
Infrastructureless Location Aware Configuration for Sensor Networks∗

ISI-TR-2004-589

Xi Wang Fabio Silva John Heidemann
{xiw, fabio, johnh}@isi.edu

Abstract

In large sensor networks nodes must self-configure their
communication, location, and other characteristics. GPS
and similar systems determine location today, but they re-
quire substantial infrastructure in the environment or on
sensor nodes to locate nodes in a physical coordinate sys-
tem. For many applications,logical location—the relation-
ship of nodes with each other and their environment—can
be more important than physical location. For example,
distance along a road and presence of intersections may
be more relevant than Euclidean coordinates for applica-
tions that track or guide drivers. In this paper we present
a novel algorithm,deployment order, for logical location
determination. Deployment order exploits node deploy-
ment patterns and simple user interactions to define log-
ical topologies in a completely distributed manner. With
minimal user interaction it can establish arbitrarily complex
logical topologies. We illustrate the algorithm through the
“follow-me” application, which is an easy-to-deploy sen-
sornet guidance system suitable for use in office buildings
as well as inhospitable environments (underground, in dam-
aged buildings, etc.). Finally, we demonstrate how the ad-
dition of landmarks allows the conversion from logical lo-
cations to approximate physical locations.

1 Introduction

Sensor networks use numerous small, inexpensive nodes
that can sense, compute, and communicate with each other
to interact with the physical world. Sensors must be small
and inexpensive to make it reasonable so that there can be
many of them; many are needed to allow them to be physi-
cally present throughout the environment.

This combination of small, inexpensive, numerous de-
vices deployed in the physical world leads to the focus

∗In this work John Heidemann and Xi Wang are partially supported
through the NSF Division of Civil and Mechanical Systems, grant number
E01-CMS-0112665. John Heidemann and Fabio Silva are also partially
supported by USC/CSULB METRANS 2003–04 grant SURE-SE.

of this paper. Deployment andconfigurationof these de-
vices pose major challenges. Unlike carefully engineered
traditional networks, the large number of devices implies
that deployment of a sensor network is not necessarily well
planned. Nodes can be deployed rapidly in an ad hoc fash-
ion, forming large scale sensor networks with relatively
short life times. In addition, sensor network configuration
may require consideration of aspects of the physical envi-
ronment. For these reasons, automatic configuration of a
sensor network is both essential and challenging.

Nodes in sensor networks interact closely with their sur-
rounding environment, and one of the most important pa-
rameters in many sensor network applications is location.
Two different kinds of location are often required: both
physicallocation, coordinates in some frame of reference,
and logical location, often application-specific knowledge
such as which sensors are adjacent to others, or which are
in a room or hallway. In some sensor applications, logical
location can be more important and more difficult to deter-
mine than physical location.

In this paper we describe a novel approach to determine
the logical location of sensors. We use thefollow-meap-
plication to illustrate “walkable connectivity”, one typeof
logical location. We describedeployment order, a novel ap-
proach to capture this logical location. A unique character-
istic of deployment order is that it requires no fixed infras-
tructure such as GPS receivers or other localization-specific
hardware, thus it is applicable to very small, inexpensive
nodes. We have implemented a sensor-network-based guid-
ance system for visitors, and we studied our configuration
approach on the real system.

2 Problem Description

To motivate the challenges of deployment order we first
introduce thefollow-me application. We then give an
overview of our approach to configuration.

Although we describe a specific application and a con-
figuration approach for logical location, both generalize to
other scenarios. Follow-me represents a class of applica-

1

tions where sensors are deployed to assist navigation. Other
examples include marking paths in buildings damaged by
earthquake or fire, or underground exploration. Sensor
nodes can guide people and sense the environmental haz-
ards at the same time.

The need for logical location also extends beyond just
these applications. In many applications, both indoors and
outside, logical position information is not immediately ap-
parent from physical node deployment.

2.1 The Follow-Me Application

The problem of automatic configuration with logical lo-
cation information can be illustrated by a sensor network
based visitor guidance system.

For a visitor stepping into an office building for the first
time, navigating unknown places can be difficult and un-
pleasant. While signs may guide the way, and computer
kiosks may provide room numbers and maps, neither pro-
vides active assistance to visitors as they move through a
building.

The follow-me application is an active visitor guidance
system designed to address this problem. Sensor nodes are
deployed around a building, on walls, one at each office
doorway. Nodes blink their lights to indicate a path, guiding
a visitor with a “breadcrumb trail” to the destination.

2.2 Our Approach

To guide visitors, the follow-me application needs to auto-
matically find a path between a source node and a destina-
tion node, and show this path in to a visitor.

Node Deployment Node deployment in the follow-me
application is based on two general guidelines: There
should be one node at each office doorway, and the dis-
tance between two adjacent nodes should not be too large.
The later means we need to place additional nodes along
hallways with few doors, such that visitor can follow lights
easily. We show several possible node deployment exam-
ples later (see Figure 7).

Path Finding and Logical Location The follow-me ap-
plication must guide visitors along appropriate paths. While
network routing algorithms specialize in path finding, they
are not directly applicable for guiding humans, who are
constrained by physical walls and prefer to follow adjacent
nodes. Traditional routing algorithms select the shortest
path based on radio connectivity, selecting paths through
physical walls and skipping physically intermediate nodes
when possible. Even a strictly geographic routing algorithm

Figure 1: Comparison between radio connectivity graph
(top) and logical topology (bottom).

will cut corners and pass through walls if it shortens the
physical path.

Thus the main technical challenge in follow-me is deter-
mining thelogical topologythat connects nodes as a human
would walk, as opposed to the radio or physical topologies.

Figure 1 compares radio and logical topologies for the
same follow-me deployment in Figure 7(a).

The location of a node is represented by its neighbors in
the logical topology, we call this thelogical locationof a
node.

2.3 Configuring Logical Location

Each node in the follow-me application needs to be con-
figured properly with its logical location, which is a set of
physical neighbors. Identifying correct physical neighbors
for each node is an important configuration problem.

We would like nodes to configure themselves automat-
ically. With localization techniques, it is possible to es-
timate logical locations from physical coordinates; we re-
view a number of systems in Section 7. However exist-
ing techniques do not directly apply to applications that re-
quire logical location for several reasons. First, logicallo-
cation is defined by human constraints such as walls and
doors; these constrains are not easily visible to typical lo-
calization techniques based on RF or ultrasound. Second,
follow-me requires building-like topologies: long, linear
segments, parallel hallways with moderate density nodes.
These topologies are especially unfriendly for distance-
triangulation based localization techniques. Finally, wede-
sire a system that is easy to deploy and has low cost. Pre-
deployment of substantial infrastructure or extensive mea-
surements (for example, as with RADAR [1]) greatly raise
the cost of a system and preclude ad hoc deployments.

For these reasons we chose to develop a new method for

2

Active
(Power On)

Receptive Passive
(Normal)

Timeout (2 sec) Timeout (1 min)

Replied Connection Request

Figure 2: Initial state diagram for deployment order.

logical location configuration. In Section 3 we will describe
deployment order, our algorithm that captures logical topol-
ogy. It is present when a network is first configured, allow-
ing construction of complex topologies with minimal hu-
man interaction.

2.4 Interacting with Users

A common and effective approach of designing sensor
network applications is to keep sensor nodes simple, and
rely on the collaborative behavior of the whole network to
achieve complex functions. Unlike systems with a keyboard
and a screen, simple components such as LEDs and buttons
are more frequently used, and sensor nodes are spatially dis-
tributed in the target environment. The user interface part
of the follow-me application shares the same idea.

There are three kinds of user interactions involved: vis-
itors need to tell network their destinations; network needs
to show path to visitors; and during deployment network
administrators need to interact with individual sensor nodes
for configuration.

3 Deployment Order for Logical
Location Configuration

In many instances sensor nodes are deployed sequen-
tially, perhaps being dropped one by one by a single person
or vehicle. Deployment order takes advantage of this
information by assuming that when two nodes are deployed
(switched on) one after the other within a short time, we
can assume that they are closest neighbors to each other.
Links between these closest neighbors can create a path
corresponding to connectivity of an individual walking
through a building. If nodes can detect and remember this
path, it can be used later to guide visitors. Some other
mechanisms are needed to handle non-linear topologies
such asintersections. One method is to manually interact
with sensor nodes to add and remove links. We will discuss
both linear paths and intersections below.

3.1 Linear Paths

To create a linear path, a newly deployed node communi-
cates with previously deployed nodes to determine which
one was deployed immediately prior to the deployment of

(a)

(b)

(c)

(d)

(f)

(g)

(h)

(e)

Figure 3: Linear topology example for deployment order
handling intersections. States - gray: active, white: recep-
tive, black: passive.

itself. If such a node is found, these two nodes should link
to each other. We realize this with the following simple
state machine on each node (see Figure 2):

Active This is the state after a node is switched on. Nodes
in this state send out connection request packets to
look for neighbors.

Receptive Nodes in this state will reply to connection re-
quest packets (from active nodes). A reply establishes
a link between the two nodes.

PassiveNodes in this state will not be involved in link op-
erations. This is the state for normal operation.

Nodes begin in active state where they find their previ-
ous neighbor, wait in receptive state to pick up the next
neighbor, and then transition to passive state. Figure 3 is
an example of a linear path. After the first node is switched
on (a), it won’t find any neighbor and will go to receptive
state (b). When the second node is switched on (c) it begins
in active state and will search for neighbors. The first node
(currently receptive) will reply, establishing a link between
these two nodes (c). The first node will move to passive
state after creating the link, and the second will go to re-
ceptive state (d). Similarly, the third node will link to the
second node, and so on (e)-(h).

This simple state machine is sufficient to create linear
topologies. The user does not need to know the details of
the state machine, merely that the last node in the line is
“hot” (receptive) and will connect to the next node that is
turned on. To provide confirmation about the network state
we provide both visual and audio feedback about the net-
work as it is deployed. Nodes in active state have all LEDs
lit up. When an active node detects its neighbor, the active
node transitions to just a red LED to indicate it is now recep-
tive, and the neighbor beeps and transitions to a green LED
(indicating it is now passive). For linear deployments the
person deploying the network can be completely oblivious

3

Active
(Power On)

Receptive Passive
(Normal)

Timeout (2 sec) Timeout (1 min)

Button Pressed

Button Pressed

Replied Connection Request

Figure 4: Revised state diagram for deployment order han-
dling intersections.

to the state machine, simply listening for beeps to confirm
that each step of the configuration is complete.

3.2 Intersection Handling

Linear paths are automatically configured while nodes are
being deployed without external infrastructure or any ex-
plicit user involvement. For richer topologies, we must con-
siderintersectionswhere nodes have more than two neigh-
bors. Assuming the majority of links belong to linear paths,
we can still use the basic process for linear path on most
nodes. We add a very simple interaction process to handle
intersections.

The key observation on handling intersections is that if
we give users a little bit of control over the state machine,
they can then connect nodes to make arbitrary topologies.

In our implementation, we use a button on sensor node to
toggle node states. When a node is in passive state, press-
ing the button will bring the node to active state. When a
node is in receptive state, pressing the button will bring the
node to passive state. The updated state diagram is shown
in Figure 4.

With the ability to change state, we can add arbitrary
connections by making one node active and another node
receptive. An example for intersections is shown in Fig-
ure 5. In this figure, the logical topology consists of two
linear segments joined at a shared central node. To create
this topology, we first deploy one linear segment with the
basic deployment order procedure described earlier. Then
we deploy the second segment until it meets the first seg-
ment. By pressing a button, the central node of the first
segment is put into active state. It will link with the newly
deployed node of the second segment and become an inter-
section node. After this step, the central node is in receptive
state and we can continue the deployment of the second seg-
ment until the whole topology is created. We can see there
is only one button press needed for an intersection.

3.3 Fault Handling

A sensor network must tolerate node failures. Ultimately,
arbitrary failures can be handled by patching in new sen-

Deploy one line Deploy the other line

until it reaches the first line
Make the central

node active

Two lines are connected Continue to deploy the

second line as normal

Final Result

Press button

on this node

Figure 5: Intersection handling for deployment order.

sors using the same mechanisms for creating intersections.
However, we also would like a mechanism to handle single
node failures.

Nodes monitor their neighbors and detect failure by a re-
peated lack of response. Since wireless networks are unre-
liable, using a simple threshold may misjudge some cases.
Studying better methods for detecting failures is left for fu-
ture research.

Once a failed neighbor is identified, the detecting node
will skip this neighbor and link to the neighbor’s neighbors
directly. This is done by broadcasting a “link fix” packet
containing the ID of the failed neighbor. Neighbors of the
failed node will respond with their own IDs, allowing the
detecting node to establish links and fill in any gaps. This
process assumes that radio range is at least twice the dis-
tance between neighbors, a typical configuration since ra-
dios in sensor networks easily reach 20m indoors or more
and node placement is typically 3-5m apart.

4 Design and Implementation of
Follow-Me

With the deployment order method, logical location infor-
mation is available to applications. In this section more top-
ics about the design and implementation of the follow-me
application are presented. Important design issues include
path finding algorithm and user interaction processes. Most
implementation issues are related to interactions with lower
layers.

4.1 Path Finding

Given the logical topology it is relatively easy to find a path.
We can use a simple minimum-distance routing algorithm

4

over the logical topology to determine the best path between
two points for a visitor. Our current implementation uses
flooding to find forward paths and gradient style routing for
reverse paths. This routing combination is very similar to
directed diffusion [14]. Other routing algorithms could also
be used, provided they operate on logical topology.

When a visitor arrives at the lobby and selects a destina-
tion from a touch screen, the network finds the path as de-
scribed above, flooding and establishing previous-hop gra-
dients. The destination node gathers routes and selects the
best one based on the desired metric. A good metric would
be physical distance traveled. Our current implementation
assumes all nodes are equidistant and so hop count is equiv-
alent to physical distance. Using the method to infer physi-
cal position described later in Section 6, one could compute
approximate physical distances to improve routing of visi-
tors.

While we use routing in the logical topology for follow-
me, a general routing service is available to many tasks. For
example, we monitor our network from a central point us-
ing this same routing algorithm. In this case our routing
algorithm uses radio connectivity rather than logical topol-
ogy.

4.2 User Interactions with the Network

There are two types of users in the follow-me application:
visitors and network administrators. We first discuss user
interactions for visitors and then cover network administra-
tion issues.

4.2.1 Network/Visitor Interactions

Communication between visitors and network are two way:
visitors need to tell network about their destinations, and
network needs to show path to visitors. In our design a
touch screen is used for visitors to choose their destinations,
and synchronized blinking patterns across the network are
used for showing paths to visitors.

For network to visitor communication, blinking patterns
should create a visual effect of moving light dots or lines,
conveying both path and direction information to visitors in
an intuitive way. Alternatively, synchronized beeping can
also be used.

To produce blinking patterns, timing parameters includ-
ing phase and interval are used. We use a command packet
to carry these parameters and trigger the sequence. The
source node at entrance sends out the command packet at
the beginning of a blinking sequence. There is no packet
transmission needed afterwards.

Before we trigger a blinking sequence using timing
parameters, nodes need to be time-synchronized. Sev-
eral sensor-network specific time synchronization protocols

Active
(Power On)

Receptive Passive
(Normal)

Timeout (2 sec) Timeout (1 min)

Button Pressed

Button Pressed

Replied Connection Request

Locked

Received Activation Packet

Timeout (3 min)

Figure 6: State diagram with node locking

have recently been proposed [7, 9]. However the timing
precision requirement of this application is not very high,
so we implement very simple time synchronization by us-
ing the command packet to define a time base without cor-
recting for clock drift or transmission delay. We do exploit
MAC-level support for time synchronization as described
in Section 4.3.2.

These are the underlying mechanisms that support net-
work/visitor interactions. An interesting step further isto
guide multiple visitors at the same time. One possible solu-
tion is to show several paths simultaneously using different
colors or blinking patterns.

4.2.2 Interactions During Configuration and Node
Locking

User interaction about network configuration is usually the
first type of user interactions activated for a sensor network.
During the configuration process of the follow-me applica-
tion, network administrators switch on nodes to create lin-
ear paths and press buttons to create intersections for the
deployment order method.

After a network is configured, inadvertent configuration
changes could occur if someone accidentally pressed but-
tons on sensor nodes during normal operation. To prevent
this situation, buttons need to be locked after the node con-
figuration process is complete. On the other hand network
administrators may still want to change configurations pe-
riodically for network maintenance. We designed a locking
mechanism that utilizes akeynode to fulfill these goals.

After a node is in passive state for three minutes, the
node switches to locked state. It will not respond to but-
ton presses. To re-enable buttons on the node, the key node
is used. This node will send out activation packets periodi-
cally. Nodes receiving this packet will unlock their buttons.
A person who wishes to reconfigure the follow-me system
can simply switch on a key node and carry it with him/her.
The state diagram with this update is shown in Figure 6.

4.2.3 Configuring Destinations

Deployment order method can configure nodes’ logical lo-
cations. To guide visitors directly to someone’s office, we

5

still need to match nodes’ logical locations with offices,
which is also a configuration problem. This configuration
information can be represented by a table of node ID asso-
ciated with room numbers and people’s names.

We propose an interactive way to simplify the configu-
ration process. A user who wishes to configure a node can
approach the node with a PDA capable of communicating
with the sensor network. By pressing a button on the node,
the node’s ID will be shown on the PDA’s screen and infor-
mation about the office can be entered.

4.3 Implementation and Lower Layer
Interactions

The follow-me application is implemented on MICA2
sensor nodes with TinyOS operating system. We are in
the process of completing the deployment shown in Fig-
ure 7(a) at ISI. As of April 2004, our current deployment
is smaller, with eight nodes covering one long hallway at
half the desired density, and with two nodes with labeled
buttons substituting for the touch-screen display. Although
this deployment is linear, the current implementation sup-
ports configuration of arbitrary topologies and locking.

Nodes in sensor networks usually belong to deeply
embedded systems, where algorithms interact closely with
lower level software and underlying hardware. In the
following paragraphs we discuss issues and solutions for
our implementation of follow-me.

4.3.1 Energy Conservation

Sensor nodes in the follow-me application run on battery
power. As we want to put sensor nodes beside office door-
ways, power outlets are rarely available. Adding many
power outlets in a building is generally a rather expensive
task, easily exceeding the cost of sensor nodes. Thus even
in an indoor environment we would like the follow-me ap-
plication to be completely wireless without power cords.

Our goal is to have the system run on a single set of bat-
teries for months. We use S-MAC [17] as a low-energy
MAC protocol to allow radios and potentially the node CPU
sleep most of the time. Currently CPU deep-sleep is not
supported by S-MAC, thus there is an extra current drain
during sleep period. With current S-MAC at 10% duty cy-
cle, each follow-me node runs for 14 days on two AAA
alkaline batteries. In our tests MICA2DOT nodes worked
till the battery voltage dropped to 2.2v, which corrsponds to
battery capactivy of about 1200mAh according to manufac-
tures’s manual. We plan to enable deep sleep mode and use
lower duty cycles to further extend battery life.

4.3.2 Time Synchronization

The user interface of the follow-me application needs time
synchronization to produce blinking patterns. During im-
plementation, we encountered latency problems caused by
the MAC layer. There are two kinds of latencies from S-
MAC: latency caused by collision avoidance and latency
caused by sleep cycles. These delays can severely affect
time synchronization as they are rather long and higher lay-
ers do not have information about them.

Although there are time synchronization mechanisms
dealing with various delays, letting MAC layer inform
higher layers about these delays is a much more efficient
way. At our request, Wei Ye added an optional timestamp
that marks when a packet is transmitted by the physical
layer. This mechanism is similar to that used by Ganeri-
wal et al. [9].

4.3.3 Latency and Route Caching

Packet forward latency increases when the MAC layer has
sleep cycles. As the shortest MAC active period is limited
by timing and energy consumption constrains, sleep period
must be longer for lower duty cycle modes. This means en-
ergy saving goals may conflict with network reaction time
goals.

While follow-me does not have strict real-time require-
ments, it needs to be “fast enough” that users don’t notice
excessive delay. Ideally, routes should be discovered in a
second or two. When routes are based on walking distance,
they often will span dozens of hops and latencies exceed
this limit.

To meet this latency goal while conserving energy we
plan to cache paths in our application. Each node will have
a table that associates source-destination pairs with their po-
sition in the path from source to destination. If a source-
destination pair is found in the table, we only need to do a
multihop broadcast to all nodes, and each node can derive
information about whether it is in the path and what are
the timing parameters for blinking. Packets only need to
go through all radio hops, which is usually much less than
the hops in the logical topology. Thus the latency can be
significantly reduced.

5 Evaluation of Deployment Order

Manual configuration is needed for creating intersections
with the deployment order method. We can consider the de-
ployment order method an efficient method if only a small
portion of nodes require manual configuration. Therefore
we use the number of manual configurations as a perfor-
mance metric to evaluate the deployment order method in

6

01 02 03 04 0605

07

08 09

1076

75

11 12

13

15

14

16 17

18 19

20

21

22 23

24

25

26

27

28

29

32
30

36

35 34

37

384140

39

4245

434447 4648

49

5051
53

54

55

56

58

52

60

57

61

64 6559
66 67

68 74

69

70

73

72

71

77 78 79 80 81 82 83 84
85

31

33

62

63

(a) ISI

02

0304

06

05

0809121516

2526 3132

40

41

43

07101113141718

19

20

44

21

22

2324 2728 2930 3334 3536 37
38

39

42
01

(b) SAL

55

71

72

2526 27 28 29 30 31 32 33 3534

37

38

39

4041
42

43

44

454647

48
49

50
51

52

53

54

3622

23

24

565758

69

70

6667680201 03

04

05

07

08

10 09

11

14
15 16

17 20
21

1918
1213

06

59

60 61 6263 64 65

(c) OHE

Figure 7: Node deployment scheme for three building maps

this section.
We used maps of three buildings shown in Figure 7 to

simulate and evaluate the deployment order method. The
numbers in these maps indicate where nodes are placed.

These maps are chosen based on topology diversity and
availability. We want to use real building maps with differ-
ent types of topologies for the evaluation. ISI is the 11th
floor of the Information Science Institute, SAL and OHE
are from two building in the University of Southern Cali-
fornia.

Table 1 shows the number of manual configurations
needed for creating logical topologies of these buildings.

The effectiveness of the deployment order method de-
pends on topology. Relatively simple topologies of ISI and

Building Nodes Manual Configurations Ratio
ISI 85 7 8.2%
SAL 44 3 6.8%
OHE 72 17 24%

Table 1: Number of manual configurations

SAL lead to small numbers of manual configurations. With
many branches, the more complex topology of OHE leads
to more manual configurations, however the majority of
nodes can still configure their logical locations automati-
cally. While the cost of deployment order grows in complex
topologies, simple topologies require very little effort,and
even the 17 manual configurations required for the OHE de-
ployment require relatively little time compared to placing
72 nodes.

6 Physical Location Estimation

The primary goal of deployment order is to provide logi-
cal location information (“walkable connectivity”), because
such information is impossible to get from traditional local-
ization techniques. However, applications such as network
visualization benefit from the addition of physical coordi-
nates. In this section we show how the addition ofland-
marknodes with known positions enables us to estimate the
physical coordinates from their logical locations for these
applications.

6.1 Using landmarks to infer physical
location

Landmarks are a few nodes with known locations. These
known locations are combined with logical locations to give
physical location estimations. On the assumption that the
network topology consists of mostly linear segments with
reasonably homogeneous node density, we infer the loca-
tions of nodes placed logically between landmarks by as-
suming they are evenly spaced. This assumption is ap-
propriate for the buildings that we consider as potential
follow-me deployments provided landmarks are chosen at
the building corners.

Inspired by previous work in network topology visual-
ization, we adapt a spring-embedder system [8] to approx-
imate physical locations between landmarks. In such algo-
rithms, simulated forces between nodes drive them to posi-
tions where attractive and repulsive forces are balanced, in
effect the system converges to a state with lowest spring-
embedder energy.

We hold landmarks as fixed and allow other nodes to
move using the spring-embedder model. Parameters are set

7

such that forces between nodes are mostly attractive. Com-
bined with landmark nodes, this setting results in nearly
straight lines as are typical in office buildings.

We expect this algorithm to run as an off-line processing
task on a host system because it requires high processing
power and runs infrequently. To connect the location es-
timation task with sensor nodes, the host system needs to
collect logical location information from individual sensor
nodes first. Our general-purpose routing service based on
flooding and gradient style routing can be used for this task.
Next, coordinates of landmark nodes need to be sent to the
host system. Depending on the application, this informa-
tion can either come from outside the network (perhaps en-
coded from the touch-screen host), or it could be deployed
within the system, perhaps using a PDA as described in Sec-
tion 4.2.3. The estimation algorithm then combines these
two pieces of information and runs the spring-embedder
model to derive physical coordinate estimations. Finally,
derived coordinates may need to be sent back to sensor
nodes for some applications. Again, gradient style rout-
ing (through the reverse path) can be used here as a simple
solution.

Currently our location estimation algorithm runs on a
PC and is not directly connected to the follow-me network.
Since our current deployment is rather small, we simulate
the results presented below to evaluate this approach.

6.2 Accuracy of inferred physical locations

We evaluate the accuracy of this algorithm for inferring
physical location with our three sample buildings.

Figure 8 shows the result of the location estimation algo-
rithm, corresponding to maps in Figure 7 with two possi-
ble anchor sets for OHE. In these figures, circled dots are
landmark nodes with known locations. Dots are estimated
positions. Crosses indicate true physical locations as refer-
ences. Figure 9 shows location error distributions of these
examples, which are the results of comparing nodes’ true
physical locations with locations obtained from the estima-
tion algorithm.

As expected, we can see that the quality of result de-
pends on the building topology and landmark placement.
For these three maps, ISI and SAL have more accurate re-
sults than OHE. Placements for ISI and SAL are quite good
in general, with 80% of estimated node locations within 1m
of their true locations. As our earlier evaluation on number
of manual configurations, the large number of branches in
the OHE topology also makes the location estimation algo-
rithm less accurate.

Accuracy could be improved by adding more landmark
points. In Figure 8(d), we add five more landmarks to
the OHE topology. This change results in noticeable im-

(a) ISI

(b) SAL

(c) OHE (14 landmarks)

(d) OHE (19 landmarks)

Figure 8: Location estimation of three buildings

provement on precision: In Figure 8(d) about 80% of nodes
are now within two meters away from their true locations,
while in Figure 8(c) they can be as far as three meters away.
Hence this location estimation approach has some flexibil-
ity in balancing precision and the number of landmarks.

Applications that require highly accurate node locations
may justify the addition of dedicated node hardware or in-

8

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

Location error range (meters)

ISI (85 nodes, 8 landmarks)
SAL (44 nodes, 6 landmarks)
OHE (72 nodes, 19 landmarks)
OHE (72 nodes, 14 landmarks)

Figure 9: Error distribution of location estimation results

frastructure to allow extremely accurate node placement.
However, we are encouraged that the combination of logical
location from deployment order with a few landmark nodes
allows approximation of physical location with reasonable
accuracy and no additional hardware or infrastructure. This
approach should be appropriate for applications that do not
require very precise locations.

7 Related Work

There are three areas that are closely related to this pa-
per. First, this paper belongs to the general area of location
aware computing. Second, other researchers have related
deployment and configuration for different applications. Fi-
nally, physical coordinate based localization is a different
but connected area.

Location aware computing is an active topic in both sen-
sor networks and pervasive computing [2, 12]. It is closely
related to context-aware computing [4].

For location aware applications, location information is
essential. Physical coordinates are rarely used directly as
a source of location information because they are raw data
without apparent meaning. Logical location [11] and sym-
bolic location [13] are similar concepts and they can be a
good source of location information. The deployment or-
der method presented in this paper is designed to provide
logical location directly and efficiently to sensor network
applications.

Other researchers have used physical deployment to in-
fer information about system configuration. Researchers
at Berkeley have previous used a linear deployment order
to infer node locations at a demonstration at Twentynine
Palms in 2001 [15]. An unmanned aerial vehicle dropped
six sensor nodes (Berkeley Rene motes) in a line. Sen-
sors inferred their positions through recomputed knowledge

of drop order assuming an initial fixed distance of deploy-
ment. With deployment order we instead allow an arbitrary
number of identical nodes to determine their relative loca-
tions, and we identify how to build non-linear topologies
with simple user interaction.

In this paper our approach is different from localization
techniques as logical location is used instead of physical lo-
cation, yet localization is still a closely related topic. Here
we have a limited review about related localization tech-
niques [13] based on the requirements of the follow-me ap-
plication.

GPS [6] or other time-of-flight localization tech-
niques [10] need support from specialized hardware, while
some other techniques require little additional hardware,
such as connectivity [5, 3] or RF signal strength based tech-
niques.

Some form of infrastructure is frequently required for lo-
calization. Infrastructures can be GPS satellites, a groupof
sensor nodes with known locations [5, 3] or detailed maps
of environmental features, such as multi-source RF signal
strength information used in RADAR [1].

Finally, outdoor and indoor environments can make a sig-
nificant difference for localization. The interior of a build-
ing (the scale here is larger than a single room) can be chal-
lenging. In such an environment, GPS signal is blocked by
walls, multi-path effects are common for local radio signals,
and acoustic waves are constrained to individual rooms.

Because of these difficulties, logical location information
from deployment order is especially valuable for indoor ap-
plications.

The “resurrecting duckling” model is an analogy about
security mechanisms for small wireless devices [16]. In the
paper authors suggested using direct physical contact as a
method of authentication. Their method provides a very
simple solution compared to typical public-key-based au-
thentication or third-party servers. In some ways our use of
deployment order is similar, also using physical proximity
during deployment to infer logical connectivity, with both
avoiding the need for centralized infrastructure. The appli-
cation domains are quite different, however.

8 Conclusion

We developed and evaluated deployment order, a new
method for configuration of logical locations of nodes.
To demonstrate the deployment order method, we imple-
mented and deployed follow-me, an application that can
guide users around buildings. We also evaluated the ad-
dition of landmarks to compute estimated physical node lo-
cations from logical locations.

These techniques are not appropriate for all sensor net-
work applications. We expect applications that require ex-

9

act physical location to warrant deployment and use of spe-
cialized hardware or infrastructure such as per-node GPS
receivers, ultrasound, or other approaches. However, de-
ployment order fills two roles not possible by these ap-
proaches: a very small, light-weight approach for approxi-
mate location when simpler software and minimal hardware
is required; and the consideration of logical connectivity
such as “walkable connectivity” required by applications
such as follow-me.

References

[1] Paramvir Bahl and Venkata N. Padmanabhan.
RADAR: An in-building RF-based user location and
tracking system. InProceedings of the IEEE Infocom,
pages 775–784, Tel Aviv, Israel, March 2000. IEEE.

[2] H.P.W. Beadle, B. Harper, G.Q. Maguire, Jr., and
J. Judge. Location aware mobile computing. In
Proceedings of the IEEE/IEE International Confer-
ence on Telecommunications, pages 1319– 1324, Mel-
bourne, Australia, April 1997. IEEE.

[3] Nirupama Bulusu, John Heidemann, and Deborah Es-
trin. GPS-less low cost outdoor localization for very
small devices.IEEE Personal Communications Mag-
azine, 7(5):28–34, October 2000.

[4] Guanling Chen and David Kotz. A survey of context-
aware mobile computing research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth
College, November 2000.

[5] Lance Doherty, Kristofer S. J. Pister, and Laurent El
Ghaoui. Convex position estimation in wireless sen-
sor networks. InProceedings of the IEEE Infocom,
pages 1655–1663, Anchorage, Alaska, USA, April
2001. IEEE.

[6] G. Dommety and Raj Jain. Potential networking ap-
plications of global positioning systems (GPS). Tech-
nical Report TR-24, CS Dept., The Ohio State Uni-
versity, August 1996.

[7] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-
grained network time synchronization using reference
broadcasts. InProceedings of the Fifth USENIX Sym-
posium on Operating Systems Design and Implemen-
tation, pages 147 – 163, Boston, MA, USA, December
2002. USENIX.

[8] T.M.J. Fruchterman and E.M. Reingold. Graph draw-
ing by force-directed placement.Software—Practice
and Experience, 21(11):1129–1164, November 1991.

[9] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivas-
tava. Timing-sync protocol for sensor networks. In
Proceedings of the First ACM Conference on Embed-
ded Networked Sensor Systems, pages 138 – 149, Los
Angeles, California, USA, November 2003. ACM.

[10] Lewis Girod, Vladimir Bychkovskiy, Jeremy Elson,
and Deborah Estrin. Locating tiny sensors in time and
space: A case study.Proceedings of the IEEE Inter-
national Conference on Computer Design, September
2002. Invited paper.

[11] John Heidemann and Nirupama Bulusu. Using
geospatial information in sensor networks. InPro-
ceedings of the Workshop on Intersections between
Geospatial Information and Information Technology,
Arlington, VA, USA, October 2001. National Re-
search Council.

[12] John Heidemann and Dhaval Shah. Location-aware
scheduling with minimal infrastructure. InUSENIX
Conference Proceedings, pages 131–138, San Diego,
CA, June 2000. USENIX.

[13] Jeffrey Hightower and Gaetano Borriello. Location
systems for ubiquitous computing.IEEE Computer,
34(8):57–66, August 2001.

[14] Chalermek Intanagonwiwat, Ramesh Govindan, and
Deborah Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks.
In Proceedings of the ACM International Conference
on Mobile Computing and Networking, pages 56–67,
Boston, MA, USA, August 2000. ACM.

[15] Kris Pister et al. Twentynine Palms fixed/mobile ex-
periment. web pagehttp://robotics.eecs.
berkeley.edu/∼pister/29Palms0103/,
March 2001.

[16] Frank Stajano and Ross Anderson. The resurrect-
ing duckling: Security issues for ad-hoc wireless net-
works. InSecurity Protocols, 7th International Work-
shop Proceedings, pages 172–194, 1999.

[17] Wei Ye, John Heidemann, and Deborah Estrin. An
energy-efficient MAC protocol for wireless sensor
networks. In Proceedings of the IEEE Infocom,
pages 1567–1576, New York, NY, USA, June 2002.
USC/Information Sciences Institute, IEEE.

10

