a T P

these hurd?es by utilizing multi-modal sensing and multi-sensor steamfloqd and Waterflooq pipeline ngtvvprks in oilfields. Our
collaboration and exploiting temporal and spatial patterns of the SyStem aims to allow continuous monitoring of the steamflood
sensed phenomena. and waterflood system with low cost, short delay, and fine
granularity coverage while providing high accuracy and re-

) liability. Our system detects and identifies major anonsalie

State-of-the-art anomaly detection systems deployed p steamflood pipeline networks: blockage, leakage, oetsid
monitor pipeline (oil, steam, water, and sewer) networkeehasoce damage, generator and Splitigator malfunction. &hes
major shortcomings. Supervisory Control And Data Acquisiinomalies are disambiguated from many false alarms: genera
tion (SCADA) systems [1] for pipeline network in oilfields,q, outage, downhole pressure change, phase splittingiaigpi
for example, are expensive (equipment and maintenanss), 'f'ees, change in two-phase steam quality, sensor noise and
scalable (low density in time and space), not flexible (prolo sensor fault, and environmental effects. SWATS also detect
change and software update), not interoperable (hardwaite 8, jgentifies major anomalies in waterflood pipeline neksor
software), and provide the data or result with long delaych as blockage and leakage with minor changes.

I . . ' o IS challenging because sensors inherently have inacestaci
utilize long-range point-to-point communications bewese £ .0, sensor readings coupled with transient chamges i
control room and each well, they are less energy gfﬁcient S rate, temperature, or pressure might trigger falsemaar
operate fpr ang term, aT‘d do not suppprt collaboration MO hich makes it challenging to confidently detect a problem in
wells for in-situ automation for monitoring. team and water pipeline networks

Wireless Sensor Networks (WSN) is an attractive tech: PP '

nology for applications in extreme environments such as Challenges in identification arise from the complexity in
pipeline topology (split, merge, etc.). A single sensorntan
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in this material are those of the author(s) and do not nedssseflect the our system. Designing intelligent collaboration algamithis
views of any of the above organizations or any person coedewstth them. challenging with the conflicting requirements such as lowl-e

|. INTRODUCTION



Generator or Co-gen [ - expensive, manually maintained, little scalable, not Hii
- - h and not interoperable, and provide the data or result with
long delay. Kimet al. [6] proposed a household water usage
monitoring system by measuring the flow on each water outlet
in a household using vibration sensors. Like Pipenet [2],
SWATS is an emerging application using WSN which has
complementary characteristics with above systems. SWATS
monitors steamflood and waterflood pipeline in oilfields cost
effectively.
2) Target Tracking: SWATS, though similar, is fundamen-
tally different from the target tracking applications [18]
in sensor networks. SWATS attempts to localize the static
location of a problem while target tracking localizes the
position of a moving object. The problems in an oilfield are
confined within a pipeline while an object being tracked in
,b a tracking application might move in an undetermined and
Control room  Users open path. In SWATS, cross-check only across the neighgporin
sensors along the trajectory of the fluid is required to \adéd
Fig. 1. A conceptual diagram of steam distribution system monitoring a reading, while in target tracking such comparison and
it using WSN. correlation is done across all the neighboring nodes. Many
hardware, long lifetime, and the accurate resul. explicit rules are used to identify and classify problemsl an
We address these challenges by creating a multi-modal seR@ny types of false alarms in SWATS, while very few, if
ing and multi-sensor collaboration algorithm which uttiz any: ruIe; are _USEd In target trgckmg. SWATS perfonms.
the decision tree for anomaly identification and localiati situ sensing while target monitoring performs remote sensing.
We build a decision tree to capture the salient pressure agd
flow characteristics of each problem and distinguish themmfr ~-
false alarms. Even though we use low-fidelity sensors, weThere are three main techniques related to SWATS in the
increase accuracy by combining the sensor readings from mliterature: SCADA, collaborative fusion, and decisionetre
tiple sensors and exploiting the underlying data correesti 1) SCADA systemsSCADA [1] is a computer system for
We forms clusters of wireless sensor networks with energygathering and analyzing real time data which usually cossis
efficient short-range multi-hop communication for welly/ph of remote telemetry and sensors, controllers, network| da
ically close each other, and deploy IEEE 802.11 mesh netwasrver, and user interface. SCADA systems are used to monito
with a long-range, highspeed communication network amoagd control a plant or equipment in industries such as water
the clusters and the control room. and waste control, energy, oil and gas refining and trangport
We make three contributions in this study. First, we proposien. This system is neither flexible, nor interoperabled an
to use wireless sensor networks to monitor oilfields. Steamlso expensive to deploy and maintain. Table | compares the
flood and waterflood pipeline monitoring is)avel application differences between SCADA and WSN systems.
for WSN. Second, SWATS introduces tfiest domain-specific  Liou [3] proposed a software-based pipeline leakage de-
correlation-based decision trealgorithm to automate detec-tection system for crude oil and refined petroleum using
tion, identification, and localization problems in the stél@od SCADA system. Unlike SWATS, this system only detected
and waterflood pipeline. Third, SWATS improves on statehe pipeline leakage. Erickson and Twaite [4] developed a
of-the-art steamflood and waterflood pipeline monitoring. BPipeline Integrity Monitoring System (PIMS) which helps
using WSN, it enables dense and continuous steamflood aledect pipeline leakage and track the gas composition of the
waterflood pipeline monitoring cost effectively. wet gas pipelines. However, PIMS only considers a single
problem of pipeline leakage.

There are new approaches to replace expensive SCADA
We classify some studies related to SWATS in two dimersystems. Stoianoet al. proposed Pipenet [2], a WSN-based
sions: applications and techniques. prototype pipeline monitoring system deployed at Boston
Water and Sewer Commission (BWSC). Three on-line moni-

toring applications (hydraulic and water quality monibay;
There are two kinds of monitoring applications closelyemote acoustic leak detection, and monitoring combined
related to SWATS: pipeline monitoring and target tracking. sewer outflows) feature high sampling rate, fine-time symchr
1) Pipeline Monitoring: Pipeline monitoring is widely used nization, and complicated signal processing. AlthougteRégh
in industry applications to monitor pipelines conveying-waand SWATS detect anomalies based on the correlations in
ter [2], oil [3], multiphase gas [4], and two-phase steam [5$ensor readings, Pipenet did not provide in-network piings
Most of these pipeline monitoring systems, however, asdgorithm such as SWATS which reasons about the sensor data

Production well Injection well

Techniques
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System H Architecture | Storage & Control| Flexibility Cost Node Density | Data Rate| Network Protocol

SCADA Centralized Central site Inflexible Expensive Low Low Proprietary
WSN Decentralized| Local sensor node \Versatile | Inexpensive High High Non-proprietary
TABLE |

COMPARISON BETWEENSCADA AND WSN SYSTEMS FOR OILFIELD MONITORING

and makes decision kical sensor node through collaborationof the Thermally Enhanced Oil Recovery (TEOR) techniques,
Thus, existing systems are limited to data collection or awhich utilizes the heat contained in the steam to make heavy
specifically designed to address a single class of problem. oil (< 20° API) more fluid for easier oil recovery [12]. This is

2) Collaborative fusion:Collaborative fusion is the processan economic-driven problem because the steam generatibn an
of combining (fusion) and evaluating information obtainedistribution uses about half of the total budget for the renti
from multiple heterogeneous sensors into a single conmgodiilfield operation. The goal of steamflooding is to optimize
picture of the environment. the quantity of steam injected to each injection well so that

Gu et al. [7] built a distributed surveillance applicationthe amount of heat delivered by the stream pipeline networks
satisfying requirements of low-end hardware, long-lifeti is fair and constant.

and processing sophisticated functions such as signal prowaterfloodingis the dominant method for Enhanced Oil
cessing and classification functions. Lét al. [8] proposed Recovery (EOR) [12]. Water is an effective fluid for main-
a distributed and dynamic group management method f@fining reservoir pressure and driving oil towards a preduc
multiple target tracking. Both approaches utilize colle#ive for non-heavy oil. The goal of waterflooding is similar to
sensor fusion and conserve energy by trying to maximize tggamflooding; maintaining fair and constant delivery ofexa

local computation and minimize communication. They hayg each injection well in maximum efficient rate for cost
simple problem sets (a few different objects or multiplethef reduction.

same object) to be classified. Unlike SWATS, these appr&ache cisica flow rate refers to the flow rate when it reaches a
did not use the decision tree algorithm to detect, clasaif sonic velocity in the throat of an orifice or a choke [5], [1A].

localize the_ tracked obje.ct.s. ) roperty of critical flow is that the flow rate is dependentyonl
3) D?C'S'On tr_e«_a: Dec!smn tre_e tgkes as input a set Ogn the upstream conditions and the physical descriptiohef t
propgmes describing object or S|tuat|oq,_ a”?' OUtpUtsm orifice or a choke. Maintaining the critical flow rate is im-
decision (Boolean ogtcome) or clgssmcatmn tree (discrelo ant in steamflood systems, because it ensures the ngelive
outcome) or regression tree (con_tmuous outcome) [9]' I8t constant amount of heat to each well. Providing constant
pIe.rr.1entat|0r.1 of deC|5|qn tree Is .S|mple and COmp'utatuynal elivery of water to each target well is important, because
gfﬂme‘nt, Wh',Ch makes'lt appropnate for the complicated 9he amount and angle of individual injection is designed for
line dlagn_03|s appllcatl(_)ns n WSN' prever, _ur_]derStand"?ﬂaximal production by understanding the correlation among
the domain knowledge is cruqal o build a d?C'S'O” tree. \arious factors: the level of permeability, the geologifat
Ramanatharet al. [10] designed a debugging tool Callec*11ation and heterogeneity, the angular unconformity, amrd th

Sympathy which detects, classifies, and localizes the Senaggree of subsidence and uplift. Qilfield engineers want to

networl§ failures. Sympathy uses the empirical QeC|S|oe 02 Jetectthe situation where the actual flow rate is out of target
determine the most likely cause of packet loss in the netwo

fKjection in steamfloods and waterflooidlentify its causes
while SWATS uses theoretical decision tree based on flu1|6) dientify '

d . d ine th v in the st q calize its origin, trigger alarm immediately, and provide
ynamics to determine the anomaly in the steam and Walgp 44k to the machines that control steam or water iojecti
pipelines. Sympathy uses simple binary decision tree ifges

- . . . to halt steam or water injection until further diagnosigy.R2
decision), while SWATS uses complicated muIt|—d|mensIon§hOWs the equipments currently used in SCADA steamflood
decision tree (classification tree). Zhabal. [11] proposed a monitoring system
prototype diagnostic system which integrates both apiresc The problems resulting in the out of critical flow rate in
of the model-driven signature analysis and the utilityelni P 9

sensor queries. However, this system detects and classifi mropdmg can be due to blockage_,_leakage, equment
E@functlon both in generator and Splitigator, and outside
f

problems occurring in a single node, but does not diagno ) .
problems over WSN. Thus, they do not explore the localizati rce or third-party damage (Table II). The problems résgit

problem because all problems occurs at the designated n8Y he out of targetilnjectlon can be leakage, plugging, and
in their case studies. equipment malfunction.

Blockage and leakage are the major concerns which can

I1l. M OTIVATION result in out of critical flow rate of steam. Blockage, which

Heat delivery to the oilwell is a major cost in the operatiois often observed at the Splitigator and choke, is often edus
of thermally heated oilwells. This cost can be significantlipy the scale deposition from the saturated steam or left-ove

reduced by finer and faster control of heat delivery to thaebris and foreign objects after construction, etc. Leakag
malfunctioning equipment or pipelineSteamfloodings one often observed near pipeline flange, and joint, is caused by



(a) Overview of oilfield in Kern River (b) Injection well (top part). (c) Downstream pressure meter (left) and (d) Orifice flowmeter.
field, Bakersfield. upstream Orifice flow meter (right) of
Choke (middle).

(e) Splitigator which controls steam quality (f) Steam generator. (g) Co-Gen(erator) of steam and electricity. (h) Steam stimulator.
constant between upstream and
downstream.

Fig. 2. Equipments currently being used in SCADA system feaustflood pipelines monitoring in oilfield.

pipeline corrosion and loose junction. Blockage and leakaguracies. The erroneous sensor readings might triggee fals
are also the primary concern in waterflood monitoring. Thelarms which makes it challenging to confidently detect a
incipient detection of these problems is challenging bseauproblem in steam pipeline network. Moreover, our measure-
at the early stage of problem the pressure and flow rate chamgent of the pressure and flow rate of steam in a pipeline
is difficult to distinguish from the those of normal or traesi changes even under normal operation because of pipeline
fluctuations and false alarms. Moreover, in real envirortmeffriction and difference in pipeline diameters at differpldces.
multiple problems can happen simultaneously in addition fthe transient characteristics of two-phase steam charges t
various false alarms which makes anomaly detection asttam quality even without any anomaly.
identification even more challenging. Generator malf@rcti  correct identification: There are several causes of false
and Splitigator malfunction are equipment-specific protsle 53rms which make correct identification of problem chajlen
for which we strategically deploy multiple sensors nealsthoing (Table I). The transient physical characteristics tfasn
equipments. The outside force or third party damages happgy water fluid also makes distinguishing problems fromefals
less frequently than the blockage (plugging) and leakag, ayjarms difficult. Due to the multiple problems and false misy
they are easy to detect because they show a sudden changg i) the complicated steam properties and pipeline topplogy
pressure and flow rate. _ . the physical phenomena of each anomaly and false alarm
~The anomaly detection system in use in the steam and Walgh only be distinguished by 1) comparison over nodes at
pipelines has prohibitive cost, long delays in measuremeqt certain distance upstream and downstream in the pipeline,
coarse measurements, and requires periodic manual ifEPecing 2) the multi-modal sensing and validation at each node.
of system. Field engineers are interested in automatir® tjince we cannot identify problems nor distinguish problems
manual and slow detection and correction process Withf@m false alarms using a single node processing, we need to

system that can detect problems fast, make decisions yapidlesign accurate and efficient collaboration algorithmscivhi
and take actions to fix the problems quickly. The economig challenging.

consideration dictates that such a system has to cost lass th Timely localization: The localization is less challenging
the current manual system and eventually save cost in diIfi?l1 ’

. . o ; . an detection and identification, once the system detexts a
operation by detecting and fixing problems in a timely manner, ... . :
: . . . . identifies the problem correctly. One of the benefits fronmgsi
Our goal is to design a system which detects, identifies,

aj ey . S
> d . . e decision tree algorithm such as SWATS is simplifying the
localizes the problems reliably, quickly, and accuratelyilev localization; The ori%in of the problem is at the bes[: r;ya’lghi
reducing cost. !

node for the rule identifying the problem.

IV. RESEARCHCHALLENGES Efficient Network Protocols: Because the anomalies can
In this section, we describe the main research challengesitcur anywhere in the pipeline network in oilfielth-situ
monitoring of steam and water pipeline networks in oilfieldsn-network processing capability is needed on each node to
Reliable detection: Detecting problem in steam pipelinesupport multi-well collaboration for automated monitayin
network is challenging because sensors inherently have inelowever, de facto SCADA systems commonly used in oil



Events to detect Physical phenomena Where to deploy sensors Reasons

Blockage Blockage Splitigator (water leg orifice, valve| Scale, something left over after
Problems steam leg orifice), choke construction
Leakage Leakage Flange, joint Pipeline corrosion, pipeline junc
tion loose
Generator malfunction Leakage or blockage Generator Generator breakdown
Splitigator malfunction Phase splitting Before and after Splitigator Splitigator malfunction
Outside-force or third-party|[ Leakage Flange, junction, near obstacles | Earthquake, stone
damage
Change in steam supply Leakage or blockage Generator Generator outage, shortage |n
steam supply
Ealse alarms Downhole pressure change|| Downhole pressure change| Injector Vertical permeability, geological
formation, heterogeneity
Change in steam quality Change in steam quality Inlet of pipeline, Before and aftef Due to the elevation or pressure
Splitigator, obstacles, and pipeline change, or 2-phase transient prop-
elevation erty of steam
Phase splitting at piping tee§ Phase splitting All the branches including Spliti{ difference in steam quality bet
gators tween upstream and downstream of
branches
Sensor noise and sensor fadlt Inaccuracy in sensor read- A pair of close-by sensors in thé Inaccurate and unreliable pressufre
ings middle of pipeline for sanity check meter, thermometer, and flow meter
Environmental effects Inaccuracy in sensor read- A pair of close-by sensors in the Environmental noise unique to this
ings middle of pipeline for sanity check system such as pipeline friction,

ambient temperature, etc.

TABLE Il
CLASSIFICATION OF ANOMALIES IN STEAMFLOOD MONITORING IN OILFIELD. ALL THE EVENTS NEED MULTIPLE SENSORS FOR DETECTION

fields utilize expensive, inefficient, long-range pointptoint liable, the system must be robust against the interference
communications between the control room and each wedlom the physical structure in oilfield such as pipelines and
and do not support communication among wells. In order generators, the interference from the existing pointdovp
address these problems, we form clusters of wireless sens®@€CADA communication radios, and the interference between
located near wells physically close to each other. All thdes low power wireless networks and 802.11 networks. We need to
in a cluster conduct peer-to-peer communications becausign a network protocol which delivers data reliably iw lo
the problem is ubiquitous and all the nodes are expectpdwer wireless networks even with concurrent 802.11 mesh
to sense and process data with approximately equal leweltworks.

of intelligence. With energy-efficient short-range muiap In short, the reasons the above challenges are difficult are:

communication protocol rather than less efficient longgean , | gw-cost sensors can be unreliable, inaccurate, and inef-
communication, the system will be able to run over batteries ficient in its use of limited energy supply.

and solar power for years. More importantly, sensor network, Fa|se alarms can be mistaken for real anomalies.
enables multi-well interaction and collaboration, so tiat  , Topological effects of pipeline must be taken into con-
telligent sensing and control algorithms such as SWATS can gjderation.
be implemented over multiple wells in an area. A long-range, , Transients in steam and waterflood must be taken into
highspeed communication network such as IEEE 802.11 mesh onsideration.
network can be used to relay communication from clusters
to the control room. Fig. 1 illustrates our proposed Wirelesc
network architecture.

Designing energy efficient MAC protocol with low duty-

There are other constraints, such as limited energy and pro-
essing power on each node, that may complicate the design
of system and algorithm. Evaluating different design todfle

and parameter selection is also a challenging issue. Wet@lan

c?/c(lje afr? (_)rrt'1p|<|':_1n|e(1 by sema_mtlc ;:()Srgrzgr:c;tlton_ prof[tc_)coi fc OlHilestigate the tradeoff between the centralized andilligé&d
pled with intefligent processing o ata Is criicart, algorithms. Various parameters, such as sampling rate, the

optimizing energy efficiency of the resource constrainec:wi uration of sample window, and the size of neighboring group

Ie;; _nodes. Wwe can achieve energy efficient communication ould be tuned for correctness, timeliness, and efficiaficy
utilizing the domain knowledge such as the frequency of eag|

: . . orithm.
anomaly. Customized sleep schedule accordingly will shge t
energy spent due to idle listening. _ V. PIPELINE MONITORING SYSTEM IN OILFIELD USING
Reliable Delivery: The importance of a single data from in- WIRELESSSENSORNETWORKS

network processing is incomparable to a raw data. Moreover, ,

an alarm notifying anomaly from the processing of SCADA" Overview of our approach

data is time critical. Sometimes, system designer mighehav The key technique of our algorithm is the identification of
to decide to trade precious energy for guaranteed delivebpth real problems and false alarms with decision tree by
To make an inherently unreliable low power networks resollaboratively exploiting spatial and temporal corriglas in



the sensor readings. We define the decision tree by capturin
the salient characteristics of the pressure (or temperasurd
flow rate in space and time as a consequence of each proble gg smal®  Comstant Small Big

and false alarm increase increase decrease decrease
. . . . . . D ) d
The intuition behind our approach is that the neighboring Sma”
sensor nodes in a pipeline should observe a coherent impau decrease

N/A
for each anomaly on pressure and flow rate in steam and wate
Small Small

flow. We assume that inexpensive temperature, pressure, ar
acoustic flow meters are strategically placed in the pigelin Constant increase decrease

network
Because of possible inaccuracy in sensor readings, we us

Ephemeral Persistent Persistent Persistent
multi-mod_al multi-nodg coIIa_boration to improve the cor- |Uni:entified| [erpm—— ey
rectness in problem diagnosis. Although we may detect the
problems and false alarms correctly at a single node, thg. 3. An example of decision tree on pressure for blockagakdge, and
single node processing is not enough for correct identifinat downhole pressure change.
of problems and false alarms. Most of the .problems ar?'ﬁ)des to reach a consensus in their detection and identficat
false alarr_ns present the same phenomena in pressure Asults using these steps:
flow rate in a node such as gradual drop, sudden drop, o
ephemeral change. Several problems and false alarnmbre
distinguished by analyzing physical signature over upstre
and downstream nodes, and by comparison with multiple
modalities such as pressure and flow rate simultaneously®
We create spatial and temporal patterns in our decision tre
algorithm by understanding those unique indications oheac
problem in fluid dynamics.

« In-network event detection validatiowe cross-check the
classified local trend with a certain number of upstream
and downstream neighbors.

Problem identification To identify the anomalies in the
pipeline and disambiguate problems from false alarms,
we use the decision tree algorithm that describes spatial
and temporal characteristics of problems and false alarms.
We provide the classes of trends for pressure and flow
B. Steamflood Monitoring Algorithm in SWATS rate over the neighbors as inputs to our decision tree
algorithm. We identify the cause of anomaly by com-
paring each local classes of trends with upstream and
downstream neighbors.

Problem localizationTo localize the problem, we find the
best matching node with the rule for identified problem
in the decision tree. The node satisfying the specific
condition in decision tree is considered to be the origin
of the problem.

Our steamflood monitoring algorithm tries to determine the
potential causes resulting in out of critical flow rate at the
critical flow choke which can be blockage, leakage, equigmen
malfunction, or outside force damage. Because a decision’
tree algorithm can be sensitive to the choice of thresholds,
thresholds used in this steamflood monitoring algorithm are
tuned with the domain knowledge such as the parameters of
pipelines, equipments, and the out of critical flow rate. \iap
to optimize these threshold values offline using reinforeet C. Decision Tree Algorithm
learning techniques such as Markov Decision Problem (MDP).

Our proposed algqnthm consists Of. two sFages (smgle-nogﬁd 6 false alarms (Table IlI). The decision tree checks from
processing and multi-node collaboration) with 6 COMPOSENt itical to trivial causes: problems to false alarms. Algon

1) Single-node Processingit each node, SWATS performsfirst compares the problem set using the rules in the decision

the following tasks: tree. Then it tries to distinguish the candidate problerosmfr
« In-node sensor readings validatioln order to check the the related false alarms using 1) in_depth Comparison of
validity of sensor readings, we cross-check data in a Noggenomena using decision tree that is programmed on all the
from multi-modal sensingpressure and temperature) ahodes, 2) the prior information such as scheduled outage or
given sampling frequency,. pipeline elevation disseminated from the central databapse
« Noise reductionIn order tocleanthe raw data samples, the reported event from other nodes, and 4) the information
we compute the average pressure and the average flgyout proximity to equipments.
rate using sliding windowlV’, which is tuned to optimize  we now present an example of a decision tree used to
detection and identification accuracy and latency. identify blockage in a pipeline. Blockage causes a gradual
« Event detectionFor thetemporal trendingat a local node, drop over a long time (small decrease) in both pressure and
we capture the temporal pattern of pressure and flow rafg\ rate at the local and downstream nodes, while the pressur
by performing the linear regression of sensor readings upstream nodes increases due to the constant injecttbn wi
over W and classify the trends as: big increase, smailyalve and the flow rate drops. Alternatively, if the pressur
increase, constant, small decrease, and big decrease.at ypstream nodes drops and the flow rate increases, while
2) Multi-node Collaboration: Our proposed decision treeall other conditions are the same as with blockage, then the
algorithm in SWATS utilizes collaboration of neighboringalgorithm considers the problem as leakage. On the othef, han

SWATS classifies the anomalies into 5 types of problems



if both the pressure and flow rate for the upstream node do
not change and those readings for local node do changer(eithe
fluctuate or increase or decrease), then the algorithmifient

the event as a downhole pressure change, a false alarm. Fig 3
depicts the part of the decision tree for this example.

VI. CONCLUSION

We described a new problem and designed an in-network
processing system that successfully monitors a steamflood
and a waterflood pipeline to detect, identify, and localize
anomalies such as blockage and leakage. In SWATS, we
created a decision tree algorithm for problem and falsaralar
identification by collaboratively exploiting spatial andnt-
poral correlations in the sensor readings. SWATS represent
a new approach for oilfield monitoring that has the benefits
of low cost, flexible deployment, continuous monitoringdan
accurate problem detection, identification, and localirat
quickly, reliably, and accurately, thereby improving therent
SCADA system. Because SWATS utilizes the changing pattern
of flows over time and space, it works better in a scenario in
which anomalies introduce non-negligible change in flowe.rat
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