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Ultra-Low Duty Cycle MAC with Scheduled
Channel Polling

Wei Ye and John Heidemann

Abstract— Energy consumption is a critical factor in sensor networks.
Since radio costs remain a large part of the energy costs in sensor network
hardware, there has been much focus on minimizing energy consumption in
radio medium access control (MAC) protocols. Scheduled protocols such as
S-MAC, T-MAC, and TRAMA reduce energy consumption by coordinating
nodes into sleep/wakeup schedules, allowing them to remainawake only for
brief contention periods and to coordinate. Their premise is that the cost of
coordination is minimal compared to the savings in coordinated access. Re-
cently a class of low-power listening (LPL) protocols, suchas WiseMAC and
B-MAC, reduce this overhead by replacing polling in contention periods
with very low power “channel active” probes, replacing explicit coordina-
tion with per-message coordination via long pre-message preambles. Since
testing channels for activity is about 10x less expensive than listening for
full contention period, LPL protocols consume less energy than the above
scheduled protocols in lightly used networks. However, both of these proto-
cols are limited to duty cycles of 1–2%: scheduled protocolsare limited by
the delay one can tolerate between schedules, and LPL-basedprotocols are
limited by the increasing transmit costs due to longer preambles. We ex-
plore a new approach that can achieveultra-low duty cycles of 0.01–0.1%,
potentially reducing energy consumption by a factor of 10–100. To do this,
we examine the the fundamental question of the relative benefits of coor-
dinating network access compared to unsynchronized polling. This paper
proposes a new MAC protocol based on scheduled channel polling (SCP-
MAC). We argue that the use of LPL-like channel probing is necessary, but
it must be combined with scheduled access to minimize energyconsumption
of the radio. We use theoretical analysis to find the best possible operating
points for LPL and SCP. Through analysis and testbed experimentation
we demonstrate that the use of scheduling in addition to LPL can extend
network lifetime by a factor of 2–2.5. In addition, SCP-MAC can reduce
transmit latency by avoiding long message preambles, and ismore flexible
to changing traffic requirements.

I. I NTRODUCTION

Energy consumption is a critical factor in sensor networks.
Current applications such as habitat monitoring [2], [16] target
sensor deployments of months or years.

With small sensor nodes such as Berkeley Motes [9], [12] the
radio is a major source of energy consumption. The Chipcon
radio draws 22mW when idle or receiving and more when trans-
mitting [11], a power draw about equal to CPU energy consump-
tion and larger than other typical components. Thus it is notsur-
prising that protocols that optimize radio energy consumption
have been a major research focus.

The key to reducing radio energy consumption is controlling
its power and duty cycle. In this paper we assume fixed hard-
ware and short-range communication. At short ranges, variable
transmit power is a second-order effect, so we focus on turning
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the radio on and off to control energy requirements. Other work
has consider routing-layer topology management [28], [22]or
application involvement [20]. We focus here on link-layer opti-
mizations because they are transparent to higher layers andcom-
plement work at layers that are above or below.

Two primary approaches have been considered in the MAC
layer. The first approach usesscheduledprotocols such as S-
MAC [29], [30], T-MAC [25], and TRAMA [19] adopt common
sleep/wakeup schedules, nodes remain awake only for brief con-
tention periods to coordinate. Scheduling allows nodes to op-
erate in low duty cycles. Another major benefit of scheduling
is that a sender can efficiently transmit – it only wakes up and
sends when a receiver is listening. The premise of the scheduled
protocols is that the cost of coordination is minimal compared to
reductions in time spent in listening for potential transmissions.
In addition, these approaches also take steps to reduce collisions
from concurrent transmission and overhearing of packets sent to
others.

A second approach islow-power listening(LPL), present in
WiseMAC [6] and B-MAC [18]. LPL allows a sleeping node
to check channel activity with a very brief, low power “channel
active” probes. We also call this action channel polling in this
paper. These protocols replace the relatively long wakeup inter-
val (including contention) in S-MAC and T-MAC with a very
short channel polling time. In these LPL protocols, nodes ran-
domly poll the channel with a pre-defined polling period. To
wake up a receiver, a sender uses a long preamble before each
packet, which is at least the length of the polling period. There-
fore, explicit coordination is unnecessary, since all neighbors
will hear the preamble and wake for the message. Since testing
channels for activity is about 10x less expensive than listening
for full contention period, LPL protocols consume less energy
than the above scheduled protocols in lightly loaded networks.

However, both types of existing protocols are limited to duty
cycles of 1–2%. Scheduled protocols are limited by the rela-
tively long wakeup interval and the delay one can tolerate be-
tween schedules. LPL-based protocols are limited by the in-
creasing transmit costs due to longer preambles. In this paper,
we design a new MAC protocol that can achieveultra-low duty
cycles of 0.01–0.1%, potentially reducing energy consumption
by a factor of 10–100.

Our protocol employs a new approach called scheduled chan-
nel polling (SCP). It combines the strengths of scheduling and
low power listening. Some researchers [18] pointed out thatthe
overhead in schedule synchronization may largely offset its ben-
efits. The conclusion was drawn based on an unoptimized im-
plementation of schedule synchronization in S-MAC. This pa-
per carries out thorough theoretical analysis and experiments
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Fig. 1. Data transmission with synchronized channel polling.

on how to optimize the synchronization procedure. Our results
show that the synchronization cost is minimal if we select opti-
mized parameters.

There are two main contributions in this paper. First, we pro-
pose a new MAC protocol based on scheduled channel polling
(SCP-MAC). The central novelty in SCP-MAC is the combi-
nation of scheduling and polling; we also describe novel addi-
tions including split contention windows and piggybacked syn-
chronization. Second, we examine the the fundamental ques-
tion of the relative benefits of coordinated network access com-
pared to unsynchronized polling. We argue that the use of LPL-
like channel probing is necessary, but it must be combined with
scheduled access in order to operate in ultra-low duty cycles. We
use theoretical analysis to find the best possible operatingpoints
for LPL and SCP. We demonstrate that SCP-MAC can operate
for 2–3 times longer than to LPL-based MACs for the same en-
ergy budget when each is tuned for a completely periodic work-
load. Scheduled polling as a better match forunpredictabletraf-
fic when tuned for low-duty cycle operation. LPL energy con-
sumption suffers when mismatched to changing traffic loads be-
cause of preamble length. By contrast, SCP only pays penalty
in latency, not in energy, and even the latency penalty can be
eliminated with algorithms such as adaptive listen. We show
in testbed experiments that LPL consumes 8 times more energy
than SCP when presented with short-term bursty traffic.

II. DESIGN OFSCHEDULED CHANNEL POLLING

As described above, reducing the duty cycle is key to con-
serving energy in frequently idle networks. Current protocols
are limited to duty cycles of 1%; with SCP-MAC we seek to
reduce the duty cycle by a factor of 10 by combining very short
channel polling in LPL with scheduling. A secondary goal in
SCP-MAC is to provide efficient operation over a wide range of
traffic conditions at run time.

A. SCP-MAC Overview

The basic scheme of SCP-MAC combines the strengths of
channel polling and scheduling. Channel polling minimizesthe
cost of wakeup checking for the presence or absence of network
activity rather than checking what that activity is. Similar to
low power listening (LPL), SCP puts nodes into periodic sleep
state when there is no traffic, and they perform channel polling
periodically. Unlike LPL, we synchronize the polling time of
all neighboring nodes. The major advantage of synchronized
polling is that a very short wake-up tone can be sent to wake up
a node. The short wakeup tone largely reduces the overhead of
transmitting long preambles in LPL.

Using short wakeup tone also makes SCP-MAC more robust
in the face of varying traffic load. The performance of LPL

is sensitive to the channel polling period. The optimal value
to minimize energy consumption requires knowledge of net-
work size and completely periodic traffic. While traffic in some
classes of sensor network applications is completely periodic, a
much larger set of applications mix periodic and bursty traffic
or consist of unpredictable traffic mixes. A worst case is a mon-
itoring application where there is no traffic to send most of the
time, but bursts of activity when a target is detected. Such anet-
work does not have a single good operating point, since it just
employ a low duty cycle to match long idle periods, but then is
penalized with long preambles and expensive transmission costs
during busy cycles. Although one could imagine a LPL-based
network dynamically adjusting its configuration (such adapta-
tion has been done in scheduled MACs [15]), such adaptation
must be conservative and will likely have large transition costs.
While we cannot characterize all sensor network applications,
experience in the Internet suggests that that traffic is verybursty
across a wide range of timescales [13].

Figure 1 illustrates the wakeup and data transmission scheme
we propose for SCP-MAC. When a node has a packet to send, it
waits in sleep state until the receiver’s time to poll the channel.
It will send a shortwakeup toneto activate the receiver. Before
sending the tone, it performs carrier sense within the first con-
tention window (denoted as CW1 in the figure). As with typical
CSMA protocols, nodes randomly select a slot in a fixed-length
contention window to reduce chances of collision. If the node
detects channel idle it will send the wakeup tone. Otherwise, it
goes back to sleep and will perform regular channel polling.Af-
ter a sender wakes up a receiver, it enters the second contention
window (CW2 in Figure 1). If the node still detects channel idle
in the second contention phase, it starts sending data.

The major advantage to separate the contention phases for
tone and packet is to achieve lower collision probability with
shorter overall contention time. The collision probability is
about inversely proportional to the contention window size.
Suppose we havem slots in a single contention window, the
collision probability is roughly proportional to1/m. If we split
the window into two with half the size, the collision probability
probability will become proportional to4/m2. Therefore when
m > 4, two-phased contention will have better performance
than the single-phased one. Alternatively, we can use fewer
contention slots (to save energy) to achieve the same collision
performance.

The reason that we can split the contention with fewer overall
slots is that SCP tolerates the collisions on tone transmissions—
the wake-up tone must indicate network activity, not actually
send data. Thus, we can use a very small contention window
for phase one. After phase one, only surviving nodes enter the
second phase. With fewer competing nodes, the collision prob-
ability on data transmission can be largely reduced. Our current
implementation defaults to use 8 and 16 slots for tone and data
contention windows, respectively.

On top of this basic wakeup and contention mechanism, SCP-
MAC includes several algorithms from prior MAC protocols as
compile- and run-time options. These extensions can be con-
figured to match the requirements of different applicationsor
traffic patterns. We include RTS-CTS exchanges [1] to support
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applications that may have high levels of network contention.
We have extended overhearing avoidance [23], [29] to work

both with and without RTS-CTS. When RTS-CTS is enabled,
overhearing avoidance is performed the same way as that in S-
MAC [29]. When RTS-CTS is disabled, we propose to perform
overhearing by examine packet headers. After a node receives
the MAC header of a packet, it immediately examine the desti-
nation address. If it is a unicast packet destined to anothernode,
it abandons receipt of the rest of the packet and places the radio
into sleep. Although we have not validated the checksum of the
packet header at this stage, if we sleep because of a corrupted
header we would have eventually dropped the packet anyway.

We support adaptive listen [30] to automatically adapt to
bursty traffic. After transmission of a packet the MAC layer im-
mediately polls the channel for additional traffic. This approach
is similar to S-MAC, but replaces the more expensive contention
intervals with wake-up tone transmission and LPL-like channel
polling.

We also plan to add support for fast-path schedule alloca-
tion [15], where a user can coordinate the schedules of all nodes
along a path to avoid all schedule-based delay. As with adaptive
listen, fast-path scheduling can exploit channel polling in place
of full contention.

B. Synchronization Mechanism

Synchronizing schedules with its neighbors is an essential
component of SCP-MAC. To coordinate, all nodes broadcast
their schedule information to their neighbors everysynchroniza-
tion period. How often synchronization is required is a function
of clock drift and node density but synchronization is required
only every 10–60 minutes.

SCP-MAC uses two approaches for sending schedule infor-
mation. The first one is to piggyback it onto data packets when
they are present. For example, periodic sensing data reports
from each node can carry such information. The overhead of
of piggybacking is very small—two bytes for unicast message,
or free on broadcast messages in our implementation (details
are in Section IV-C). If data traffic is more frequent than the
synchronization interval, explicit synchronization can be sup-
pressed. We evaluate the optimal frequency of synchronization
in Section III-C.1). With typical clocks, synchronizationis re-
quired very infrequently (tens of minutes); we expect most ap-
plications will be able to make use of piggybacking.

Section III-C also compares the energy consumption with and
without piggybacking. This subsection investigates the relation-
ship of the synchronization period and the wake-up tone dura-
tion.

There are several factors that affects the synchronizationpe-
riod and the wake-up tone length. Among them, the clock drift
rate is a fundamental physical limit. Current CMOS crystal os-
cillators, such as those used on the UC Berkeley motes, have
a drift rate of 30–50 parts per million (ppm) [12]. To accom-
modate potential clock drift we extend the wake-up signal bya
guard time.

Denote the synchronization period asTsync (a configuration
parameter) and the clock drift rate asrclk. The maximum clock
difference between a sender and a receiver is

tdiff = 2Tsyncrclk (1)

where the factor of two reflects the worst case when each node’s
clock drifts in the opposite direction.

Since the relative time difference between two nodes can be
in two directions, the guard time needs to be twicetdiff . If a
node hasn neighbors, each of them will send SYNC packets at
the period ofTsync. Since every SYNC packet re-synchronizes
all nodes in the neighborhood,(n + 1) nodes effectively reduce
the clock drift by(n + 1) times. Thus the guard time becomes

tguard = 2tdiff =
4Tsyncrclk

n + 1
(2)

The duration of the wake-up tone is the guard time plus a
short, fixed time

ttone =
4Tsyncrclk

n + 1
+ tmtone (3)

wheretmtone is the time required to detect the tone. Since the
time needed for the receiver to sample the channel (not includ-
ing the radio transition time) and determine channel activity is
around 0.5–2ms, depending on the radio speed, carrier senseal-
gorithm, and channel condition, we simply settmtone= 2ms for
easy analysis.

There is a trade-off in determiningTsync: increasingTsync
reduces the energy cost of sending SYNC packets, but increase
the cost on guard time. In Section III-C we evaluate the optimal
Tsyncto minimizes the energy cost.

III. A NALYSIS OF ENERGY PERFORMANCE

This section analyzes the energy consumption in low duty cy-
cle MAC protocols. It compares the two schemes of channel
polling: random and synchronized. We first describe the models
and metrics used in our energy analysis.

A. Models and Metrics

Our analysis only considers a local network, where all nodes
can directly hear from each other. Each node hasn neighbors,
andn is referred to as the neighborhood size of a node. The traf-
fic is generated by each node, which periodically sends a data
packet. The packet can be either broadcast or unicast. For now
we only consider broadcast. SCP-MAC should have much bet-
ter savings in unicast, as it has overhearing avoidance. Thera-
dio is in any of the four states: transmitting, receiving, listening,
and sleeping, each with different power consumption (energy
consumption per unit time) ofPtx, Prx, Plisten andPsleeprespec-
tively. The channel polling is different than normal listening in
that the radio is turned on very briefly to detect possible wake-up
signals. Its duration, denoted astp1, consists of the radio tran-
sition time from sleep to listen and the sampling time to detect
channel activity. We denote the average power consumption in
channel polling asPpoll. The radio transitions can be ignored in
other states.

Both LPL and SCP are contention-based MACs, and trans-
mitting a data packet requires carrier sense. To simplify the
analysis, this section assumes that there is only one contention
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Symbol Meaning Typical Value
Ptx Power consumption in transmitting 60mW
Prx Power consumption in receiving 45mW
Plisten Power consumption in listening 45mW
Psleep Power consumption in sleeping 90µW
Ppoll Avg. power consumption in polling channel 5.75mW
tp1 Time needed to poll channel once 3ms
Tp Channel polling period Varying
Tdata Data packet period Varying
rdata Data packet rate (1/Tdata) Varying
Ldata Data packet length 50B
tcs1 Average carrier sense time for one packet 7ms
tB Time to transmit or receive a byte 416E-6s
n Number of neighbors 10

TABLE I

SYMBOLS USED IN ENERGY ANALYSIS

phase in SCP-MAC, and the contention window size is the same
as that of the LPL. We denote the average time in carrier sense
astcs. After carrier sense, a node first sends a wake-up tone and
then followed by the real packet. We denote the transmitting
time for the tone and packet asttx. Besides carrier sense and
transmitting, a node can either poll the channel, receive a packet
(or tone) or sleep. We denote the time a node in these states as
tpoll, trx and tsleep respectively. In our analysis, all the above
time values are normalized to one second. They represent the
fractions of time in one second the node in different states.We
refer to them as normalized time. Table I lists some symbols
used in our analysis.

For both LPL and SCP, the average energy consumption per
second,i.e., average power consumption, on each node can be
computed as

E = Ecs+ Etx + Erx + Epoll + Esleep

= Plistentcs+ Ptxttx + Prxtrx

+Ppolltpoll + Psleeptsleep (4)

We next derive the average power consumption for both ran-
dom and scheduled channel polling schemes.

B. Random Channel Polling: LPL

In LPL, nodes randomly wake up. A sender wakes up a re-
ceiver by sending a long preamble before each packet. (Each
packet has a short, fixed preamble to synchronize the transmit-
ter and receiver. For simplicity, we considered it as part ofa
packet. The length of each packet in our analysis includes 10B
preamble.) The duration of the preamble should be at least the
same as the polling intervalTp, and thus the preamble length is

Lpreamble=
Tp

tB
(5)

where,tB is the time needed to transmit or receive a byte.
Before sending the preamble, a node needs to perform carrier

sense for each data packet. Recall that the average carrier sense
time istcs1. The normalized time a node spends in carrier sense
is

tcs =
tcs1

Tdata
= tcs1rdata (6)

whererdata is the rate of sending data packet on each node. The
normalized time a node is in transmitting state is

ttx = (Lpreamble+ Ldata)tBrdata

= (Tp + LdatatB)rdata (7)

The second line in the above equation is due to (5).
Assume each node periodically generates packets at the same

rate ofrdata. A node will periodically receiven packets from its
n neighbors. The normalized time it is in receiving state is

trx = nttx = n(Tp + LdatatB)rdata (8)

The normalized time that a node uses to poll the channel is

tpoll =
tp1

Tp
(9)

The normalized time in sleep state is the portion in a second
that a node’s radio is not in the above active states.

tsleep= 1 − tcs− ttx − trx − tpoll (10)

Substituting Equations (6)–(10) into (4) and using Equa-
tion (5), we obtain the energy consumption with random channel
polling as

Er = Plistentcs1rdata+ (Ptx + nPrx)(Tp + LdatatB)rdata

+Ppolltp1/Tp

+Psleep(1 − tcs1rdata− (n + 1)(Tp + LdatatB)rdata

−tp1/Tp) (11)

Assuming data length is fixed, we can see from the above equa-
tion that the energy consumption of a node changes as a function
of its neighborhood sizen, data raterdata, and channel polling
periodTp.

Equation (11) also shows a tradeoff withTp: reducingTp re-
duces the cost of polling the channel, but it increases the energy
spent in transmitting and receiving. An interesting question is,
what is the optimal value ofTp that minimizes the energy con-
sumption whenn andrdata are fixed? We can obtain the answer
by solving the following equation.

dEr

dTp
= 0 (12)

Substituting Equation (11) into (12), we have the optimal value
of Tp for random polling as

T ∗

p,r =

√

(Ppoll − Psleep)tp1

rdata(Ptx + nPrx − (n + 1)Psleep)
(13)

Figure 2 showsT ∗

p,r as a function of the data rate using the
typical values shown in Table I. WhenTdata = 300s, T ∗

p,r =
100ms (the same as the default value in LPL as shown in its
Table 3). WhenTdata = 100s, T ∗

p,r = 58ms.
The optimal energy consumption in the random channel

polling scheme is the one expressed by Equation (11) when
Tp = T ∗

p,r. We will show a numerical result in Section III-C.2.
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Fig. 2. Optimal channel polling period in LPL. Neighborhood size is 10.

Symbol Meaning Typical Value
Tsync SYNC packet period Varying
rsync SYNC packet rate (1/Tsync) Varying
Lsync SYNC packet length 18B
LsB SYNC bytes piggybacked to data 2B
tmtone Minimum duration of wake-up tone 2ms
ttone Duration of wake-up tone Varying

TABLE II

ADDITIONAL PARAMETERS IN SCP-MAC

C. Scheduled Channel Polling: SCP

Now we look at the energy consumption in the scheduled
channel polling scheme. In this scheme, a node will roughly
synchronize with its neighbors on channel polling. An addi-
tional cost in such a network is exchanging synchronizationin-
formation among neighbors. However, there is no need to send
long preamble before each packet to wake up a receiver. SCP-
MAC uses a short wake-up tone instead. Table II shows addi-
tional parameters in SCP-MAC.

Equation (4) is still applicable to the scheduled channel
polling scheme if we include the cost of sending and receiv-
ing synchronization information. To reduce the synchronization
cost, such information should be piggybacked to data packets if
possible. In the following two subsections, we investigatethe
two cases with and without piggybacking separately.

C.1 Best Case: Energy Consumption With Perfect Piggyback-
ing

Given the fact that many types of data transmissions in sensor
networks are periodic, synchronization information can beeas-
ily piggybacked on data. For example, all synchronization in-
formation can be piggybacked ifrdata ≤ rsync. This subsection
investigates the energy consumption for this case and assumes
rdata = rsync.

Since the transmission rate does not change, the normalized
carrier sense time is still expressed by Equation (6). The trans-

mission time now is

ttx = (ttone+ LsBtB + LdatatB)rdata (14)

Similarly, the reception time is

trx = n(ttone+ LsBtB + LdatatB)rdata (15)

The channel polling time and the sleep time can still be repre-
sented by Equations (9) and (10).

Substituting Equations (6), (14), (15), (9) and (10) into (4),
we obtain the energy consumption of the scheduled channel
polling with piggybacked synchronization as

Esp = Plistentcs1rdata

+ (Ptx + nPrx)(ttone+ LsBtB + LdatatB)rdata

+ Ppolltp1/Tp

+ Psleep[1 − tcs1rdata

− (n + 1)(ttone+ LsBtB + LdatatB)rdata

− tp1/Tp] (16)

Ideally, with the periodic traffic from all neighbors, a node
should only poll the channel when there is a transmission from
a neighbor. Thus the optimal polling periodTp for scheduled
polling is

T ∗

p,sp=
1

n(rdata)
(17)

The optimal energy consumption can be obtained by sub-
stituting Equation (3) into (16) and lettingTp = T ∗

p,sp and
Tsync = 1/rdata. It is only a function ofrdata. A numerical
result will be shown in Section III-C.2.

Piggybacking does require a slightly larger header to include
clock and schedule information. This cost is reflected inLsB.
We can evaluate the overhead of piggybacking by comparing
Esp to Esp-free, the ideal case whereLsB is set to zero. For the
10 neighbor scenario, the overhead of piggybacking is always
less than 2%, and is less than 1% whenTdata > 150s, with
overhead dropping at longer data intervals.

C.2 Worst Case: All Synchronization via SYNC Packets With-
out Piggybacking

In this case, nodes spend more time in transmitting and re-
ceiving SYNC packets, since the packet transmission rate has
been increased byrsync. Here we assume the worst case where
no SYNC packets can be piggybacked on data packets.

Since SYNC packets also require carrier sense, the normal-
ized time in carrier sense is

tcs = tcs1(rdata+ rsync) (18)

whererdata is the data packet rate, andrsyncis the SYNC packet
rate.

After carrier sense, a node first sends a wake-up tone to wake
up the receiver and then sends the packet. The normalized time
in transmitting state is

ttx = (ttone+ LdatatB)rdata+ (ttone+ LsynctB)rsync (19)
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Compared with Equation (7), the long preamble is replaced with
a short tone, but the packet rate is increased byrsync.

Assuming all the data packets are broadcast, we have the nor-
malized time in receiving state as

trx = n(ttone+ LdatatB)rdata+ n(ttone+ LdatatB)rsync (20)

The normalized time that a node polls the channel and sleep
can still be expressed by Equations (9) and (10) respectively.
But the values oftcs, ttx andtrx in (10) are replaced by Equa-
tions (18)–(20).

Substituting Equations (18)–(20) and (9)–(10) into (4), we
have the energy consumption in scheduled channel polling with
independent SYNC packets as

Esnp = Plistentcs1(rdata+ rsync)

+ (Ptx + nPrx)(ttone+ LdatatB)rdata

+ (Ptx + nPrx)(ttone+ LsynctB)rsync

+ Ppolltp1/Tp

+ Psleep[1 − tcs1(rdata+ rsync)

− (n + 1)(ttone+ LdatatB)rdata

− (n + 1)(ttone+ LsynctB)rsync

− tp1/Tp] (21)

If we ignore the energy consumption in sleep state, the energy
consumption with scheduled channel polling changes monoton-
ically with the polling periodTp. The larger theTp, the smaller
the Esnp. This is different than the random channel polling as
shown in Equation (11), since here the cost of sending and re-
ceiving a packet does not change withTp. Ideally, with the pe-
riodic traffic from all neighbors, a node should only poll the
channel when there is a transmission from a neighbor. Thus the
optimal polling period for scheduled polling with independent
SYNC packets is

T ∗

p,snp=
1

n(rdata+ rsync)
(22)

Now we go back to the question “what is the optimal syn-
chronization periodTsync that minimizesEsnp?” To answer the
question, we substitute Equations (3) and (22) into (21), and
solve the following equation

dEsnp

dTsync
= 0 (23)

Thus the optimalTsync is obtained as

T ∗

sync=

√

n(n + 1)(El + Pttt + Ep)

2rdatarclkPt

(24)

where

El = Plistentcs1,

Pt = Ptx + nPrx − (n + 1)Psleep,

tt = tmtone+ LsynctB,

Ep = n(Ppoll − Psleep)tp1.
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Fig. 3. Optimal SYNC period for SCP-MAC.
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Fig. 4. Optimal wake-up tone length for SCP-MAC.

OnceT ∗

sync is known, we can obtain the optimal tone duration
by substituting Equation (24) into (3), which is

t∗tone =
4T ∗

syncrclk

n + 1
+ tmtone (25)

Figures 3 and 4 show the optimal synchronization period and
the optimal wake-up tone length respectively.

From these results so far we can make several observations
about how the parameters of a scheduled MAC compare to an
unscheduled one. First, Figure 3 suggests that the clock syn-
chronization can be quite rare, about7× data transmission fre-
quency during light loads (Tdata = 300s) to 16 × Tdata during
heavier loads (Tdata = 50s). This observation suggests that
synchronization overhead can be low. Second, clock synchro-
nization and scheduled polling allowsmuchshorter preambles
than are possible with unsynchronized media access. Finally,
when piggybacking is used, synchronization happens “for free”
on top of data, allowing much shorter tone lengths because of
careful clock synchronization. The cost of piggybacking isalso
quite low, only 2 bytes.
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The optimal energy consumption in scheduled channel
polling with independent SYNC packets can be obtained by sub-
stituting Equations (22)–(25) into (21).

Figure 5 compares the optimal (minimum) energy consump-
tions in the three cases we have analyzed: random channel
polling, scheduled channel polling with all sync information
piggybacked on data, and scheduled channel polling with allin-
dependent SYNC packets. We can see that the random channel
polling consumes the most energy. Scheduled polling with sync
information piggybacked on data consumes the least energy.In
a real network where only partial SYNC packets can be piggy-
backed on data, its energy consumption will between two lines
of piggybacking and no piggybacking in the figure. Figure 6
shows the actual gain in energy of scheduled polling over ran-
dom polling.

IV. PROTOCOL IMPLEMENTATION

We have implemented SCP-MAC in TinyOS [10] over the
Mica2 motes [12]. To provide a clean comparison of LPL and

LPL

PHY

CSMA

SCP

Packet

Packet

Packet

Radio

Upper layer

Packet

Byte

Tone

Polling

Polling
timer

Fig. 7. Software architecture of the SCP-MAC implementation in TinyOS.

scheduled LPL, we implement scheduling as a layer over ba-
sic LPL. We describe this architecture, how it integrates with
TinyOS, and details about piggybacking synchronization infor-
mation next.

A. Software Architecture

We first describe the software architecture of SCP-MAC in
TinyOS. Our implementation emphasizes on modular design
and reusable components. Figure 7 shows the general archi-
tecture, illustrating the relationships of the major components.
In addition to these modules, several parameters and options
are configurable at compile time, including RTS-CTS handling,
overhearing avoidance, and adaptive listen. We have imple-
mented all these components; a version of this implementation
is available from the authors at their web site.

At the bottom is the physical layer (PHY). It handles the ra-
dio states (sending, listening, receiving, off, and warming up).
On packet transmission, it passes each byte to the radio at the
its transmission speed. On reception, it buffers all bytes from
a packet and and passes the packet to the MAC when com-
plete. It also implements and exports interfaces for physical
carrier sense, transmission of the wakeup tone, CRC check, and
time stamping on transmitting and receiving of packets (forac-
curate time synchronization). For performance measurement,
the PHY can record time spent in each radio state. The PHY
module is designed to be MAC-independent and able to support
contention-based or TDMA protocols, so it leaves backoff and
similar functions to higher layers.

Above the PHY, we first implemented a basic CSMA proto-
col. Since both LPL and SCP are contention-based protocols,
the CSMA component can be used by both of them. It includes
preamble length as a parameter to packet transmission, allowing
support for LPL. The CSMA is responsible for performing car-
rier sense and random backoff. It also includes, as a compile-
time option, support for full RTS-CTS-DATA-ACK or simply
DATA-ACK exchanges for unicast traffic. If ACKs are enabled,
it does retransmission of unicast packets. It also includesvirtual
carrier sense (avoiding transmission during control message ex-
changes) and overhearing avoidance.

LPL is implemented on top of the CSMA component. Its ma-
jor purpose is to periodically poll the channel and send the radio
to sleep when there is no activity. It adjusts preamble lengths
on transmitted packets to ensure they intersect with polling fre-
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Fig. 8. Channel polling process implemented in SCP-MAC.

Fig. 9. CPU overhead on timer firing events.

quency, and coordinates concurrent polling and transmission.
To support SCP, LPL exports interfaces to query and adjust
channel polling times.

Scheduling is implemented above the LPL module in the SCP
module. It uses basic LPL to bootstrap schedules with SYNC
packets. Once it has synchronized polling times with neigh-
bor nodes, it switches to reduced-length preambles and wake-
up tone transmission. It coordinates packet transmission timing
to ensure short-duration wake-up tones are sent when neighbors
are listening. It also implements the SCP-level randomizedcon-
tention window before wake-up, which combines with CSMA-
level contention for the data transmission to provide two inde-
pendent contention periods. Finally, it includes a number of op-
tional compile-time optimizations, including SYNC piggyback-
ing on broadcast data packets. (As future work we expect to also
piggyback SYNC information in unicast exchanges.)

All three MAC components, CSMA, LPL and SCP export
the same interface for message transmission and reception.An
application can easily switch MAC protocols by changing its
component wiring. Such implementation promotes component
reuse. This architecture also provides a common foundationfor
our performance evaluation in Section V.

B. Interaction with TinyOS

Although we control radio activity, we depend on TinyOS for
CPU power management and timers. Our PHY layer coordi-
nates with TinyOS to allow the CPU to sleep when the radio is
not needed.

Based on our PHY and the CPU power management compo-
nent in TinyOS and the implementation from B-MAC we im-
plemented the low-power channel polling. Figure 8 shows the
current draw for channel polling captured by an oscilloscope
(each x-axis tick is 1ms, each y-axis tick is 4mA). Our imple-
mentation provides similar results as the B-MAC implementa-
tion ([18], Figure 3).

We added a new timer implementation to TinyOS to add sup-
port for dynamically adjusting timer values and asynchronous,
low-jitter triggers. The synchronized channel polling in SCP-
MAC requires to receive the timer firing events with very low
jitter to minimize synchronization errors. Our timer implemen-
tation is based on the 8-bit hardware counter on Mica2. This
timer runs independently from the CPU, allowing the CPU to
sleep when no other activity is present. Because this timer uses
an 8-bit counter running at 1kHz, the timer overflows and must
wake-up the CPU four times per second. We measured the en-
ergy cost of this event via an oscilloscope in Figure 9. Compared
to the cost of activating the radio (Figure 8, with the same scale),
the energy requirements to maintaining the timer is minimal.

C. Efficient Piggybacking of Synchronization Information

To minimize the cost of synchronization we wish to avoid
explicit SYNC packets. One SCP-MAC optimization is to pig-
gyback synchronization information in broadcast packets.We
are able to do so with no additional to packet length. Our nor-
mal MAC header includes 3 fields: packet type, source address
and destination address. For broadcast data packets the destina-
tion address is normally set as the common broadcast address
(0xFFFF) in TinyOS. However, the packet type field also redun-
dantly indicates that the packet is a broadcast packet. We there-
fore use the type field to indicate broadcast packets and reuse
the address field to piggyback schedule information.

On the receiver side, when SCP receives a broadcast data
packet, it extracts piggybacked schedule information fromthe
destination field, and performs schedule synchronization.It then
replaces the destination field with the broadcast address before
it passes the packet to its upper layer. Our approach piggy-
backs synchronization information onto broadcast packetsfor
free, and it does not affect the operation of upper layers.

V. EXPERIMENTAL EVALUATION

The main contributions of this paper are to highlight the rela-
tive benefits of LPL and scheduling in energy conservation, and
to propose a specific new MAC protocol, SCP-MAC. We have
implemented SCP-MAC to validate both of these contributions.

In this section we focus explicitly on validating our analysis
of the relative benefits of scheduling, LPL, and scheduled LPL.
Since the performances of LPL alone over scheduling alone
have been demonstrated, here we compare only LPL against
scheduled LPL.

All actual MAC implementation has hundreds of specific de-
sign choices, many of which have effects on performance. To
control these details in comparing LPL and scheduled LPL, we
compare our own implementation of these protocols. This ap-
proach controls for algorithms such as CSMA, physical-layer
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carrier sense mechanism, back-off, and other MAC algorithms.
In addition, in these experiments, we disable the more advanced
SCP-MAC features, including overhearing avoidance and adap-
tive listen, again to provide a simplified comparison of the core
algorithms.

The second contribution of this paper is the set of design
choices and optimizations described in Section IV. We do not
attempt to compare those to an actual LPL implementation such
as B-MAC [18] at this time for several reasons. First, those de-
tails would distract from our main question of comparing the
advantages of scheduling on top of LPL. In addition, the current
implementation of B-MAC (as of July 4, 2005) supports only
a few pre-defined duty cycles, thus it would be impossible to
explore a wide range of duty cycles directly. We identify a full
evaluation of SCP-MAC’s advanced features and a comparison
to other full MAC implementations as future work.

A. Optimal Setup with Periodic Traffic

We first compare the energy performance of SCP and LPL
under optimal configuration with completely periodic, known
traffic. With static traffic loads we can optimize each for max-
imum energy conservation. We can use our implementation to
validate the analysis leading to Figure 5. While known, peri-
odic traffic is somewhat artificial, this configuration models a
environmental monitoring applications where sensors are peri-
odically sampled.

MAC parameters vary based on network size and data rate.
For this test we place 10 nodes, all within range of each other,
forming a single hop mesh. Each node periodically generatesa
40B data message (not including preamble) and broadcasts itit
to the network. Logically one would place base station in the
middle of this mesh to record the data or relay it to the Internet,
but we omit that node to focus on wireless performance.

We vary the data transmit rate to study how MAC perfor-
mance varies. For this test we consider very light traffic loads
typical for very long-lived sensor networks: we vary each node’s
message generation interval from 50–300s. (Thus the aggregate
data rate for the whole network varies from 1 message every
5–30s.)

For each static traffic load, we find out the optimal polling pe-
riod of LPL and SCP from Equations (13) and (17). We run each
experiment for 5 message periods, generating 50 total messages
over each experiment.

A central node begins and ends the experiment by a broadcast
packet received by all nodes. We measure the energy consump-
tion at each node by recording (in software) the time spent by
the radio state between each state transition1. At the end of the
experiment we collect this information from all nodes to a cen-
tral measurement point.

Figure 10 shows the mean energy consumption of each node
to send and receive all the messages. As expected, a lower
traffic rate (corresponding with a larger inter-packet delay to-
wards the right of the graph) results in a higher total energy
cost. This result is because of a longer total experiment time

1We do not explicitly model CPU energy, but in our experiments there are
no CPU costs other than timer maintenance when radio is off. In Figure 9 we
demonstrate that timer energy costs are not significant compared to radio costs.
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Fig. 10. Mean energy consumption (J) for each node as traffic send rate
varies. (Assumes optimal LPL and SCP configurations, completely
periodic traffic, and a 10-node network.)
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Fig. 11. Mean rate of energy consumption rate (W, or J/s) for each node
as traffic send rate varies. (Assumes optimal LPL and SCP config-
urations, completely periodic traffic, and a 10-node network.)

and a higher cost to keep the network synchronized over longer
gaps between messages. For LPL, the optimal polling interval
is longer for slower traffic rates (see Figure 2), therefore the op-
timal preamble length is longer and so the cost of each message
is longer. For SCP, the optimal sync period grows (Figure 3),
and the optimal wake-up tone length grows slightly (Figure 4),
but but the rate of growth is lower than for LPL. In addition,
the absolute cost of SCP is much lower than LPL: we can see
that LPL requires 2–2.5 times more energy than SCP to send the
same amount of data. This savings is because scheduling allows
much shorter preambles on each data message.

Figure 10 shows the absolute total energy required to send a
fixed amount of data over a given time (Joules per experiment).
We can also express energy in terms of energyrate: Joules per
second or Watts. We expect slower traffic rates correspond to
lower rates of energy consumption. Figure 11 shows the total
energy consumed (Figure 10) normalized by experiment dura-
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Fig. 12. Energy consumptions on heavy traffic load with very low duty
cycle configurations.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

110

Number of transmitting nodes

T
hr

ou
gh

pu
t (

by
te

/s
)

SCP
LPL

Fig. 13. Throughput on heavy traffic load with very low duty cycle
configurations.

tion to give this rate. For easy comparison with analytical re-
sults, we put relevant portions of Figure 5 into Figure 11. Wecan
see that both SCP and LPL experimental results closely match
the trends of their analytical results with some fixed differences.
The results validate the correctness of our analysis.

B. Energy Use Under Unanticipated Traffic Loads

In the prior section we consider optimal conditions for LPL
and SCP with a completely known, periodic load. In many ap-
plications the traffic load is less predictable. For example, in
tracking or monitoring applications such as fire detection,there
are long stretches of operation with no events, but then a detec-
tion causes a flurry of activity and very bursty traffic. Such a
networkmustbe optimized for the common case when nothing
happens, yet it must also be able to handle waking up out of this
case and handling bursty traffic. Even if the MAC is customized
with multiple modes, it must still operate conservatively before
it is shifting to highly active.

To evaluate these scenarios we next consider MAC perfor-

mance when operating outside its optimal regime. We tune
LPL and SCP for a 0.3% duty cycle, polling every second.
Since the polling interval is the same for both MACs, energy
draw without traffic is almost identical. (SCP-MAC will require
slightly higher energy to preemptively keep schedules synchro-
nization.)

To simulate a sensor detection, we trigger all nodes to enter
“busy” mode at the same time. When busy, each node generates
20 100B-long messages as rapidly as possible, starting to send
the next as soon as the prior message is transmitted. This burst
of traffic exercises the network at an operating point different
from its optimal.

To vary the degree of offered load, we vary the number of
nodes in the network that start sending from 1 to 10. This traffic
causes severe contention as the number of transmitting nodes
increases in the network. Figure 12 shows the average energy
consumption of each node as the number of transmitting nodes
increases. We can see that at this heavy traffic, LPL consumes
about 8 times more energy than SCP to transmit an equal amount
of data.

The main reason for this higher cost is the expense of LPL
preambles. When optimized for low duty cycle with a 1s polling
interval, each packet sent with LPL includes a 1s preamble. SCP
avoids this overhead.

Of course, additional algorithms could improve both LPL and
SCP performance. LPL could shift to shorter preambles for busy
periods, however such a shift must be done conservatively to
ensure all nodes agree to the transition—effectively a form of
synchronization. SCP could benefit from adaptive listen [30]
or T-MAC-style Future RTS [25]. While all of these optimiza-
tions are feasible, here we focus on an understanding of the core
algorithm trade-offs before such optimizations.

C. Throughput Under Unanticipated Traffic Loads

Finally, we briefly explore one optimization in SCP-MAC:
the use of separate contention windows for the wakeup tone and
data.

Figure 13 shows the throughput of SCP and LPL under the
same conditions as Section V-B. As the offered load increases
the contention algorithms of each protocol is stressed. Both pro-
tocols do CSMA, however concurrent CSMA probes can miss
each other. To avoid this, all contention-based MAC protocols
use randomization. LPL uses a single contention window of
randomized listening before sending its preamble; here we con-
figure it to 32 slots. With 10 transmitters, there is roughly aone-
third chance of two nodes selecting the same slot and therefore
colliding.

As described in Section II-A, SCP usestwo contention peri-
ods, one for the wakeup tone and the second for the data period.
To keep the total time spent contending identical, we dividethe
32 slots into 16 slots for each window. The two-phase con-
tention window reduces overall collisions because even though
there is a 10/16 (62%) chance of collision during the wakeup
tone, collisions there do not matter since even multiple concur-
rent tones succeed in indicating the presence of traffic. Only
nodes that collide in the wakeup contention window will com-
pete in the data contention period, thus it has only a10/162 (4%)
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effective collision rate.
We see the result of this more effective algorithm in Figure 13

as minimal reductions in SCP throughput as the number of trans-
mitting nodes (and hence contention) increases. By comparison,
LPL shows significantly lower throughput.

VI. RELATED WORK

Energy-efficient MAC protocols have been a very active re-
search area in wireless embedded and sensor networks. Existing
work mainly focuses on two directions: TDMA and contention-
based protocols.

TDMA protocols are naturally energy efficient. Their major
limitations are the requirement of centralized control andstrict
time synchronization. Centralized control often requiresnodes
to form clusters and coordinated by cluster heads. Examples
of such TDMA protocols include Bluetooth [7], LEACH [8],
and BMA [14]. To extend the flexibility of TDMA, some dis-
tributed slot assignment schemes have been proposed, such as
LMAC [26] and TRAMA [19]. Sohrabi and Pottie also pro-
posed a protocol for distributed assignment of TDMA sched-
ules [24]. Although TDMA protocols are attractive, we believe
that contention-based protocols are better suited to dynamic sen-
sor networks because of their flexibility and robustness.

Compared to TDMA protocols, contention-based protocols
are more widely used in wireless sensor networks. Woo and
Culler [27] examined different configurations of CSMA and
proposed an adaptive rate control mechanism. However, the
work does not focus on energy efficiency.

Reducing idle listening is one of the major challenge in
contention-based protocols, and the major solution is to put
nodes into low duty cycles. Two important techniques have
been developed to make sensor nodes efficiently work in low
duty cycle mode: scheduling and low-power listening (LPL).
The power-save mode in IEEE 802.11 [17] adopts a central-
ized approach with the access point coordinating sleep times of
nodes in a single-hop network. S-MAC [29], [30] developed
a distributed coordination scheme to synchronize node sleep
schedules in a multi-hop network. By scheduling node wakeup
times, S-MAC enables nodes to run at duty cycles of 1–10%; it
also fully decentralizes control, making it suitable for a multi-
hop network. T-MAC [25] improves S-MAC by reducing the
wakeup duration controlled by an adaptive timer and introduc-
ing future-RTS. We have also recently described how scheduling
can be controlled to minimize latency in multi-hop communica-
tion [15]. The major advantage of scheduling is that a sender
can determine a receiver’s wakeup time and transmit efficiently.
The major disadvantage in S-MAC and T-MAC is the relatively
long listen time, as they incorporate the contention time. The
long listen time is the major obstacle for these protocols torun
at ultra-low duty cycles.

Low-power listening is an approach where the network chan-
nel is polled for presence of activity rather than for specific
data. Exploiting much shorter network poll times, LPL by itself
reduces energy consumption compared to alternatives. How-
ever, we are currently aware of no research that has explored
scheduling these very low-power polls as we propose here. In-
stead, nodes perform channel polling in an uncoordinated fash-

ion. To wake up a receiver, a sender needs to send a wakeup
signal that is at least as long as the polling interval. STEM [21]
explored this idea with a low-power paging channel. It uses
the paging channel to transmit the wakeup tone and a normal
channel to transmit data. Hill [9] and El-Hoiydi [4] indepen-
dently developed the approach of sending the wakeup signal by
simply adding preambles in front of each transmitted packet.
WiseMAC [5] tries to further reduce the long preambles of pack-
ets after an initial packet with a long preamble. The improve-
ment only works for certain traffic patterns, and long preambles
have to be used for all broadcast packets. B-MAC [18] imple-
mented the idea of LPL in TinyOS with a well-defined interface
for applications to control the MAC behavior. It also developed
an algorithm for clear channel assessment. The major advantage
of LPL is that it minimizes the overhead of listening time. How-
ever, without scheduling on polling time, these existing proto-
cols have large overhead on transmission side, which essentially
prevent them from going to ultra-low duty cycles.

Separate from MAC protocols, as number of researchers have
proposed higher-level approaches to conserve power, either as a
topology management layer [28], [3], [22], integrated withrout-
ing, or at the application layer [20]. Such approaches are com-
plementary with MAC-level optimizations to accomplish even
lower effective duty cycles.

VII. CONCLUSIONS ANDFUTURE WORK

This paper proposes a new MAC protocol based on sched-
uled channel polling, which enables sensor network nodes to
operate at ultra-low duty cycles. It combines the strengthsof
both scheduling and low-power listening. To achieves the goal,
we perform theoretical analysis to quantify the overhead ofsyn-
chronization and relative benefits of scheduling compared to
random channel polling. Our analysis also finds out the best
operating point for both LPL and SCP.

We have implemented SCP-MAC in TinyOS over Mica2
motes. Our preliminary experiments show that SCP is able to
achieve better energy performance than LPL by a factor of 2–2.5
when both of them use optimal configurations. Our experiments
also demonstrated the advantage of SCP to handle unexpected
traffic that does not match the ideal periodic model.

Our future work includes further implementation of all opti-
mizations in SCP-MAC and thorough evaluation of its perfor-
mance under different application requirements and trafficcon-
ditions. We also plan to make more complete comparisons with
other sensor network MAC protocols.
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