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Abstract

TCP congestion avoidance mechanisms are based on ad-
justments to the congestion-window size, triggered by the
ACK clock. These mechanisms are not well matched to
large but intermittent bursts of traffic, such as responses
from a HTTP/1.1-based web server. Idle periods between
bursts (web page replies) stop the ACK clock and hence dis-
rupt even data flow. When restarting data flow after an idle
period, current implementations either enforce slow start
(SSR) or use the prior congestion window (NSSR). The
former approach, while conservative, leads to low effective
throughput in cases like P-HTTP. The latter case optimisti-
cally sends a large burst of back-to-back packets, risking
router buffer overflow and subsequent packet loss. This pa-
per proposes a third alternative: pacing some packets at a
certain rate until the ACK clock can be restarted. We de-
scribe the motivation and implementation of this third al-
ternative and present simulation results which show that
it achieves the elapsed-time performance comparable to
NSSR and loss behavior of SSR.

1 Introduction

Changes to Internet protocols are often driven by changes
in application behavior, thus resulting in different net-
work dynamics and an urge to tune the surrounding pro-
tocols for optimal performance. One application that has
influenced protocol refinements is the World Wide Web,
which uses HTTP running over TCP. The wide use of the
Web has emphasized the need to enhance HTTP perfor-
mance. Persistent-connection support, recently standard-
ized in HTTP/1.1 [6], allows HTTP to re-use a single

�This research is supported by the Defense Advanced Research
Projects Agency (DARPA) through FBI contract #J-FBI-95-185 entitled
“Large Scale Active Middleware”. The views and conclusions contained
in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied,
of the Department of the Army, DARPA, or the U.S. Government. The
authors can be contacted at USC/Information Sciences Institute, 4676 Ad-
miralty Way, Marina del Rey, CA, 90292-6695, or by electronic mail to
visweswa@isi.edu or johnh@isi.edu .

TCP connection across multiple transactions to the same
server [14]. However, the improvements of HTTP/1.1 can
interact with surrounding layers. In some cases, we have
shown that interactions with TCP can substantially degrade
performance [7].

One of these interactions is theslow-start restartprob-
lem, originally identified by Jacobson and Karels [12].
Slow-start restart occurs when bursty data is periodically
sent over a TCP connection. TCP depends on ACK-
clocking for flow control [11]. Idle periods in the connec-
tion cause this clocking mechanism to break down. When
a burst of data is sent after an idle period, TCP may or may
not re-initialize congestion parameters (depending on the
TCP implementation) by entering slow-start. If slow-start
is initiated, the sender is conservative to the network but in-
curs delay similar to starting up a new connection (although
without the three-way handshake), reducing the benefits of
P-HTTP [14]. If the sender does not slow-start then much
more data can be quickly sent, but if this burst of data is
too large, it can can overrun queues at intermediate routers,
leading to packet loss and possibly lower overall perfor-
mance. A burst of packets can also affect other connections
sharing the same router.

The problem with current approaches to transmission in
an idle TCP connection is that they either quickly fill the
pipe but in a very bursty way (NSSR) or they safely but
slowly fill the pipe (SSR). This paper proposesrate-based
pacing(RBP), an intermediate approach to data transmis-
sion after an idle period. RBP paces outgoing packets at a
certain rate until the ACK clock is restarted. As shown in
Figure 1, RBP attempts to provide a compromise between
the extremes of sending back-to-back bursts and restarting
with slow start.

This paper demonstrates the problems of current ap-
proaches and examines our design for rate-based pacing.
We evaluate RBP through simulations and examine our im-
plementation in a controlled laboratory setting.

Although we focus on transmission after an idle period,
RBP may be useful other times when many packets are eli-
gible to be sent (for example, when the window jumps for-
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Figure 1: A qualitative comparison of rate-based pacing
with slow-start restart and no-slow-start-restart.

ward by a large amount).

2 A Demonstration of the Problem

The behavior of existing TCPs when restarting after a
quiescent period can be characterized as eitherno slow-start
restart (NSSR) orslow-start restart(SSR). For a network
operating at heavy load, NSSR has the risk of swamping
intermediate routers with bursty data. NSSR can also ef-
fectively shut out packets from other streams. This section
demonstrates the behavior of TCP with NSSR and SSR on a
cross-country internet link, then compares our experimental
implementation of pacing.

For this demonstration we sent data between two Sun
SPARCstations running SunOS 4.1.3 modified to use ei-
ther SSR or NSSR. Typical network conditions were 12
hops, 150ms average RTT and approximately 32KB/s band-
width. Two 512KB chunks of data were transfered between
these hosts with a pause of 20 seconds in between. Us-
ing tcpdump at the sending side, we recorded packets ex-
changed and graphed TCP sequence numbers against time.
The plots focus only on the first 15 segments at the begin-
ning of the second 512KB chunk.

First we consider the case without slow-start restart. By
default, SunOS implements NSSR and does not notice idle
periods in a TCP connection. This policy can be seen in
Figure 2 where a full window of data is transmitted at line
rate, appearing as the nearly vertical row of back-to-back
packets. In this example, intermediate routers were able to
absorb the burst of packets; none were lost. However, a
window size larger than 4KB, or independent, nearly con-
current bursts would stress router queueing.

Figure 3 shows the same scenario with slow-start. As

can be seen, it takes much longer to return to full transfer
rate. After a fairly long stall (due to a delayed ACK for the
first segment), there are two or three additional round-trip-
length stalls in transfer. This approach is much less bursty
than NSSR. Many slow starting connections can proceed
concurrently without overloading the network.

These measurements were taken using a simple program
sending bulk TCP data. The principles illustrated here ex-
tend to HTTP/1.1-style traffic, except for two important
TCP implementation issues. First, many TCP implemen-
tations (for example, SunOS) do not implement idle-period
detection. Second, BSD-derived TCPs approximate an idle
connection by time since last data reception. With web
traffic, a page request always precedes the data response.
This requestresetsidle detection, disabling SSR and caus-
ing NSSR-bursts, even though a goal is to avoid bursts in
these cases. This bug was first observed by Touch, Oswal,
and Hughes and reported on the tcp-impl mailing-list [19].

The overly aggressive nature of NSSR and the conserva-
tive nature of SSR suggest an intermediate point. Figure 4
shows behavior one would prefer: a few packets sent at a
moderate pace which can restart the ACK clock. Upon re-
ceipt of the first ACK, TCP resumes standard ACK-clocked
transmission. This example, taken from our prototype RBP
implementation, demonstrates the idea behind rate based
pacing.

3 Rate-based pacing

Rate-based pacing does not alter basic TCP behavior.
Connection set-up and the initial TCP slow-start period re-
main unchanged. RBP comes into play only after a connec-
tion goes idle.

Rather than send a large burst of back-to-back segments
(as NSSR) or completely restart congestion control (as
SSR), RBP attempts to send out a “reasonable” number of
segments which are evenly spaced at a conservative rate.
Rate-based pacing ceases as soon as the first acknowl-
edgement is received since the ACK-clock has then been
reestablished.

This section clarifies two key design questions for RBP:
what is a reasonable number of segments and what is a a
conservative rate. We also briefly discuss a few implemen-
tation issues.

3.1 A reasonable number of segments

Our goal in choosing a reasonable number of segments to
pace is ensuring that RBP can never be worse than NSSR.
Using NSSR as the upper bound on RBP assures that RBP
won’t be harmful to Internet dynamics, since NSSR is al-
ready widely deployed on the Internet (in SunOS, for ex-
ample).
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Figure 2: An example of no slow-start restart.The idle period ends at 39.76s with a window-sized, back-to-back burst of
data.
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Figure 3: An example of slow-start restart.At 41.4s the idle period ends with a slow start.
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Figure 4: An example of rate-based pacing.The idle period ends with four segments being paced over 34.62–34.76s.
Receipt of the ACK at 34.76s causes TCP to resume ACK-clocked transmission.

The minimum number of segments to pace should ensure
that the receiver can immediately send an ACK. A host-
requirements-compliant receiver must send an acknowl-
edgement after two packets [3], so a lower bound of two
segments guarantees an immediate ACK. To avoid being
worse than NSSR, the current congestion window forms an
upper bound on the number of segments sent. We finally
place an upper bound of the number of segments we can
send in one estimated round-trip time at the selected send-
ing rate.

3.2 A conservative rate

Without knowing the current amount of network band-
width a priori, the best one can do is use the most recent
network observations to estimate available bandwidth and
chose a conservative sending rate. It is possible to estimate
bandwidth by measuring data sent in a round-trip interval
as in TCP Vegas [4].

Recent work suggests that WAN performance is reason-
ably stable over terms of several minutes [2], but since net-
work conditions may have changed while the connection
was idle, the most recently observed rate may no longer
hold. To be conservative, we therefore scale this rate down-
wards by a constant factor. In the future we plan to ex-
amine adjusting the scaling factor based on the duration of

the idle period. We call this basic rate-selection algorithm
RBP/rate.

3.3 A less conservative rate

The Vegas algorithm estimates rate by counting segments
sent in a round-trip time. This algorithm requires a “full
pipe” to accurately measure the rate. For short bursts of
data, as are common in web workloads, the Vegas rate esti-
mation algorithm can consistently underestimate available
bandwidth.

Since rate estimates can be low, we are experimenting
with a more aggressive rate estimate. Our alternative algo-
rithm, RBP/cwnd, sends some fraction of the segments that
would have been sent in NSSR, but paces them across an
entire round-trip time. This approach can be as aggressive
as NSSR in theamountof data but conservative in thepace
at which it is sent. Again, the scaling factor can be used to
moderate this algorithm.

3.4 Implementation issues

Implementation of RBP/rate requires the following:

1. Idle time detection (to indicate that RBP should be en-
abled).

2. A method for bandwidth estimation (to compute the
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pacing rate).

3. A limitation on how many segments to pace (in case
network conditions have dramatically changed).

4. A mechanism to clock (pace) the segments as they are
sent.

5. Decision on when to stop RBP.

Idle time detection is done by some existing TCP imple-
mentations (4.4 BSD, Linux 2.x). Instead of forcing slow
start upon detection of idle time, the behavior is modified
to RBP. (Note that RBP is not a substitute for the slow start
mechanism; it applies only to the initial phase of data trans-
fer after an idle period.)

We use the USC implementation [1] of TCP Vegas [4]
to estimate transfer rate. Currently a scaling factor of 1
is employed (data is sent at the the full prior rate), since
for our current workloads the Vegas algorithms consistently
underestimate rate. We plan on employing an adaptive al-
gorithm that modifies the scaling factor downwards when
large amounts of data are exchanged between idle periods.

We use the existing congestion window to limit the num-
ber of segments which can be paced.

Paced segments are clocked by a new timer. Historically,
BSD implementations of TCP employ very few timers to
minimize timer manipulation overhead. RBP is active only
during pacing, minimizing its overhead.

RBP/cwnd does not require a rate estimate and so can
be implemented directly over traditional (non-Vegas) TCPs.
Our implementation of RBP/cwnd is underway.

4 RBP Evaluation

We can evaluate the effectiveness of rate based pacing by
comparing it to SSR and NSSR. We will quantify the ef-
fects of these algorithms by comparing elapsed time to data
transfered after an idle period and by counting the number
of packets dropped due to queue overruns.

4.1 Methodology

We implemented RBP/rate in SunOS, but to easily evalu-
ate RBP over a range of network conditions, this section
compares simulations of RBP done in version 2.0b17 of
ns [13]. We compare Reno TCP with and without slow-
start restart (labeled reno-ssr and reno-nssr in the graphs),
and Vegas TCP without slow-start restart (labeled vegas-
nssr) against RBP/rate.

The simulations in this paper employ a simplified topol-
ogy shown in Figure 5. For our simulations there are 10
clients and 1 server. The clients are connected with high-
speed links to a single bottleneck link of 800kb/s band-

C1

C2

Cn

S1

S2

Sm

CR SR

Figure 5: The simulation network configuration: n
clients (C1–Cn), and m servers (S1–Sm) connected by a
single bottleneck link (CR/SR).

width and a 100ms delay. The bottleneck routers have FIFO
queueing with a 10KB or 24KB buffer capacity.

Rather than simulate the entire HTTP protocol, we con-
sidered only the responses which consisted of 24KB of data
sent from the server to a client. One set of experiments
consider variation in thisburst size. The other set considers
variation in the delay of the bottleneck link. An experi-
ment consists of 10 “rounds” of responses. In each round
the server replies to each client exactly once, with each re-
ply randomly distributed by�1:5s around a central point.
Between each round there is 120s of idle time. The server-
side router (SR) is then potentially swamped by up to 10
responses every 120s. Since SR’s queueing space is lim-
ited, replies which are too closely spaced in time may cause
packet loss.

4.2 Burst size variation

Our first experiment compares performance as the re-
sponse size varies. Larger responses increase the chances
of router buffer overruns with NSSR and raise the cost of
slow-starting with SSR. In this experiment the bottleneck
router has a 10KB queue size.

Figure 6 shows how data transfer time changes as we
vary response size. We vary the amount of data sent in
each reply from 2–40KB, comparing NSSR, SSR, Vegas,
and RBP/rate behavior. We can draw two conclusions from
this graph. First, for small return sizes (less than about
12KB), NSSR is much faster than SSR or RBP. This is
because NSSR is more aggressive at sending data so the
sender is stalled fewer times while opening up the conges-
tion window after the idle period. Second, for larger return
sizes (more than 12KB), RBP, Vegas and NSSR are about
equally fast while SSR is still slower. SSR is slower in this
case because of the additional stalls, but RBP is now as fast
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as NSSR because Vegas’ rate-estimation algorithm can do
a better job when more data is sent and because for larger
bursts NSSR has many more losses than RBP.

Figure 7 shows how packet drop rate changes as burst
size varies. As is expected, NSSR and Vegas have a sub-
stantial number of dropped packets once individual burst
size exceeds the queue size of the bottleneck router. The
important conclusion to draw from this graph is that RBP
has almost as few packet losses as SSR even at burst sizes
of 40KB.

Taken together, we conclude that, as burst size in-
creases, rate-based pacing can offer performance equivalent
to NSSR (and better than SSR) while incurring only slightly
more packet loss than SSR (and less than NSSR). The dif-
ference between RBP and Vegas in Figure 7 also shows the
efficacy of pacing as against sending back to back data. By
being slightly more aggressive than the very conservative
SSR, RBP provides the “best of both worlds” even at bursts
of up to 40KB.

4.3 Bottleneck-link delay variation

Examination of RBP performance as burst-size changes
suggests that RBP is better than either SSR or NSSR under
typical Internet conditions of 100ms latency. Pacing should
offer even more promise as round-trip delay rises, such as
with satellite links. For this experiment we used a 24KB
burst size and bottleneck queue sizes of 24KB (Figures 8
and 9) and 10KB (Figure 10).

Figure 8 shows elapsed time per transaction as the de-
lay of the bottleneck link increases. (Note that we assume
symmetric routing while some satellite systems use an asy-
metric back-channel.) Larger round-trip delay increases all
elapsed times, but this increase is disproportionately large
for the SSR case, since there are substantially more stalls
than the other algorithms and each stall incurs a round-trip-
time penalty [8]. Under the conditions of our experiment,
we conclude that RBP and NSSR behave similarly as delay
changes.

Figure 9 compares loss as delay changes. As can be seen,
NSSR, RBP and Vegas have higher losses than SSR, which
has very little loss. Since both burst size and router queue
size are 24KB, packet loss should only occur when two re-
sponses are very closely spaced in time. Under typical In-
ternet conditions, the size of the bottleneck queue is not un-
der our control and so there is no guarantee that burst size
is less than queue size. To see the effect of this situation,
we reduced the bottleneck queue size from 24KB to 10KB
and reran the experiment (see Figure 10). Under these con-
ditions, NSSR and Vegas both have a substantial loss rate
(about 40% of packets need to be retransmitted). Both SSR
and RBP instead show relatively little packet loss.

Again, these experiments suggest that RBP can offer

NSSR-like performance with SSR-like loss rates. The per-
formance advantages of RBP are larger as RTT increases,
while its better loss characteristics are most important when
router queue size cannot be adjusted to match traffic pat-
terns.

5 Related Work

Rate-based pacing builds on several areas of related
work. It builds directly on Jacobson’s description of ACK
clocking [11] and Jacobson and Karel’s proposal of slow-
start after an idle period [12]. Several others have also ob-
served that “less (transmission) is more (throughput)” in
the context of TCP. Nagle showed that delayed transmis-
sion of small packets can be advantageous [15]. More re-
cently, Hoe showed that a limiting slow-start can improve
performance [10]. Hoe’s work is complementary to ours;
she improves slow-start behavior while we offer an alterna-
tive when more is known about network conditions. Hoe
also suggested (independent of our work), pacing as a po-
tential alternative start up mechanism for TCP [9].

Rate-limited algorithms have been widely explored in the
literature, beginning with leaky bucket [20]. NETBLT ex-
plored a rate-based alternative to TCP [5].

Finally, rate-based pacing assumes that the the prior ob-
served rate has some predictive value for current rates (pos-
sibly with a conservative scaling factor). Balakrishnan et
al. argue that network conditions are relatively stable for
periods of several minutes [2].

6 Future Work

Our experiments suggest that rate-based pacing can of-
fer NSSR-like performance and SSR-like loss rates for a
range of network conditions. Although RBP is promising,
additional work is required to more fully understand RBP
behavior, and several issues must be considered for RBP
deployment.

6.1 Additional evaluation

Several areas of RBP would benefit from additional eval-
uation. Preliminary experiments suggest that RBP/rate and
RBP/cwnd behave similarly. We plan to examine these is-
sues more closely.

Our current experiments evaluate performance where all
traffic is running the same algorithm. We would like to
compare a mix of algorithms and evaluate RBP fairness in
this context.

To examine a wide range of network characteristics, this
paper considers RBP simulations. We would like to validate
our simulations against our implementation of RBP/rate.

Finally, RBP applies old estimates of network bandwidth
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Figure 6: Average elapsed time per transfer as reply size varies.Each data point is the mean of 10 simulations with 10
clients per simulation. Bars show 90% confidence intervals.
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10 clients per simulation. Bars show 90% confidence intervals.
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Figure 10: Average number of packet losses per transfer as bottleneck-link delay varies.Each data point is the mean of
10 simulations with 10 clients per simulation. Bars show 90% confidence intervals.

to current conditions. We are experimenting with more gen-
eral approaches to caching and sharing network conditions
across both time (sequential connections) and space (con-
current connections) [18].

6.2 Deployment issues

Several aspects of RBP simplify deployment.
RBP requires only sender-side modifications to TCP.

This makes it particularly beneficial for HTTP/1.1-based
web servers, thus providing motivation for web-server
maintainers to incrementally deploy RBP.

Our current implementation of RBP/rate makes use of
Vegas’ rate estimate. RBP/cwnd does not require a rate es-
timate and so can be used in traditional TCP implementa-
tions.

6.3 Broader applications

We have applied pacing to the problem of data transmis-
sion after an idle period. Pacing solves the more general
problem of controlled transmission of many TCP segments
when the ACK-clocking mechanism breaks down.

Idle connections are an example of sender-induced
breakdown of the ACK-clock. Similar problems can also
occur because of problems with the receiver or the network.
A slow receiver may buffer and consume data in increments

of a full window. When information that the window has
been consumed reaches the sender, a full window of data
can be sent immediately. Improper TCP receiver implemen-
tations can also result in lack of ACK clocking (for exam-
ple, Solaris 2.5 as described by Paxson [16]).

Packet loss in the network can also derail ACK clock-
ing. A single segment early in the window may be lost
but the full window successfully received. When the sin-
gle lost segment is retransmitted and received, the window
will jump forward. Fast retransmit is one approach to restart
the ACK clock in this case [17]; pacing could also be used.

TCP-over-satellite is another case where pacing may be
useful. Because satellites have a large pipe to fill, slow start
is particularly expensive. If network characteristics were
somehow known (either through outside knowledge or pos-
sibly through information cached from prior connections) it
may be desirable to use pacing when starting new connec-
tions.

7 Conclusions

This paper has described rate-based pacing, a new ap-
proach to restart mid-stream data transfer that is congestion
sensitive and not unnecessarily slow. RBP allows TCP to
quickly reestablish TCP’s ACK clock after the connection
goes idle. By pacing traffic based on an estimate of network
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performance, RBP can be more aggressive than a complete
slow-start (SSR) but can avoid the burstiness of back-to-
back packet transmission (NSSR).

We have implemented RBP in SunOS and examined its
performance through simulation. We have shown that RBP
provides the performance of NSSR and the loss character-
istics of SSR for a range of network conditions. Proto-
cols such as HTTP/1.1 use TCP in a bursty manner, where
fetches of a web page (text and images) are separated by
long idle periods. Rate-based pacing will improve perfor-
mance for this kind of traffic.
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Software Availability

Our implementation of RBP/rate for SunOS-4.1.3
is currently available at the LSAM web pages at
hhttp://www.isi.edu/lsam/ i. We plan
to make an RBP/cwnd implementation available
shortly. Simulated versions of RBP/cwnd and
RBP/rate are available in the 2.0b17 release of ns at
hhttp://www-mash.cs.berkeley.edu/ns/ i.
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