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Parametric Methods for Anomaly Detection
in Aggregate Traffic (Extended Version)0

Gautam Thatte, Urbashi Mitra, and John Heidemann

Abstract—This paper develops parametric methods to detect
network anomalies using only aggregate traffic statistics in
contrast to other works requiring flow separation, even when
the anomaly is a small fraction of the total traffic. By adopting
simple statistical models for anomalous and background traffic
in the time-domain, one can estimate model parameters in real-
time, thus obviating the need for a long training phase or manual
parameter tuning. The proposed bivariate Parametric Detection
Mechanism (bPDM) uses a sequential probability ratio test,
allowing for control over the false positive rate while examining
the trade-off between detection time and the strength of an
anomaly. Additionally, it uses both traffic-rate and packet-size
statistics, yielding a bivariate model that eliminates most false
positives. The method is analyzed using the bitrate SNR metric,
which is shown to be an effective metric for anomaly detection.
The performance of the bPDM is evaluated in three ways:
first, synthetically generated traffic provides for a controlled
comparison of detection time as a function of the anomalous level
of traffic. Second, the approach is shown to be able to detect
controlled artificial attacks over the USC campus network in
varying real traffic mixes. Third, the proposed algorithm achieves
rapid detection of real denial-of-service attacks as determined by
the replay of previously captured network traces. The method
developed in this paper is able to detect all attacks in these
scenarios in a few seconds or less.

I. INTRODUCTION

Security in computer networks is an extremely active and
broad area of research, as networks of all sizes are targeted
daily by attackers seeking to disrupt or disable network
traffic. A successful denial-of-service attack degrades network
performance, resulting in losses of several millions of dollars
[15]. Development of methods to counter these and other
threats is thus of high interest. Current countermeasures under
development focus on detection of anomalies and intrusions,
their prevention, or a combination of both.

In this paper, we present an anomaly detection method that
profiles normal traffic; a traffic-rate shift and a change in
the distribution of packet-sizes from the nominal condition
is flagged as an anomaly. Our anomaly detection problem
is posed as a statistical hypothesis test. We develop para-
metric statistical models for typical and anomalous traffic.
Our detection method does not need, or attempt, to model
the full traffic patterns, instead it captures key, gross features
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of the traffic to enable informed decisions about changes in
traffic. We underscore that our model does not capture all
aspects of general Internet traffic. However, we show that,
in spite of this known mismatch (confirmed in Appendix B),
our model effectively captures changes in the traffic which
are associated with network anomalies. Our goal is to see
whether these simple, approximate statistical models can yield
detection methods of high performance by modeling sufficient,
salient features of the traffic.

Our approach has three key features. First, our model for
anomaly detection operates on aggregate traffic, without flow-
separation or deep-packet inspection. Both of these charac-
teristics are essential for a practical and deployable anomaly
detection system. Flow separation, per-flow anomaly detection,
and deep-packet inspection are difficult or impossible for most
backbone routers that have tens to hundreds of thousands of
active flows per minute [8]. Since our approach only considers
packet headers and timing information, it is robust to traffic
concealment via encryption or tunneling. While it is true that
the source and destination IP addresses of each packet are
always available at the routers, port numbers are not available
without flow-separation. Some prior work [25], [22] uses
features related to the source and destination port numbers
and so will not be able to detect anomalies in aggregate or
VPN tunneled traffic. Note that operating on aggregate traffic
is sufficient to detect anomalies; we assume that responses
such as filtering can involve heavier weight, per-flow analysis.

Second, unlike prior anomaly detection approaches, our
method automates training and does not require hand-tuned
or hard-coded parameters. Instead, key algorithmic parameters
are automatically calculated based on the underlying model
parameters, or estimates thereof, which evolve as a function
of network traffic. For instance, the update window size,
an algorithmic parameter which is described in Section IV,
is computed based on the average sample number (ASN)
function. The latter is a function of the underlying model
parameters, and is derived in Appendix C. Our automation
significantly eases deployment and operation in networks
where traffic and anomalies inevitably evolve over time.

Third, we employ both the packet-rate and sample entropy
of the packet-size distribution statistics to ensure robustness
against false positives, thus overcoming one of the traditional
drawbacks of anomaly detection methods. Combining both
these features ensures that the detection of an anomaly is
declared only when an increase in the traffic volume is
accompanied by a change in the packet-size distribution. Thus,
an increase in the background traffic alone, will usually not be
misidentified as an anomaly. We show that our proposed detec-
tion method successfully detects attacks with these features.



USC/ISI TECHNICAL REPORT ISI-TR-663B, AUGUST 2010 2

Several real-world network phenomena have these features:
all rate-based denial-of-service (DoS) attacks, including TCP
SYN attacks, ping attacks, and service request attacks that use
fixed-sized requests, such upon DNS or web servers. Since an
adversary may try to conceal fixed-size requests, we show that
attacks from a smart attacker that attempts to vary request
size (see Section V-F) are also successfully detected by the
bPDM. Finally, since the bPDM ignores packet addresses and
contents, it can detect attacks with spoofed source addresses,
and attacks in virtual private networks or with encrypted traffic
in the common case that encryption does not systematically
alter packet sizes.

The contribution of our paper is to develop the bivariate
Parametric Detection Mechanism (bPDM), which is com-
pletely passive, incurs no additional network overhead, and op-
erates on aggregate traffic. Furthermore, this work suggests it
is feasible to detect anomalies and attacks based on aggregate
traffic at network edges, and not just near attack victims. Our
detection method employs the sequential probability ratio test
(SPRT) [43], a time-adaptive detection technique, for the two
aggregate traffic features we consider: packet-rate and packet-
size. Combining the SPRTs for these two features ensures the
bPDM is robust against false positives, yet maintains rapid
detection capabilities. We validate the bPDM and quantify the
method’s effectiveness on controlled synthetic traces, emulated
Iperf attacks, and real network attacks. We introduce the bitrate
SNR which is found to be an effective metric for evaluation,
and superior to the previously proposed metric of packet SNR
[18]. Our algorithm also performs comparably to or better than
a selected set of existing detection schemes, while mitigating
key drawbacks via the features described above.

This paper is organized as follows. Prior work in anomaly
detection that is relevant to our research is reviewed in Section
II. An overview of sequential detection methods is provided in
Section III, and we then develop SPRTs of our method and the
bPDM algorithm in Section IV. An evaluation of our detection
mechanism using synthetic traces, real attacks, and controlled
attacks in real traffic mixes is presented in Section V, as
well as a numerical comparison to some existing anomaly
detection methods. We conclude in Section VI. Mathematical
derivations, including quantification of the model mismatch
and estimator performances, are presented in the Appendices.

II. RELATED WORK

In this section, we review the prior art in anomaly and attack
detection relevant to our work. The methods described can
be broadly classified as techniques requiring flow-separation,
spectral or frequency-domain methods, and non-parametric
change-point methods.

Methods requiring flow-separation: The techniques in
[14], [16], [20], [25], [27], [30], [33], [35], [42] and [44]
use certain flow-separated traffic parameters, e.g. source and
destination IP addresses and port numbers, to detect an attack.
Flow-separated parameters are also employed for fast portscan
detection [22], which uses an SPRT to develop an online
detection algorithm.

These methods use header information and flow-separated
features to detect anomalies and attacks, and in comparison

to methods that classify outliers based only on traffic volume
[37], [38], are more far more accurate while also yielding
a lower probability of false positives. On the other hand,
the main disadvantages of flow-separation are its inherent
complexity at the router and its inability to process encrypted
traffic. Our work operates on aggregate traffic, using the traffic
volume (specifically, the packet rate) to detect attacks, with
the improvement that incorporation of the entropy of the
packet-size, which does not require flow-separation, reduces
the probability of false positives and allows us to discriminate
between true attacks and non-malicious changes in traffic.

Non-parametric methods: This class of methods does not
assume an underlying model, but rather tailors its detection
mechanism to the data. A variety of non-parametric methods
employ CUSUM to implement change-point detection. The
CUSUM algorithm [7] involves the calculation of a cumulative
sum of the weighted observations. When this sum exceeds
a certain threshold value, a change in value is declared.
Prior work has focused on detecting SYN attacks using both
aggregate traffic [37] and flow-separated traffic [44]. The
work of [40] focuses on anomaly detection using features and
statistics of the IP layer. Kalman filtering to detect anomalies
using IP address filtered traffic is considered in [34]. A key
drawback of the CUSUM algorithm is that the intensity of the
anomaly needs to be known a priori; in most cases, the solu-
tion to this problem requires empirically designed thresholds
that necessitate significant human effort before the scheme
is initially deployed. In contrast, our detection mechanism
automatically calculates key algorithmic parameters based on
the underlying model.

Spectral methods: Spectral techniques have been widely
used in many other fields to distinguish hidden patterns and
trends from a noisy background. In the past few years,
researchers have begun to apply these methods to analyze net-
work traffic. Spectrum-based approaches have been used to de-
tect features with near-periodic signatures, such as bottlenecks
in the link layer, the effects of the TCP windowing mechanism
and DoS attacks [18], and traffic anomalies [6]. They have also
been employed for attack fingerprinting [19]. The work in [9]
used the energy spectrum to distinguish between reduction-
of-quality flows and legitimate TCP flows in a distributed
setting, and using the sequential SPRT framework. However,
the detection accuracy of spectral methods degrades as the
periodicities in the attack weaken, and most methods are more
computationally expensive than corresponding time-domain
techniques, especially when high speed aggregate traffic must
be analyzed.

Our previous work [38] developed the parametric Modeled
Attack Detector (MAD), which employed Poisson and shifted
Poisson models that could rapidly detect low-rate attacks but
required a dedicated training phase to learn the background
traffic parameters, and which was susceptible to a few false
positives. Furthermore, the one-parameter Poisson model did
not allow for continuous updating of the background param-
eters, and suffered from overdispersion and underdispersion,
given the real network data. The bPDM discussed in this paper
employs richer models that circumvent the need for a training
phase. Combining the packet rate and packet size distribution
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Fig. 1. Depiction of the sequential probability ratio test (SPRT).

nearly eliminates false positives. We present the bPDM in Sec-
tion IV, but first provide an overview of sequential detection,
which is the underlying framework of our anomaly detection
method.

III. BACKGROUND IN SEQUENTIAL DETECTION METHODS

Hypothesis testing exploits prior knowledge of statistical
descriptions of data in order to decide amongst a candidate
set of populations [24]. In our problem setup, we have two
hypotheses:

H0 : No anomaly,

and H1 : Presence of an anomaly in traffic.

The conditional probability density when hypothesis H i is true
is denoted p(x|Hi) for i = 0, 1. We assume independent and
identically distributed observations {xk, k = 1, 2, . . .} which
are drawn from one of the two probability distributions.

Given the two hypotheses and thus two decision choices,
there are four possible scenarios of which we focus on two.
A false positive (FP) or false alarm is declared when the
algorithm selects H1 when H0 is in fact true; choosing H0

even though H1 is true is termed a false negative (FN). The
probabilities of these two scenarios,

α = PFP = Pr[H1|H0] and β = PFN = Pr[H0|H1], (1)

are used to specify the performance criterion of the sequential
detection test. The bPDM employs the sequential probability
ratio test (SPRT) [43] in order to quickly detect an attack.

The likelihood ratio is used to implement the SPRT. Given
N independent and identically distributed observations x =
{x1, . . . , xN}, the likelihood ratio LN (x) is defined as

LN(x) =
N∏

k=1

p(xk|H1)
p(xk|H0)

=
p(xk|H1)
p(xk|H0)

·LN−1(x1, . . . , xN−1),

(2)
where the second equality illustrates that the likelihood ratio
can be easily updated given a new observation.

Given a new observation, the likelihood ratio is compared to
two thresholds A and B which correspond to choosing H 0 or

H1, respectively. Figure 1 depicts a realization of the SPRT
wherein if A < LN (x1, . . . , xN ) < B, the sequential test
continues, and an additional observation xN+1 is taken as is
the case with L4 in Figure 1. But if LN (x1, . . . , xN ) ≥ B or
LN(x1, . . . , xN ) ≤ A, then the test terminates and we choose
hypothesis H1 if the former, or hypothesis H0 if the latter, is
true. In Figure 1, we see that L3 < A, and thus H0 is chosen;
then, the sequential test and likelihood ratio are reset since an
anomaly was not detected, and the SPRT continues. When the
likelihood ratio crosses either threshold, at say sample m, the
sequential test is reset by computing the updated likelihood
ratio as L(xm+1) instead of L(x1, . . . , xm, xm+1). We then
see that L8 > B, so H1 is chosen indicating that an anomaly
has been detected. We can either stop the test now (as shown
in Figure 1), or reset the SPRT and see whether the likelihood
ratio crosses the threshold B again, potentially confirming the
presence of an anomaly. This latter methodology is employed
in the design of our detection mechanism, detailed in Section
IV.

Ideally, the boundaries A and B are selected to minimize
the probability of error for all possible values of N ; however
this formulation of the problem is generally intractable and
thus we use Wald’s approximations [43] to approximate

B ∼= (1 − β)/α and A ∼= β/(1 − α), (3)

which are functions of the required detection performance
parameters from (1). We observe that the approximate values
of A and B are independent of p(x|Hi). The number of
samples required for a particular test to make a decision is
a random number. Thus, we examine the average value of this
random number, referred to as the average sample number
(ASN) function, to measure the efficacy of the SPRT. For the
binary hypothesis test, the ASN function is denoted E i(N) for
hypothesis Hi, and is derived for our models in Appendix C.

IV. THE PARAMETRIC MODEL

In this section, we derive the SPRTs for the packet-rate
and packet-size features that are the primary components of
the bivariate Parametric Detection Mechanism (bPDM). The
bPDM operates on a unidirectional sampled time-series of
aggregate network traffic. The parametric models employed
to derive the bPDM are not representative of general Internet
traffic, but rather are chosen to differentiate between the
presence of an anomaly and the background-only hypotheses.

A classical SPRT assumes known and constant model
parameters. In reality, such parameter values are not always
available, and thus we consider a generalized likelihood ratio
test (GLRT), defined as [41]

GN (x) =
N∏

k=1

p(xk, Θ̂1|H1)

p(xk, Θ̂0|H0)
(4)

where we use the notation p(xk, Θ̂i|Hi) to denote replacing
the true values of the model parameters Θ i of the conditional
probability density p(xk|Hi) with their maximum likelihood
(ML) estimates Θ̂i. To form the generalized SPRT, the esti-
mated parameters are substituted into the test form as previ-
ously described. In particular, we continue taking observations
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if A < GN (x) < B, and make a decision, choosing H0

or H1 if GN (x) ≥ B or GN (x) ≤ A, respectively. When
implementing the GLRT, the model parameters associated
with either or both densities may be estimated. We adopt
the notation θ̂i = θ̂|Hi to denote the estimate θ̂ of the
parameter θ when Hi is true. Herein, for both the presence of
an anomaly and background only hypotheses, the respective
model parameters are estimated using the observations in the
SPRTs for both our features.

In particular, the model parameters are updated using non-
overlapping windows. We initially use fixed-size windows
for both hypotheses; a 1-second sliding window ensures that
enough data is being collected to derive good estimates of
the background and attack parameters, denoted M init =
Ninit = 1 second. The offset window to estimate the H1

parameters uses more recent samples, and thus the change in
the model parameters can be detected as evidenced in Section
V. Whenever the SPRT crosses the lower threshold, confirming
the absence of an attack, the ASN function (see Appendix C)
is computed under hypothesis H0, and the update window size
is reset to

M = min
{

α log B + (1 − α) log A

E0(z)
, Minit

}
. (5)

Similarly, when an attack is detected by the bPDM as de-
scribed in Algorithm 1, the length of the update window for
the H1 parameters is reset to

N = min
{

(1 − β) log B + β log A

E1(z)
, Ninit

}
, (6)

where the first argument of the min functions in (5) and (6) are
the ASN functions under hypotheses H0 and H1, respectively,
and have been derived in Appendix C. We now derive the
SPRTs for both the packet-rate and packet-size features, and
then describe the bPDM algorithm.

A. The SPRT for the Packet-Rate

The null hypothesis H0, which represents only background
traffic, is modeled using the generalized Poisson distribution
(GPD), whose probability density function (pdf) is given by

p(x|H0) = θ(θ + λx)x−1e−θ−λx/x!, (7)

where x ∈ {0, 1, . . .} is the number of packet arrivals in a fixed
time interval and {θ, λ} are the parameters of the GPD. We
model an anomaly or attack stream as a constant rate source
with deterministic, unknown rate r. Our work focuses on
detecting a set of commonly occurring attacks, that is a class
of attacks such as DoS attacks which use fixed attack packet
sizes [15]. Since DoS attacks are also characterized by the
attacker flooding the network, this set of attacks corresponds
to the constant rate attack traffic assumption made above.
However, as evidenced in Section V-F, the bPDM can also
quickly and accurately detect smart attacks, which employ
varying packet sizes. A random variable Y drawn from the
anomalous distribution is specified as

Y = r + X, (8)

where X is drawn from the GPD distribution that models the
background only hypothesis. For the anomaly hypothesis, we
assume that the constant rate anomaly follows the pdf of the
shifted GPD (sGPD)1 given by

p(x|H1) = θ(θ + λ(x − r))x−r−1e−θ−λ(x−r)/(x − r)! (9)

where x ∈ {r, r + 1, . . .} is the number of packet arrivals in
a fixed time interval and {θ, λ, r} are the parameters of the
sGPD. Note that in the case where an anomaly is present,
r is the minimum number of packet arrivals in a fixed time
interval. For the packet-rate SPRT, under both the GPD and
sGPD, xi is thus the number of packet arrivals in the interval[

i
p , i+1

p

)
, given the sampling rate p.

The SPRT, in the case of the packet-rate feature, requires
us to compare the generalized likelihood ratio

GN (x) =
N∏

k=1

p(xk, θ̂1, λ̂1, r̂|H1)
p(xk, θ̂0, λ̂0|H0)

(10)

to the threshold given in (3). Note that the densities specified
in (10) are the GPD (7) and sGPD (9) with parameter estimates
used in lieu of known parameter values. We now derive
the estimator structures for the parameters of the GPD and
sGPD for the background only and presence of an anomaly
hypotheses, respectively.

The mean and variance of the GPD are given as [10]

μ = θ(1 − λ)−1 and σ2 = θ(1 − λ)−3, (11)

and are used to derive the moment estimators of the parameters
θ and λ under the H0 hypothesis, which are given as [10]

θ̂0 =

√
x3

s2
and λ̂0 = 1 −

√
x

s2
, (12)

where x and s2 are the sample mean and sample variance,
respectively, of an M -sample window. We note that the sample
mean and sample variance are computed using their unbiased
estimators2 given by

x =
1
M

M∑
i=1

xi and s2 =
1

M − 1

M∑
i=1

(xi − x)2, (13)

respectively. Although both moment and ML estimators are
available (see [10] for the ML estimators) in the case of
the null hypothesis, we use the former since they are more
computationally efficient than the latter.

For the sGPD, the moment estimators of the three model
parameters (θ1, λ1, r) require computing third and fourth order
moments which we observed to required an order of magnitude
greater number of samples to compute than the average time to
detection. Thus, we present an alternative estimation procedure
for the model parameters under the H1 hypothesis that is
computationally lightweight.

1In our previous work [38], we modeled the presence of an anomaly using
the simpler shifted Poisson distribution. The richer, generalized Poisson model
is employed herein to circumvent the need for a dedicated training phase, and
allow all the model parameters to be estimated online.

2An estimator is defined as unbiased if the estimator’s expected value is
equal to the true value of the parameter being estimated, i.e. E{̂θ} = θ [24].
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From the construction of our anomaly model in (8), we
would expect that an unbiased estimate of r can be obtained
by simply using the difference in the average traffic levels in
the anomalous and background only cases. Furthermore, since
we are deriving moment estimators in a SPRT framework, we
employ the estimator

r̂ = max
{
�−θ̂0/(1 − λ̂0) + x�,

min{x1, . . . , xM , xM+1, . . . , xM+N}
}

(14)

where θ̂0 and λ̂0 are as defined in (12). The estimate r̂ is
computed using both the N -sample sliding window and the
M -sample growing window. Since Y − r is a generalized
Poisson distributed random variable, the other two sGPD
model parameters are estimated using the GPD estimator
structures in (12) and are given as

θ̂1 =

√
(x − r̂)3

s2
and λ̂1 = 1 −

√
x − r̂

s2
(15)

where r̂ is the estimate given in (14), and x and s2 are
computed via (13) using the N -sample sliding window. Note
that the min{·} function in (14) is a constraint due to the fact
that the support of the sGPD is over {r, r + 1, r + 2, . . .}.
We further note that the derived estimators ( θ̂1, λ̂1, r̂) provide
accurate estimates of the sGPD parameters, and are consistent
(see Appendix D-D).

Employing the GPD/sGPD hypothesis test lets us detect a
change in the mean of the traffic, but an increase in the mean
does not always occur due to a malicious anomaly or attack.
Flash crowds, which might occur due to the Digg or SlashDot
effect, are not malicious traffic [21], but would be tagged as
anomalous.

B. Incorporating the Packet-Size SPRT

The packet-size distribution of normal Internet traffic has
been characterized in [32] as mostly bimodal at 40 bytes
and 1500 bytes (with 40% and 20% of packets, respectively).
An examination of our background trace data, which include
Ethernet and VLAN headers, validates this model but with
differing means. The background traffic in our traces can also
be characterized as mostly bimodal, with means at 68 bytes
and 1518 bytes, which represent approximately 40% and 20%
of the total packets, respectively. We note, however, that no
specific distribution is ascertained for the remaining 40% of
the packets.

We expect packet-size distribution information to be effec-
tive in attack detection, since a broad class of attacks use a
single packet-size; e.g. DNS reflector attacks use the maximum
packet-size and TCP SYN attacks use the minimum packet
size. Thus, the influx of attack packets, in the case of attacks
that employ a single attack packet size, will alter the relative
number of a specific packet-size with respect to the packet-size
distribution of normal traffic. As such, the sample entropy of
the packet-size distribution can be used to distinguish between
the no attack and attack hypotheses.

In the bPDM framework, recall that xi represents the
number of packet arrivals in the interval

[
i
p , i+1

p

)
. Let Si

denote the set of distinct packet sizes that arrive in this interval,
and qj denote the proportion of packets of size j to the total
number of packets in the same interval. Thus, the sample
entropy yi is computed as

yi = −
∑
j∈Si

qj log qj . (16)

The sample entropy is modeled using the Gaussian distribution
given by

p(y|Hi) =
1√

2πσi

exp
[
− 1

2σ2
i

(y − μi)2
]

(17)

for both the background (i = 0) and attack (i = 1) hypotheses.
Thus, the log-likelihood ratio (LLR), given N observations, is
specified as

log L(y) = a2

N∑
i=1

y2
i + a1

N∑
i=1

yi + a0, (18)

where a2 = 1
2σ2

0
− 1

2σ2
1
, a1 = μ1

σ2
1
− μ0

σ2
0
, and a0 =

N
[

μ2
0

2σ2
0
− μ2

1
2σ2

1
+ log

(
σ0
σ1

)]
. As in the case of the GPD/sGPD

hypothesis test, the model parameters in the case of the
sample entropy are estimated in real time using the sliding and
growing update windows. Since the sample entropy is modeled
using the Gaussian distribution, the parameter estimators for μ
and σ2 for each of the hypotheses are the sample mean x and
sample variance s2, given in (13), using the respective update
windows. The resulting SPRT requires that we continue to take
more observations if

log(A) < log G(y) < log(B) , (19)

where G(y) is the generalized likelihood ratio associated with
the packet-size SPRT. log G(y) is of the form in (18), but the
constants a2,a1 and a0 are defined in terms of the parameter
estimates {μ̂0, σ̂

2
0} and {μ̂1, σ̂

2
1} instead of the true parameter

values.
Given two features, ideally we would compute a joint

density to determine a single bivariate SPRT. However, given
the mixed nature of the two features (discrete packet arrivals
and continuous entropies) computing this joint density appears
to be intractable. Instead, we now describe our bPDM algo-
rithm, which effectively combines the two SPRTs to yield an
anomaly detection mechanism that has a low probability of
false positives.

C. The bPDM Algorithm

The bPDM combines the SPRTs of the packet-rate and
packet-size features. Before we present the bPDM implemen-
tation details, we first consider a pedagogical example that
shows that a fixed-size DoS attack can be successfully detected
by the bPDM which combines both the packet-rate and packet-
size features. Given the bimodal characterization of packet
sizes [32], assume that normal background-only traffic has a
packet size distribution given by:⎡⎣ 40% 68-byte packets

20% 1518-byte packets
40% other packets

⎤⎦ .
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We further assume that the DoS attack, which uses 1518-
byte packets, increases the percentage of 1518-byte packets
from 20% to 40%. Assuming that the background-only traffic
consisted of 100 packets, we can calculate that the attack
consists of 33 packets, which result in the increased proportion
of 1518-byte packets. We can now compute the post-attack
distribution of packet sizes as:⎡⎣ 30% 68-byte packets

40% 1518-byte packets
30% other packets

⎤⎦ .

Thus, we see that volume-based, fixed-size DoS attacks can
be successfully detected by the bPDM since the attack alters
both the packet-rate and the packet-size distribution.

For the implementation of the bPDM, we first recall that the
bPDM must be initially deployed in the absence of an anomaly.
Once the initial parameter estimates have been computed,
subsequent observations are used to update the parameter
estimates for both hypotheses and compute the likelihood
ratios. For each of the SPRTs, the likelihood ratio is updated
given each new observation as described in (2). The continuous
updating of the likelihood ratio and the H0 and H1 parameters,
estimated using a fixed number of samples, obviates the ne-
cessity of knowing, a priori, what the background or baseline
parameters are.

During the operation of the bPDM, if only one of the SPRTs
(packet-rate or packet-size) crosses the upper threshold B,
then we declare an initial warning and continue computing
the likelihood ratio after resetting the corresponding SPRT. For
example, an increase in the packet-rate without a significant
change in the sample entropy of the packet-size distribution
may be due to a normal non-malicious increase in traffic.
Thus, an attack is declared only if an initial warning is
followed by the other SPRT crossing the upper threshold,
i.e. we declare an attack only if both the packet-rate and
packet-size SPRTs “coincidentally” cross the upper threshold.
Requiring the SPRTs to cross the upper threshold at the same
sample is too restrictive, being the equivalent of millisecond
accuracy; thus, we define the “hold time,” τH = 0.1 second,
and require that the SPRTs cross the upper threshold within τH

samples of each other. Consequently, a false positive is said
to have occurred when both SPRTs coincidentally cross the
upper threshold and there is no anomaly present in the traffic.
In contrast to the bPDM operation described, the packet-rate
could also be used individually to detect anomalies. However,
this would result in a significant number of false positives
being declared since most legitimate increases in traffic would
be flagged as attacks.

Algorithm 1 provides an overview of the bPDM algorithm,
which operates on each sample of the time-series generated
from the network traces. The subscripts pr and ps refer to
the packet-rate and entropy of the packet-sizes, respectively.
When the bPDM is initially deployed, the update window sizes
are set to M = min{E0(N), 1000 samples} and N = 1000
samples in Line 6. Specifically, we use the ASN function
under H1, denoted E0(N), to shorten the update window
in order to achieve quicker detection. As the network traffic
evolves, the ASN function is automatically recomputed, as

Algorithm 1 Outline of the bivariate Parametric Detection
Mechanism (bPDM) algorithm
1 Load time-series for packet-rate and sample entropy of

packet-size distribution
2 Set PFP = 10−8, PFN = 10−7, τH = 100
3 Compute SPRT thresholds A and B using (3)
4 Estimate parameters {θ0, λ0, μ0, σ

2
0} using (12), (13)

5 Compute ASN function E0(N) using (26)
6 Set H0 and H1 update window sizes, M =

min{E0(N), Minit} and N = Ninit, respectively
7 Initialize LLRpr/ps = 0, f lagpr/ps = 0
8 for i = M + N + 1, . . . do
9 if flagpr/ps = 0 then

10 Compute pr/ps H0 parameters {θ0, λ0} and {μ0, σ
2
0}

using (12) and (13), respectively
11 end if
12 Compute H1 parameters {θ1, λ1, r} and {μ1, σ

2
1} using

(14), (15), (13)
13 Update LLRpr[i] using (2) with densities (7),(9)
14 Update LLRps[i] using (18)
15 if LLRpr[i] < log(A) then
16 Reset LLRpr[i + 1] = 0
17 Reset flagpr = 0 to update pr H0 parameters
18 end if
19 if LLRps[i] < log(A) then
20 Reset LLRps[i + 1] = 0
21 Reset flagps = 0 to update ps H0 parameters
22 end if
23 if LLRps/pr[i] > log(B) then
24 Set flagps/pr = 1 to stop H0 parameter update
25 Declare initial warning!
26 if LLRpr/ps[i + τH ] > log(B) then
27 if H1 is true then
28 Anomaly detected! Recompute ASN function

E1(N) with r̂ using (27)
29 Reset H1 window, N = min{E1(N), Ninit}
30 LLRpr/ps[i + 1] = 0
31 else
32 False positive!
33 LLRpr/ps[i + 1] = 0
34 end if
35 end if
36 LLRps/pr[i + 1] = 0
37 end if
38 end for

detailed in Appendix C, and thus the optimal window size is
re-determined whenever the SPRT crosses the lower threshold.
Lines 10–15 describe updating the background parameters
only if neither SPRT has crossed the upper threshold. If the
possibility of an attack exists, the background parameters are
not updated to avoid using attack samples in the estimates of
the H0 parameters. The attack parameters are continuously
updated as in Line 16. Lines 19–26 describe the reseting
the flags that control updating the H0 parameters when the
absence of an attack is confirmed by either of the packet-
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Fig. 2. SPRTs for the packet rate and packet size features for the Iperf
attack with bitrate SNR 0.056: an attack is declared when both SPRTs cross
the upper threshold B, 695 msec after start of attack.

rate or packet-size SPRTs. Lines 27–42 detail the anomaly
detection mechanism described earlier, which includes not
updating H0 parameters when a warning is raised to ensure
that the background parameter estimates are not computed
using attack samples.

D. An Example and Generalization

In order to highlight the facets of the bPDM, we consider
the detection of a simulated Iperf attack with bitrate SNR
0.056 using our detection mechanism. Figure 2 shows the
SPRT outputs that result from detecting this Iperf attack. We
declare the presence of an attack 695 msec after the start of
the attack, although the packet-size SPRT crosses the upper
threshold before this point in time. This delay is due to the
fact that the bPDM requires that both SPRTs coincidentally
cross the upper threshold. Although it is the case that the time
to detection could have been reduced had we used only the
packet-rate SPRT in the case of Figure 2, it would have yielded
a false positive in the case of Figure 3. Therein, we find that
the crossing of the upper threshold before the start of the attack
is flagged as a warning, but an attack is not declared. Thus, the
bPDM reduces false positives by leveraging both the packet-
rate and packet-size features of aggregate traffic.

An advantage of anomaly detection based on aggregate
packet rates and sizes, instead of contents, is that it is robust
to encryption. A DoS attack with encrypted traffic will show
the same rate of change in packet sizes as during a DoS
attack. These results assume that encryption is packetlength
preserving (as is typical for nearly all network encryption
schemes). While our extensions that consider packet size
would be ineffective for encryption that did traffic obfuscation
and bundling, our rate-based methods apply even there.

V. PERFORMANCE EVALUATION AND ANALYSIS

In the following sections, we employ three sets of synthetic
traces, six real and proxy real network attacks, and 67 emu-
lated Iperf attacks in varying traffic mixes to investigate the
effects of background and attack traffic levels on the time
to detection. We show that the performance of the bPDM
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Fig. 3. SPRTs for the packet rate and packet size features for a synthetic TCP
SYN attack with bitrate SNR 0.005. Non-coincidental crossings are simply
flagged as warnings.

is comparable to or better than selected alternate detection
schemes (Section V-D), and that time to detection is influenced
by bitrate SNR. We define bitrate SNR in Section V-A, show
how how it is affected by attack and background traffic rates
and hopcounts (Sections V-B, V-C, and V-I). We also compare
it to the previously used packet SNR metric (Section V-G).
Finally, we validate our synthetic attacks (Section V-H) and
that the bPDM works with minimal training (Section V-E), is
robust to countermeasures (Section V-F), and has a control-
lable probability of false positives (Section V-J).

A. Evaluation of the bPDM

The basic principles of detection theory teach that the time
to detection of a signal in noise is related to the signal-to-noise
ratio (SNR) [41]. However, for anomaly detection, there is no
clear notion of what an appropriate SNR measure would be.
We present the bitrate SNR metric, which is defined as

bitrate SNR =
Anomalous traffic level
Background traffic level

=

∑
S∈SA

MSS∑
S∈SB

MSS
,

(20)
where SA is the set of attack packet-sizes, SB is the set of
background packet-sizes, and MS is the number of packets of
size S in bits.

In this section, we evaluate the bPDM using a set of
synthetic traces and emulated Iperf attacks, and find that as
the bitrate SNR increases, the time to detection decreases. This
trend is also shown to be true for the underlying theoretical
model of the bPDM.

1) Evaluation using simulated synthetic traces: The bPDM
is first evaluated using a set of synthetic attacks [5] that allow
us to control the attack rate and methodically evaluate the
bPDM. The attack traces use 196 megabits per second (Mbps)
background traffic taken from our network. After 6–8 seconds
of background traffic, we add in constant rate attacks at various
rates using Stream Merger [23]. Focusing on low-rate attacks,
our traces employ attacks that range from 1 Mbps to 120
Mbps, in addition to the 196 Mbps background traffic. The
artificial attacks model TCP SYN attacks that use a fixed attack
packet size of 68 bytes [8].
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Fig. 4. Comparing detection time for the emulated Iperf attacks and the
synthetic TCP SYN attacks, with the Iperf attacks grouped by similar bitrate
SNR values. Theoretical detection times also plotted for comparison.

Figure 4 plots the bPDM times to detection for the set of
synthetic TCP SYN attacks as a function of the bitrate SNR,
in addition to the detection times for emulated attacks and the
theoretical model discussed in following sections.

The bPDM was run on 8 distinct synthetic traces of a
specific bitrate SNR, and the mean values of the detection
times are plotted in Figure 4 along with error bars that
represent the standard deviation associated with the mean
detection time. We see that as the bitrate SNR increases, the
bPDM time to detection of the synthetic attacks decreases.

2) Evaluation using emulated Iperf traces: We next con-
sider a more realistic scenario wherein controlled attacks in
varying traffic mixes are detected by our algorithm. Specif-
ically, we employ 80-second Iperf attacks that use 345-byte
fixed-size packets sent from Colorado State University (CSU)
to the University of Southern California (USC); their genera-
tion is detailed in Appendix A. As before as the bitrate SNR
increases, the time to detection of these emulated Iperf attacks
decreases.

The detection times for the 67 individual Iperf attacks are
plotted as open symbols in Figure 4. The individual attacks
are grouped by bitrate SNR to allow us to investigate the
relationship between detection time and bitrate SNR. The data
is partitioned in 0.015 bin increments, so that ten bins span
the bitrate SNR range from 0.035 to 0.185. Each bin is plotted
using a different symbol in Figure 4, i.e. data points that have
bitrate SNR values between 0.035 and 0.05 are represented
using red circles, data with bitrate SNR values between 0.05
and 0.065 by cyan x’s, and so on. The aggregated Iperf line
in Figure 4 plots the mean of each bin, and the error bars give
the standard deviation for each bin. We find that the time to
detection decreases as the bitrate SNR increases for these Iperf
attacks, as it did for the synthetic attacks. The large error bars
of the aggregated Iperf plot prevent further statistical analysis.

As shown in Figure 4, there are no detection times that
correspond to a bitrate SNR of less than 0.02 for both the
emulated Iperf attacks, as well as the synthetic TCP SYN
attacks considered previously. This constitutes a lower limit
of the performance of the bPDM, in that if the attack rate is
lower than 0.02, then the estimate of the r parameter of the
shifted Generalized Poisson distribution in (14) is zero, and

thus the attack is undetectable by the bPDM.
3) Comparing simulated and emulated traces to theory:

We have found that the bPDM time to detection decreases as
the bitrate SNR increases in the case of both the simulated
and emulated attacks. In this section, we show that the time
to detection for the underlying theoretical model follows the
same general trend. We recall that the sequential probability
ratio test (SPRT), described in Section III, is employed by
the bPDM for both the packet-rate and packet-size features.
For the packet-rate SPRT, which is based on the generalized
Poisson distribution (GPD) model as in (7) and (9), the theo-
retical time to detection is the average sample number (ASN)
function under hypothesis H1, and is derived in Appendix C.
The ASN under H1 is a function of the shifted GPD (sGPD)
model parameters {θ, λ, r}.

The same set of sGPD parameters is used to derive the
bitrate SNR, as defined in (20). The mean of the GPD is θ/(1−
λ) (see (11)), which corresponds to the number of packets
in the background traffic. Similarly, the attack parameter r
corresponds to the number of attack packets. Furthermore, we
assume that the attack uses constant 544-bit packets, and adopt
a simplified model for the background traffic wherein 66.6%
of packets are 480-bit, and 33.3% packets are 12000-bit. Thus,
the bitrate SNR is computed as

bitrate SNR
∣∣∣
bPDM

=
r · 544

(2/3 · 480 + 1/3 · 12000)θ/(1− λ)
,

(21)
where for a fixed θ and λ, a greater r corresponds to a higher
bitrate SNR. The theoretical detection times for {θ = 39, λ =
0.487} and {θ = 18.1, λ = 0.76}, which correspond to the
parameter values for the synthetic TCP SYN attacks and a 30
Mbps Iperf attack, respectively, are plotted in Figure 4 as a
dashed red line and a dotted blue line, respectively.

We see that the theoretical time to detection trends as in
the experimental cases: the time to detection decreases as the
bitrate SNR increases. In the theoretical case, we find that
the detection time is an exponential function of the bitrate
SNR; lower-rate attacks take significantly longer to detect
than highrate ones. The theoretical detection times are much
lower than the emperical times since there is no notion of
cross traffic, or interactions between the packets from the
background and attack streams, as experienced in a real router
(in the case of the Iperf attacks) or in the Stream-Merger
application (in the case of the synthetic TCP SYN attacks).
A similar trend is seen in the case of the experimental data,
but a rigorous fit cannot be performed due to the small
set of averaged data points. Thus, we find that attacks with
higher bitrate SNR values are detected more quickly for the
simulated and emulated attacks, which is consistent with what
is predicted by the underlying theoretical model.

B. Effect of Attack rate (Mbps) on Time to Detection

In the previous section, we saw that the time to detection
decreases as the bitrate SNR increases. The bitrate SNR as
defined in (20) consists of two components: the attack rate
(in Mbps) and the background traffic (in Mbps). We now
investigate the effect of each of the individual components
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on the time to detection, and find that for a constant level
of background traffic, the time to detection decreases as the
attack rate increases. The effect of varying background traffic
for a constant attack rate is considered in the next section.

As in Section V-A2, we again aggregate the emulated Iperf
data, this time to better examine the effect of the attack rate.
Specifically, we group the detection times of emulated attacks
by level of background traffic: data points with background
traffic of less than 350 Mbps constitute the first group (low-
level), and data points with background traffic greater than 350
Mbps are the second group (high-level) 3. The detection times
of the Iperf attacks, grouped by background traffic levels, are
plotted as a function of the attack rate (in Mbps) in Figure
5. The attack rates for the data points in Figure 5 are either
20, 25, 30 or 40 Mbps, but are plotted with random shifts
(∈ (−1, 1) Mbps) to improve the visibility of the data points.

To measure the association of the time to detection with
the attack rate, we compute the Pearson product-moment
correlation coefficient r [36] of the time to detection and
backgroud traffic level, as well as the time to detection and
attack strength. The correlation coefficient is independent of
the scale of measurement, and its value ranges from -1.00 to
+1.004. An r value of 0.00 represents no correlation between
the two variables, while a value of -1.00 or +1.00 indicates
perfect predictability.

For this grouping of the data points, the correlation coef-
ficients between detection time and attack rate (Mbps) for
the high- and low-level background traffic are −0.3050 and
−0.0781, respectively. The correlation coefficients and their
associated p-values, along with the sample size for each group,
are listed in Table I. The p-value is a measure of statistical
significance, i.e. the probability that the result occured due
to chance rather than an underlying cause. A p-value of less
than 0.10 indicates that there is statistical evidence for the
model being considered, or hypothesis being proposed, at the
10% significance level. We see that the detection time and
attack rate are weakly negatively correlated with statistical
signficance for Rbg < 350, suggesting that for a specific
background level of traffic, the time to detection decreases
as the attack rate increases.

Note that this weak negative correlation between time to
detection and attack rate also holds in the case of the set
of synthetic TCP SYN attacks discussed in Section V-A1
above, where the time to detection decreased as the bitrate
SNR increased. This result is intuitive because in both cases,
the effect of attack rate is examined for a given level of
background traffic.

Interestingly, for a higher level of background traffic (R bg >
350), the correlation becomes very small ((r = −0.0781) ∼ 0)
and looses statistical significance ((p = 0.68) > 0.10). In
order to support the claim that the decrease in correlation is

3We considered finer groupings of background traffic (100-200 Mbps, 200-
300 Mbps, etc.), but the results were inconclusive due to insufficient data
points in each bin.

4Given the variables Y and X, we define the standardized variables
ZY = (Y −Y )/SY and ZX = (X−X)/SX , where (Y , X and (SY , SX)
represent the sample means and standard deviations of the variables Y and
X, respectively. The Pearson r is then computed as r =

∑
ZXZY /(N −1)

[36].
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Fig. 5. Detection time for the Iperf attacks as a function of attack rate (in
Mbps), grouped by high- and low-levels of background traffic.

TABLE I
CORRELATION COEFFICIENTS AS A FUNCTION OF BACKGROUND RATE,

Rbg .

Bin
(Mbps) Rbg < 350 Rbg > 350

Sample size 37 30
r -0.3050 -0.0781
p-value 0.0664 0.6815

reflective of a legitimate trend, and not merely an artifact, we
now consider the variances of the detection times, grouped
by background traffic level, as a function of the attack rate.
Table II shows that for the higher-level of background traffic,
the variance in detection time is greater than in the low-level
background traffic case for all the attack rates. Recall that the
theoretical cases considered in Section V-A suggest that the
time to detection is an exponential function of the bitrate SNR.
This trend can also be seen, but not rigorously verified, for the
experimental synthetic and Iperf data. However, the statistical
analyses presented herein show that as the level of background
traffic increases, the attack rate is less predictive of the time
to detection of the bPDM.

C. Effect of Background traffic (Mbps) on Time to Detection

Now we consider the second component of the bitrate SNR,
and investigate the effect of the background traffic (in Mbps)
on the detection time. We find that, for a constant attack
rate, the time to detection increases as the background traffic
increases. The detection times, grouped by attack rate, are
plotted as a function of the background traffic in Figure 6.

TABLE II
VARIANCE OF DETECTION TIMES AS A FUNCTION OF BACKGROUND RATE,

Rbg , GROUPED BY ATTACK RATE Ratt .

Ratt(Mbps) 40 30 25 20
Rbg < 350 Mbps 3.4e4 8.15e4 5.8e4 2.44e4
Rbg > 350 Mbps 4.8e4 10.0e4 13.2e4 11.4e4
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Fig. 6. Detection time for the Iperf attacks as a function of background
traffic (in Mbps), grouped by attack rate.

TABLE III
CORRELATION COEFFICIENTS AS A FUNCTION OF ATTACK RATE.

Attack rate
(Mbps) 40 30 25 20

Sample size 15 26 17 11
r 0.4556 0.2849 0.6503 -0.3598
p-value 0.0879 0.1674 0.0064 0.2772

As in the previous section, in order to measure the as-
sociation of the time to detection to the background traffic,
we compute the correlation coefficients for each attack rate,
which are listed in Table III. We see that for the 40, 30 and
25 Mbps attack rates, the correlation coefficient is positive,
and this implies that the time to detection increases as the
background traffic increases. Yet we find that the correlation
coefficient in the case of the 20 Mbps attack is negative.
However, this anomalous result may be explained by the
relatively small sample size; furthermore, we note that the p-
value is significantly greater than that in the other cases, which
means that the possibility of this conclusion being a result of
chance is much higher. More data is therefore required to reach
a firmer conclusion. Thus, we find that for higher attack rates,
the time to detection generally increases as the background
traffic level increases.

D. Comparing bPDM to Prior Methods

We compare the bPDM to a selected set of detection
schemes as described in Section II, and find that our algorithm
performs comparably to or better than the other detection
mechanisms we consider, while mitigating key drawbacks of
the latter. Recall that the bPDM only requires 2-3 seconds of
background-only traffic for training, updates its model param-
eters in real-time, and requires no human intervention when it
is initially deployed. First, we focus on the Modeled Attack
Detector (MAD) [38], a time-domain sequential scheme which
adopts a simpler Poisson model and only uses the packet-
rate feature to detect attacks. The MAD requires at least 10-
12 seconds of background-only data to initialize the estimate
of its background parameter λ (the rate), which does not

update during the algorithm’s operation. Though the attack
parameter r (the rate change due to the attack) in the MAD is
updated in real-time, the fact that the background parameter
remains static necessitates a longer training phase as compared
to the bPDM, which requires 2-3 seconds of training data.
Furthermore, significant evolutions of normal network traffic
are often flagged by the MAD as attacks since the background
parameter is not automatically updated. In contrast, the bPDM
updates its model parameters in an online fashion, and employs
the packet-size feature to minimize false alarms.

The second scheme we consider is the Periodic Attack
Detector [38], a spectral-domain scheme that exploits the near-
periodic nature of attacks. The PAD is the sequential version of
the spectral-domain scheme developed by He et al [18], i.e. the
underlying models and development in [18] were adapted into
a sequential framework as described in Section III. Like the
MAD, the PAD uses a longer length of training data, compared
to the bPDM, and then requires that the test data be statistically
similar to the training data.

Unlike the bPDM, which develops statistics based only
on aggregate traffic features, the entropy-based scheme by
Feinstein et al [16] computes the entropy of flow-separated
parameters and compares the decision statistics against a
threshold in a sequential framework. We simulate this scheme
by computing the entropy of the destination IP address using
non-overlapping batches of 5000 packets, and note that the
time to detection for this method, listed in Table IV, does
not include the time required to extract the flow-separated
parameters. We reiterate that the bPDM detects attacks, and
that flow-separation is required to consequently filter the
attack. In effect, the proposed approach serves as a very light-
weight early attack detection mechanism. If flow-separation
is required, the same method used for Feinstein et al. can be
used for the bPDM and thus will take the same amount of
time. The key difference is that Feinsteins detection method
requires a priori flow-separation, whereas our method would
only invoke flow-separation after attack detection.

We compare the performance of these three schemes to the
bPDM using the bitrate SNR metric. First, we compare the
four methods’ performance when tested on a reflector attack
[4] with a bitrate SNR of 0.0678, which sends echo reply
packets targeted to a victim within Los Nettos and lasts for
204 seconds. The results are tabulated in Table IV, where the
second and third columns are the number of false positives
(# FP) and the time to detection (TD, in msec), respectively.
We note that the detection time for the method by Feinstein
et al [16] may be shorter or longer if different simulation
parameters are employed. Comparison of the four methods
shows that the time to detection for the bPDM is comparable
to or shorter than those of the other three.

Next, we employ the set of synthetic TCP SYN attacks to
compare these three detection schemes to the bPDM. Figure 7
shows the detection time as a function of the bitrate SNR for
the bPDM, MAD, and PAD schemes. The IP entropy scheme
[16] is not included in the comparison because the synthetic
attacks were generated without using source and destination IP
addresses and port numbers. The label “bPDM(SYN)” denotes
the performance of the bPDM on the set of synthetic TCP
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TABLE IV
NUMERICAL RESULTS FOR COMPARISONS OF THE BPDM TO OTHER

METHODS.

Scheme # FP TD Drawback
bPDM 0 336 Limited training required
MAD [38] 2 280 Longer training phase required
IP Entropy [16] 0 400 Flow-separation required
PAD [18] 1 340 Higher complexity due to FFT

and longer training phase required
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Fig. 7. Comparing the time to detection (in msec) for the bPDM, MAD
and PAD detection algorithms using the set of simulated synthetic TCP SYN
attacks that employ 68-byte packets.

SYN attacks, and similarly for MAD and PAD. Each of the
three algorithms was run on 8 distinct synthetic traces of
a specific bitrate SNR, and the resulting mean values are
plotted in Figure 7 along with error bars representing the
standard deviation associated with the mean detection time
for each bitrate SNR. Notice that, as expected, the time to
detection decreases as the bitrate SNR increases. We find that
the bPDM generally outperforms both the MAD and the PAD,
although for lower bitrate SNR values, the detection times
are comparable to that of the MAD. The spectral-based PAD
consistently has the highest, though comparable, detection
times. We note that we achieve these comparable or better
detection times, in the case of fixed-size, constant rate attacks,
without the drawbacks of the other methods, as described in
Sections I and II (see Table IV). For the case of the smart
attacker (see Section V-F), the detection times for the bPDM
can be considerably larger.

E. Validating the need for minimal training in bPDM

The previous section showed that the bPDM outperforms
the MAD, PAD, and entropy-based Feinstein schemes. In this
section, we further explain two important advantages of the
bPDM: it requires limited training, and its model parameters
automatically update in an on-line fashion, as compared to
other existing schemes.

As described in the previous section, the MAD requires a
10-12 second or more training period. We note that the MAD
is based on the simpler pure Poisson model, with a single
parameter λ that is estimated as the background level of traffic
based on the training data, and assumed to remain constant

thereafter. The level of traffic with an attack is modeled by
λ+r, wherein r captures the effect of an attack and is updated
in real-time. As a result, both marked changes in the level of
background traffic and actual attacks are flagged as attacks,
since the increase in traffic volume is captured by updating
only the attack parameter. In constrast, the bPDM uses the
generalized Poisson distribution with two varying parameters
(θ, λ) to account for changes in the level of background
traffic. These parameters update individually via (12) and (15)
to incorporate the changing background traffic. The attack
parameter r, as in the case of the MAD, updates as in (14),
and is compared to the background to identify the presence of
an anomaly. Importantly, in the bPDM, the packet-size SPRT
is incorporated in addition to the packet-rate to ensure that an
increase in traffic volume without a corresponding change in
the packet-size distrbution is not flagged as an attack. Thus,
if the attack parameter is updated and signals an attack due
to an increase in the background traffic, the packet-size SPRT,
which would not have crossed the upper threshold, can ensure
that only a warning is raised. We note that even if the packet-
size SPRT had likewise been incorporated into the MAD
to reduce false alarms, the static nature of the background
parameter would still necessitate a minimum 10-12 second
training period for the MAD, while the bPDM only requires
2-3 seconds. Furthermore, our experimental results suggest
that the bPDM requires 2-3 seconds of background traffic
irrespective of the attack strength.

The second detection scheme to be considered, the PAD,
also requires a longer period of training data than the bPDM,
which it uses to characterize the spectral-domain features of
normal background-only traffic. In the testing phase, the pres-
ence of frequency-domain components that were not present in
the background-only traffic spectrum is used to detect attacks.
We note that the PAD is sensitive to significant changes in
the background traffic, and thus the data used to train and
test the algorithm must be statistically similar. This is not the
case for the bPDM, which initializes using a limited amount
of training data, but then automatically updated its parameters
as the network traffic evolves.

The MNA-CUSUM is a non-parametric sequential algo-
rithm developed by Tartakovsky et al [37], which requires
a non-trivial amount of overhead when initially deployed: it
filters incoming packets by size and uses individual channels
and decision statistics (analogous to the log-likelihood ratio
in the SPRT) to detect an attack rapidly. Because the decision
statistics are based on score functions that update periodically
using a parameter update method, similar to that of the
bPDM, for each of the channels, the initial deployment of the
MNA-CUSUM involves hand-tuning of the thresholds of each
channel to meet the false-alarm requirements. An alternative
to the hand-tuning of thresholds could be an explicit search
over the parameter space, which has not been implemented
in [37] but would presumably be computationally intensive
due to the multiple channels employed. Recall that the bPDM
is initially deployed with no hand-tuning, since the initial
parameter estimates are automatically computed using (12),
given a limited amount of background-only training data.

Thus, our algorithm requires only up to 2-3 seconds of
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training data, as compared to the 10-12 seconds needed by
the MAD and PAD, since the H0 and H1 update window
sizes are 1 second long as described in Section IV. And unlike
MNA-CUSUM, our algorithms requires only a few parameters
and we have demonstrated automatic training. Thus, we find
that the bPDM’s use of limited training data and automatic
updating of its model parameters in real time results in its
being free from the drawbacks of other existing detection
methods.

F. Robustness of bPDM to a smart attacker

As described in the previous sections, the bPDM uses the
packet-size as a feature for detection, and to reduce false
positives. We now consider the smart adversary scenario,
wherein the attacker constructs an attack whose distribution
of packet-sizes attempts to match that of the background
traffic. For this purpose, we create a set of smart adversary
synthetic attacks wherein the attack stream uses a constant
bitrate, but with a distribution of packet sizes that is drawn
from the bimodal distribution described in [32]. We recall
that the packet-size distribution of nominal Internet traffic
has been characterized in [32] as mostly bimodal, and that
an examination of our background trace data validates the
bimodal distribution of packet-sizes. For any given data rate,
corresponding to a bitrate SNR, the smart attack is generated
by combining 40% 68-byte packets, 20% 1518-byte packets,
and uniformly distributing the remaining 40% of packets in
the interval (68,1518)-bytes since the smart attacker is not
privy to the exact (and evolving) distribution of packet sizes in
background traffic at the detectors location. Attackers do not
use this approach today, as in general they cannot perfectly
guess the packet size distribution on the monitored link. We
therefore present these smart attacks to consider one possible
set of countermeasures against our detection mechanism.

It must be noted that, although the smart adversary actively
manipulates only the packet-size distribution, the smart attacks
affect both the packet-rate and the packet-size aspects of the
bPDM:

1) The packet-sizes used by a smart adversary are drawn
from a bimodal distribution that resembles normal Inter-
net traffic. This results in the entropy of the packet-size
distribution in the case of an attack being similar to that
in the background-only case, reducing the effectiveness
of the packet-size SPRT.

2) Recall that the synthetic TCP SYN attacks employ 68-
byte packets. In drawing from a bimodal distribution,
the smart adversary uses a range of packets including
several that are larger than 68 bytes. This variety of
packet sizes implies that for a fixed attack rate, say 60
Mbps, the smart attack has a smaller number of packets
per second, as compared to a TCP SYN attack. This
should challenge the packet-rate SPRT employed by the
bPDM.

Despite these challenges, we will see that the bPDM can still
detect attacks from a smart adversary.

Figure 10(a) shows the bPDM detection times for the
smart, denoted “bPDM(smart),” and TCP SYN, denoted

“bPDM(SYN),” simulated attacks as a function of the bitrate
SNR. We recall that the (SYN) label refers to the set of
synthetic TCP SYN traces wherein fixed 68-byte packets are
employed; correspondingly, the (smart) label denotes packets
drawn from the bimodal packet-size distribution. In particular,
the bPDM algorithm was run on 8 synthetic TCP SYN and
smart traces each, all of a specific bitrate SNR. The mean
detection times are plotted in Figures 10(a), wherein the error
bars represent the standard deviation of the detection times.
We find that the bPDM detects the synthetic smart attacks,
albeit with longer detection times than TCP SYN attacks.

Since the smart attacker employs the bimodal distribution
of traffic, the sample entropy due to the packet sizes that
correspond to the two means of the bimodal distribution does
not change appreciably after the attack. On the other hand,
the 40% of packets that have sizes that are uniformly dis-
tributed do not precisely model the true distribution of packet
sizes of background traffic, and thus there is a measurable
difference in sample entropy that enables the bPDM to detect
the smart attacks. We now consider a smart attacker that
generates a “smarter” attack that more closely matches the
two most common packet sizes, and further incorporates the
third (denoted smart2), and then the fourth (denoted smart3),
most common (modal) packet sizes when designing the attack
packet-size distribution. In this scenario, the original smart
attack matches 58% of traffic, and the smart2 and smart3
attacks consist of 71% and 78% matched traffic, respectively.
Figure 8 shows the packet-rate SPRT (subplot 1) and the
packet-size SPRT for increasingly smarter attacks (subplots
2-4). Note that the packet-rate SPRT rapidly crosses the upper
threshold for these attacks with bitrate SNRs of 0.3, whereas
the packet-size SPRT takes longer since the attack packet-
size distribution more closely resembles that of background
traffic. In the case of the “smarter” attack, wherein 58% of
the traffic is matched by the attacker (corresponding to an
empirical symmetric Kullback-Leibler (KL) divergence [12]
of 14.21 with respect to the background), the bPDM time
to detection is 770 msec (averaged over eight simulations).
As the percentage of matched traffic increases, so does the
time to detection. For the smart2 attack, wherein 71% of
the traffic is matched (empirical symmetric KL divergence
of 9.42), the time to detection for the bPDM is 1500 msec
(averaged over eight simulations). When 78% of the traffic
is matched (empirical symmetric KL divergence of 7.33), as
in the case of the smart3 attack, the BPDM cannot detect
the smart attacker. Even for the smart3 attack, the packet-
rate SPRT rapidly crosses the upper threshold at the onset of
the attack (as in Figure 8, subplot 1), but an attack is never
declared since the packet-size SPRT never crosses the upper
threshold. Thus, although the packet-size SPRT significantly
reduces false positives (especially in the case of fixed-size
constant rate attacks), in the case of “smarter” attacks, it
is responsible for false negatives. The consideration of the
set of “smarter” attacks further characterizes the performance
limitations of the bPDM. As seen in Section V-A1, the bPDM
cannot detect attacks with bitrate SNRs lower than 0.02, and
we now conclude that attacks with packet-size distributions
that comprise roughly 80% or more matched traffic are also
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Fig. 8. Comparing the packet-size LLRs for increasingly “smarter” attacks;
subplots 2-4 employ smart attacks that comprise 58%, 71% and 78% matched
traffic, respectively.

missed by the bPDM.
The bPDM’s inability to detect attacks with packet-size

distributions that closely match that of the background traffic
is also relevant in the case of open-loop versus closed-loop
TCP flows. Since open-loop TCP flows exhibit greater traffic
variability than closed-loop TCP flows [28], we would expect
the packet-size distribution of the latter to resemble that of
background traffic more closely than that of the former. In
general, this would result in increased detection times for the
bPDM for closed-loop TCP traffic. However, quantifying the
difference in the packet size distributions for open-loop and
closed-loop TCP traffic, and its effect on bPDM performance,
is beyond the scope of this paper.

G. Bitrate SNR versus packet SNR

An alternative metric, the packet SNR, is used by He et al
[18] to evaluate their methods. In this section, we compare
the packet SNR to the bitrate SNR, and we find that the
latter is a more effective measure of anomaly strength for this
application. The packet SNR is defined as [18]

packet SNR =
# of attack packets

# of background packets
=

∑
S∈SA

MS∑
S∈SB

MS
,

(22)
where SA, SB and MS are as defined for (20). This metric is
thus defined in terms of the packet-rates of both the attack and
the background traffic, rather than the bitrate (in Mbps) as in
the case of the bitrate SNR. Both the packet and bitrate SNRs
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Fig. 9. Comparing the time to detection (in msec) for the bPDM, MAD and
PAD detection algorithms as a function of the packet SNR metric as defined
in [18].

are equivalent metrics for the TCP SYN attacks described in
Section V-D, in that the relative times to detection for different
schemes, e.g. bPDM, MAD, PAD, are identical for both
metrics. For example, the bPDM detects TCP SYN attacks
faster than the other methods irrespective of the metric used
for comparison. This equivalency exists for any anomalies that
employ fixed-size packets. To compare the metrics’ efficacy in
this case, we revisit Figure 7 in Section V-D as Figure 9, this
time employing the packet SNR instead of the bitrate SNR.
The time to detection for the three methods, averaged over 8
sets of synthetic TCP SYN attacks, are plotted as a function
of packet SNR in Figure 9 with error bars representing the
standard deviation of the detection times. In comparing Figures
7 and 9, we note that they are simply scaled and shifted
versions of each other, which shows that the packet SNR is
equivalent to the bitrate SNR in the case of attacks with fixed-
size packets.

However, this is not always the case; we now consider an
attack due to a smart adversary, as introduced in the previous
Section V-F. We compare Figures 10(a) and 10(b), wherein the
bPDM time to detection is plotted for the smart and TCP SYN
synthetic attacks as a function of bitrate SNR and packet SNR,
respectively. Note that in Figure 10(b), the smart adversary
attacks are detected more quickly than the corresponding TCP
SYN attacks. This is a very counterintuitive result, since,
as described above, the smart adversary represents a set of
countermeasures against our detection mechanism. In contrast,
in Figure 10(a), the TCP SYN attacks are shown to be detected
markedly and uniformly faster than the smart adversary attacks
for the entire range of bitrate SNR values, which is the result
we expect.

Given that both metrics are equivalent in the case of attacks
that use fixed-size attack packets, but that the packet SNR
yields a counter-intuitive result in the case of the smart
adversary, we thus conclude that the bitrate SNR is an effective
metric for comparison and evaluation, and better than the
packet SNR.
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Fig. 10. Comparing the bPDM detection times for the set of synthetic TCP
SYN and smart attacks as a function of (a) packet SNR and (b) bitrate SNR.

H. Validation of Synthetic Attacks

In order to confirm the conclusions drawn from the bPDM’s
performance on simulated attacks, we here test the bPDM
using three real network attacks, which were captured in the
wild and are available through PREDICT, and three proxy real
attacks, constructed from real denial-of-service attacks (DoS)
and real background traffic streams combined using Stream
Merger [23]. We find that the detection times for the real
and proxy real attacks closely resemble those of the synthetic
attacks.

The three real network attacks considered were collected in
varying network conditions, but all six attacks employ either
15-byte, 60-byte or 68-byte fixed-size attack packets. In this
respect, they resemble the set of synthetic TCP SYN attacks.
Thus, we expect the detection times of the real attacks to
resemble those of the SYN attacks. Table V summarizes the
attack details; the bitrate SNRs for the real attacks range from
0.012 to 0.53, with varying attack and background traffic levels
(in Mbps).

The detection times of the individual real and proxy real
attacks are plotted (as open, unconnected symbols) in Figure
11 for comparison to the detection times of the synthetic
traces for the bPDM, MAD and PAD detection schemes.
As for earlier plots, the points for the synthetic traces, i.e.
bPDM(SYN), bPDM(smart), MAD(SYN) and PAD(SYN),
represent the mean detection times, with the error bars pro-
viding the standard deviation. The bPDM detection times for
the real and proxy real network attacks as shown in Figure 11
were obtained by running the algorithm on the attacks with 2-
3 seconds of background traffic before the onset of the attack.
Furthermore, the plot of the detection times for the synthetic
TCP SYN attacks has been extrapolated (plotted using dashed
black line) to compare the TCP SYN detection times to those
of the real ip-proto 255 and UDP Servpath attacks. Of the
models considered, the best fit for the synthetic TCP SYN
detection times was found to be an exponential one, which is
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Fig. 11. Comparing the bPDM time to detection (in msec) of the real network
attacks to the bPDM, MAD and PAD detection times for the simulated
synthetic attacks, TCP SYN and smart adversary.

described as f(detection time) = 22.6+1053e−16.08·bitrate SNR.
For all real and proxy real attacks, we see that a higher

bitrate SNR corresponds to a lower time to detection, and
further note that the actual (and extrapolated) detection times
for the synthetic TCP SYN attacks are consistent with the
times to detection of the real and proxy real network attacks.

I. Considering the Effect of Hop Count on Time to Detection

Recall that Figure 4 in Section V-A1 shows that the detec-
tion times for the synthetic TCP SYN attacks are consistently
lower than the averaged Iperf detection times, described in
Sections V-A1 and V-A2, respectively.

We believe this disparity is due to the shorter path for our
synthetic TCP attacks. Our synthetic TCP SYN attacks are
constructed by mixing traffic using Stream Merger, so the
attack traverses the equivalent of one hop. In contrast, the
emulated Iperf attacks from CSU to USC, must traverse the
810 hops over the real Internet (as measured by traceroute, see
Appendix A), and at each hop through a router, crosstraffic
from other applications can distort the attack. Although this
conjecture is consistent with the data, its verification in a
controlled experiment is an area for future work.

J. Controlling the Probability of False Positives

As discussed in Section III, the SPRT allows control
over the probability of false positives via tunable parameters
α = PFP and β = PFN, which directly affect the SPRT
thresholds A and B. To examine the effect of these parameters
on the probability of false positives, we employ a set of 24
background traffic traces [2], each 5-minutes long, gathered
every hour for 24 hours.

Figure 12 shows (a) the number of false positives declared
by the bPDM for different values of PFP, and (b) the bitrate
(in Mbps) as a function of time of day for a 24-hour period.
As expected, the number of false positives increase as PFP

increases, which is equivalent to lowering the upper threshold,
log(B), of the SPRT. Furthermore, we see that the number
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TABLE V
BPDM DETECTION RESULTS FOR REAL NETWORK ATTACKS.

Symbol Trace
Attack
(Mbps)

Background
(Mbps)

bitrate
SNR

TD
(msec) Description

♦ [4] 34.45 69.86 0.49 29 ip-proto 255 attack
◦ [4] 2.11 31.12 0.678 338 reflector attack
� [1] 21.6 40.75 0.53 12 udp servpath attack
� [3] 3.84 320 0.012 823
� [3] 11.2 320 0.035 788 proxy real DoS attacks
� [3] 13.44 320 0.042 734
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Fig. 12. (a) Number of false positives, and (b) the bitrate (in Mbps) as a
function of time of day.

of false positives declared by the bPDM is not correlated
with the level of the background traffic, implying that the
bPDM is fairly robust against variations in the background
traffic. For the bPDM simulations using the simulated syn-
thetic traces, emulated Iperf traces and real traces, we use
PFP = 10−8, PFN = 10−7 and note that false positives are
reduced to zero, which correspond to the PFP = PFN = 10−8

plot in Figure 12.

VI. CONCLUSIONS

We have developed the bivariate Parametric Detection
Mechanism (bPDM), which can detect anomalies and low-
rate attacks in a few seconds. This approach allows the real-
time estimation of model parameters, and only requires 2-3
seconds of background-only traffic for training. Incorporating
the packet rate and packet size features enables us to detect
anomalies in encrypted traffic and avoid state-intensive flow
tracking, since our method does not use flow-separated traffic,
and combining these same two features also eliminates most
false positives. We have evaluated our methods using synthetic
traces and emulated Iperf attacks, and find that the bPDM
can detect attacks in a few seconds. The detection times
for the synthetic attacks are validated using real and proxy
real network attacks, and the bitrate SNR is shown to be
not only an effective metric for evaluating anomaly detection
methods, but also a better one than the previously proposed
packet SNR metric. For all the datasets considered, as well

as the underlying theoretical model, we find that the time to
detection decreases as the bitrate SNR increases. Furthermore,
we examine the effect of the individual components of the
bitrate SNR on the time to detection: as the attack rate
increases, the detection time decreases; as background traffic
level increases, the time to detection decreases.

REFERENCES

[1] attack-servpath-udp22-20061106, available through PREDICT.
[2] Bottleneck traces-20041202, available through PREDICT.
[3] DoS 80 timeseries-20020629, available through PREDICT.
[4] DoS traces 20020629, available through PREDICT.
[5] UniformAttack Traces Generated20070821-20041202, PREDICT.
[6] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of

network traffic anomalies. In Proceedings of the SIGCOMM Internet
Measurement Workshop, France, November 2002.

[7] M. Basseville and I. Nikiforov. Detection of Abrupt Changes: Theory
and Application. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[8] M. Brunner. Service Provision: Technologies for Next Generation
Communications, chapter Basic Internet Technology in Support of
Communication Services. Wiley Series on Communications Networking
and Distributed Systems. Wiley, 2004.

[9] Y. Chen and K. Hwang. Spectral Analysis of TCP Flows for Defense
against Reduction-of-Quality Attacks. In Proc. of the IEEE Intl. Conf.
on Communications, Glasgow, Scotland, June 2007.

[10] P. Consul. Generalized Poisson Distributions: Applications and Prop-
erties. Marcel Dekker Inc., New York, NY, 1989.

[11] P. Consul and F. Famoye. Lagrangian Probability Distributions.
Birkhauser, Boston, MA, 2006.

[12] T. Cover and J. Thomas. Elements of Information Theory. Wiley, New
York, 1991.

[13] H. Cramér. Mathematical Methods of Statistics. Princeton University
Press, 1946.

[14] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg. Rule-based
anomaly detection on IP flows. In Proceedings of IEEE INFOCOM, Rio
de Janeiro, Brazil, April 2009.

[15] J. Ellis and T. Speed. The Internet Security Guidebook: From Planning
to Deployment. Academic Press, 2001.

[16] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical
approaches to DDoS attack detection and response. In Proc. of DARPA
Information Survivability Conf. and Exposition, pages 303–314, 2003.

[17] Z. Govindarajulu. Sequential Statistics. World Scientific Publishing,
Singapore, 2004.

[18] X. He, C. Papadopoulos, J. Heidemann, U. Mitra, and U. Riaz. Remote
detection of bottleneck links using spectral and statistical methods.
Computer Networks, 53:279–298, 2009.

[19] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of
repeated denial of service attacks. In Proceedings of the Conference on
Computer Communications (INFOCOM), Barcelona, Spain, April 2006.

[20] C. Jin, H. Wang, and K. Shin. Hop-count filtering: An effective defense
against spoofed DoS traffic. In Proceedings of Conference on Computer
and Communications Security, Washington DC, October 2003.

[21] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial
of service attacks: Characterization and implications for CDNs and web
sites. In 11th International WWW Conference, Honolulu, HI, May 2002.

[22] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan. Fast portscan
detection using sequential hypothesis testing. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.



USC/ISI TECHNICAL REPORT ISI-TR-663B, AUGUST 2010 16

[23] P. Kamath, K.-C. Lan, J. Heidemann, J. Bannister, and J. Touch.
Generation of high bandwidth network traffic traces. In Proceedings of
the 10th International Workshop on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, Fort Worth, TX, 2002.

[24] S. Kay. Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice Hall PTR, 1993.

[25] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. In Proceedings of ACM SIGCOMM, Philadelphia,
PA, August 2005.

[26] A. Nandi. Higher order statistics for digital signal processing. In
IEE Colloquium on Mathematical Aspects of Digital Signal Processing,
pages 6/1–6/4, London, UK, February 1994.

[27] G. Nychis, V. Sekar, D. G. Andersen, et al. An empirical evaluation
of entropy-based traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM Internet Measurement Conference, pages 151–156,
Vouliagmeni, Greece, October 2008.

[28] R. S. Prasad and C. Dovrolis. Beyond the model of persistent tcp
flows: Open-loop vs closed-loop arrivals of non-persistent flows. In
Proceedings of the 41st Annual Simulation Symposium, Ottawa, Canada,
April 2008.

[29] S. Ramanujan. The Lost Notebook and Other Unpublished Papers.
Narosa, New Delhi, India, 1988.

[30] J. Rodriguez, A. Briones, and J. Nolazco. Dynamic DDoS mitigation
based on TTL field using fuzzy logic. In Proceedings of 17th Inter-
national Conference on Electronics, Communications and Computers,
Cholula, Mexico, February 2007.

[31] M. Shoukri. Estimation Problems for Some Generalized Discrete
Distributions. PhD thesis, University of Calgary, Calgary, Canada, 1980.

[32] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size
distributions: Some observations. Technical Report ISI-TR-2007-643,
University of Southern California, Los Angeles, CA, USA, May 2007.

[33] V. Siris and F. Papagalou. Application of anomaly detection algorithms
for detecting SYN flooding attacks. In Proceedings of IEEE GLOBE-
COM, Dallas, TX, November 2004.

[34] A. Soule, K. Salamatian, and N. Taft. Combining filtering and statistical
methods for anomaly detection. In Proceedings of the 2005 Internet
Measurement Conference, Berkeley, CA, October 2005.

[35] M. Stoecklin, J.-Y. L. Boudec, and A. Kind. A two-layered anomaly
detection technique based on multi-model flow behavior models. Lecture
Notes in Computer Science (PAM), 4979:212–221, 2008.

[36] B. Tabachnick and L. Fidell. Using Multivariate Statistics (5th Edition).
Allyn and Bacon, 2006.

[37] A. Tartakovsky, B. Rozovskii, R. Blazek, and H. Kim. A novel
approach to detection of intrusions in computer networks via adaptive
sequential and batch-sequential change-point detection methods. IEEE
Transactions on Signal Processing, 54(9):3372–3382, 2006.

[38] G. Thatte, U. Mitra, and J. Heidemann. Detection of low-rate attacks
in computer networks. In Proceedings of IEEE 11th Global Internet
Symposium, Phoenix, AZ, April 2008.

[39] G. Thatte, U. Mitra, and J. Heidemann. Parametric methods for anomaly
detection in aggregate traffic. IEEE/ACM Transactions on Networking,
In Preparation, 2008.

[40] M. Thottan and C. Ji. Anomaly detection in IP networks. IEEE
Transactions on Signal Processing, 51(8):2191–2204, August 2003.

[41] H. V. Trees. Detection, Estimation, and Modulation Theory, Part I. John
Wiley, New York, 1968.

[42] A. Wagner and B. Plattner. Entropy based worm and anomaly detection
in fast IP networks. In Proceedings of the SIG SIDAR Graduierten-
Workshop uber Reaktive Sicherheit, Berlin, Germany, July 2006.

[43] A. Wald. Sequential Analysis. John Wiley, New York, 1947.
[44] H. Wang, D. Zhang, and K. Shin. Detecting SYN flooding attacks. In

Proceedings of the Conference on Computer Communications (INFO-
COM), New York, NY, June 2002.

APPENDIX A
GENERATION OF IPERF ATTACKS

Our evaluation of the bPDM uses controlled Iperf attacks in
varying Internet traffic mixes. These 80-second UDP attacks
are generated at a fixed attack rate (in Mbps) and employ
345-byte fixed-size attacks packets. The Iperf attacks orig-
inate at Colorado State University (USC) and are destined
for the University of Southern California, with 10 routers
traversed between the source and destination as determined

by traceroute. The network packet traces consisting of these
attacks are captured via port-mirroring, and with capture
machines that use DAG cards and that see both incoming and
outgoing university traffic. In particular, we use one link (out
of five) at Los Nettos, a regional ISP in the Los Angeles area
serving both commercial and academic institutions. The traces
are collected at Los Nettos with a timing precision of 0.1
microsecond, and is due to the accuracy of the Endace DAG
network card. The link we use captures bidirectional traffic,
but since the bPDM operates on a unidirectional traffic stream,
the incoming traffic is filtered from the bidirectional traffic
using a complete list destination IP subnets for the University
of Southern California. Once the incoming traffic has been
isolated, the bPDM exploits only the aggregate traffic fields,
the timestamp and the packet-size, which yield the packet-rate
and entropy of packet-size distribution statistics.

We collected four datasets, each 3 hours long, and consisting
of an average of 15 Iperf attacks with attack rates of 20, 25,
30 and 40 Mbps. The experiments were conducted at different
times of day; during weekend non-peak hours, and during
busier weekday hours, to investigate the effect of different
background traffic levels. We see qualitatively similar results
across all the datasets, in the fact that the time to detection is
uncorrelated with when the datasets were collected, and thus
we do not analyze the dataset-partitioned data.

APPENDIX B
QUANTIFYING THE MODEL MISMATCH

The parametric models employed in the bPDM do not
represent general Internet traffic. Despite this mismatch, we
are able to successfully detect anomalies as seen in Section
V. In this Appendix, we provide a brief analysis of the model
mismatch using one of the real network attacks [4].

Since the start of the attack is known, the background
traffic and attack traffic are individually compared to the GPD
and sGPD, respectively. In particular, we quantify the model
mismatch between our parametric model and the real data for
this particular attack, using quantile-quantile (Q-Q) plots and
the two-sample Kolmogorov-Smirnov test [13]. Recall that
the Q-Q plot will be linear if and only if the two sets of
samples being compared are drawn from the same distribution.
Similarly, the null hypothesis of a two-sample Kolmogorov-
Smirnov test declares that the two sets of samples are drawn
from the identical distribution.

For the analysis of the H0 hypothesis, the first sample set
is the background traffic from the real network trace. The
second sample set is synthetic data drawn from the GPD, and
generated using the Inversion Method by Consul and Famoye
[11]. The GPD parameters used to generate the synthetic data
are estimated from the background traffic via the estimators
in (12). Similarly, the H1 hypothesis is analyzed using the
attack traffic and synthetic data drawn from the sGPD with
parameters estimated using (14) and (15).

The two plots in Figure 13, for the background and attack
traffic, show that the Q-Q plots are not linear in either case.
This nonlinearity implies that the background traffic is not
GPD, and the attack traffic is not sGPD. Furthermore, the null
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Fig. 13. Q-Q plots for real background traffic (left) and attack traffic (right)
matched to the GPD and sGPD, respectively.

hypothesis of the two-sample Kolmogorov-Smirnov test was
rejected at the 5% significance level for both the background
traffic and the attack traffic, further supporting our claim that
the bPDM parametric models do not model general Internet
traffic.

APPENDIX C
AVERAGE SAMPLE NUMBER ANALYSIS

The average sample number (ASN) function is used to
evaluate the efficacy of the sequential test reviewed in Section
III. The ASN function is simply the average number of
samples required to make a decision by a particular test. For
the binary hypothesis test considered in our work, the ASN
function is denoted Ei(N) for hypothesis Hi. We present an
analysis of the ASN function for the GPD/sGPD hypothesis
test since it is used to determine an alternative window size for
parameter estimation. In order to compute the ASN function,
we first define

z = log
p(x|H1)
p(x|H0)

, (23)

and denote Eθ(z) to be the expected value E(z) of z when
θ ∈ {0, 1} is the true hypothesis. In the determination of
Eθ(z), we avoid underflow and overflow errors by computing
the probability mass function of the GPD (7) as

p(x|H0) =
θe−θ

θ + λx

x∏
n=1

(θ + λx)e−λ

n!
, (24)

where each of the product terms are first computed, and
then multiplied to yield the required probability. From the
expressions in (3), we can solve for

α =
A − 1
A − B

and β = −A(B − 1)
A − B

, (25)

and now obtain expressions for the ASN functions for each of
the hypotheses as [17]:

E0(N) =
α log B + (1 − α) log A

E0(z)
, (26)

and E1(N) =
(1 − β) log B + β log A

E1(z)
. (27)

Thus, for the GPD/sGPD hypothesis test, given the probability
mass functions in (7) and (9), we derive

z = (x − r − 1) log[θ + λ(x − r)] + λr + log[x!]
−(x − 1) log[θ + λx] − log[(x − r)!], (28)
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Fig. 14. For α = β = 10−5, ASN function E1(N) computed for increasing
λ and typical values of θ and r.

and then compute Eθ(z) numerically. The ASN function for
hypothesis H1 is computed using (27) and is plotted in Figure
14 for typical values of θ and r for varying λ. Given that
relatively high packet counts may exist for the packet-rate,
we cannot compute the log(x!) term in (28) directly due to
overflow and precision limitations. To that end, we employ the
following approximation by Ramanujan [29]

log n! ≈ n logn − n +
log(n(1 + 4n(1 + 2n)))

6
+

log(π)
2

.

(29)
The sizes of the update windows are chosen to be on

the order of the ASN function for the respective hypotheses
to ensure that the parameter estimates, computed using the
observations in those windows, correspond to a decision being
made by the SPRT. When an anomaly is detected, the ASN
functions and update window sizes are recomputed using the
current estimate r̂. This process is outlined in Algorithm 1 in
Section IV.

APPENDIX D
PERFORMANCE OF THE GPD/SGPD ESTIMATORS

The asymptotic variances and biases of the two estimators
θ̂0 and λ̂0 of the GPD are given in [10]. The estimators for
the three parameters of the sGPD are given in Section IV, and
their performance is analyzed here. The fact that the sGPD is
discrete and involves the factorial function makes the analytic
computation of the Cramer-Rao Lower Bound5 (CRLB) not
practical. Thus, following the analytic technique in [31], we
derive the asymptotic variances and biases of the estimators
of the sGPD parameters.

Given the framework shown in Figure 15, we now derive the
estimators for both the GPD and sGPD. For the GPD (under
hypothesis H0), the moment estimators are function of the
sample mean y and second sample central moment s2

y which

5The CRLB [41] expresses a lower bound on the variance of estimators
of a deterministic parameter. In its simplest form, as in the case of r̂, the
bound states that the variance of any unbiased estimator is at least as high
as the inverse of the Fisher information, which is defined using the second
derivative of the underlying probability density/mass function. An unbiased
estimator which achieves this lower bound is said to be efficient.
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Fig. 15. Samples used to compute H0 and H1 parameter estimates.

are computed using the M samples {y1, . . . , yM}. Recall that
the GPD parameter estimates, which satisfy the equations
obtained by equating the population mean and population
variance with the sample mean and sample variance, are given
as [10]

θ̂y =

√
y3

s2
y

and λ̂y = 1 −
√

y

s2
y

. (30)

For the sGPD (under hypothesis H1), the moment estimators
of the three model parameters (θ1, λ1, r) require using a
higher-order moment, in addition to the mean and variance.
Computing good estimates of μ̂3 or μ̂4 require a much larger
number of samples compared to estimating σ̂ 2 [26], and thus
employing these higher-order moments to implement a SPRT
is infeasible; the time taken to compute good estimates of
the third- or fourth-order moments is more than an order of
magnitude greater than the average time to detection in our
hypothesis test in [39]. On the other hand, the ML estimates
of the sGPD parameters may be obtained by numerically
solving three non-linear equations for each observation, which
is extremely computationally expensive. Thus we present an
alternative estimation procedure for the model parameters
under the H1 hypothesis that is computationally lightweight.

Given the framework in Figure 15, we compute the esti-
mates of the sGPD model parameters using both M samples
from the GPD distribution and N samples from the sGPD
distribution. The sGPD parameter estimates are given as

r̂ = max

{⌊
− θ̂y

1 − λ̂y

+ x

⌋
, min{x1, . . . , xN}

}
= max {�−y + x� , min{x1, . . . , xN}} (31)

θ̂x =

√
(x − r̂)3

s2
x

and λ̂x = 1 −
√

x − r̂

s2
y

. (32)

where the min{·} function is a constraint on r̂ since the
support of Px(θ, λ, r) is x ∈ {r, r + 1, r + 2, . . .}; for the
purposes of our analysis, this constraint is ignored. Thus, the
parameter estimates for the sGPD can be rewritten as

θ̂x =

√
y3

s2
x

, λ̂x = 1 −
√

y

s2
x

, (33)

and r̂ = −y + x . (34)

A. Bias and Variance Computations

The GPD parameter estimates, specified in (12), are biased
estimators. The fact that the r.v. is discrete and involves
the factorial function makes the analytic computation of the
CRLB intractable [10]. Thus, the asymptotic biases and the

asymptotic variances of these moment estimators, derived in
[31], are given as

b
(
θ̂y

)

 1

4M

[
5θ +

3λ(2 + 3λ)
1 − λ

]
, (35)

b
(
λ̂y

)

 − 1

4Mθ

[
5θ(1 − λ) + λ(10 + 9λ2)

]
, (36)

V
(
θ̂y

)

 θ

2M

[
θ +

2 − 2λ + 3λ2

1 − λ

]
, (37)

V
(
λ̂y

)

 1 − λ

2Mθ

[
θ − θλ + 2λ + 3θ2

]
, (38)

wherein they have been derived correct to terms of order M −1

and M−2. Note that only samples corresponding to the GPD,
namely {y1, . . . , yM}, were used compute the estimates.

Following the analysis in [31], we now derive the biases
and variances of the estimators for the sGPD. The parame-
ter estimates of the three sGPD parameters, {θx, λx, r}, are
computed using both M and N samples, from the GPD and
sGPD, respectively. We first compute

E {r̂} = E {−y + x}
= − θ

1 − λ
+ r +

θ

1 − λ
= r , (39)

which implies that the estimator in (34) in unbiased. We now
compute the variance of r̂ as

V (r̂) = E
{
(r̂ − r)2

}
(40)

= E
{
r̂2
}− r2 = E

{
(x − y)2

}− r2

= · · ·
=

(
1
M

+
1
N

)
θ

(1 − λ)3
. (41)

The estimators for the other two parameters of the sGPD,
specified in (15), are biased, and we now compute their
corresponding biases and variances. Given the estimator forms
in (15), we reconsider the estimators in (33) as functions
f(y, sx) of the sample central moments y and sx

6. The
bivariate Taylor expansion of f(y, sx) becomes

f(y, sx) = f(μy, σ2
x) + fy(μy, σ2

x)(y − μy)
+fsx(μy, σ2

x)(sx − σ2
x)

+
1
2
[
fyy(μy, σ2

x)(y − μy)2 (42)

+fysx
(μy , σ2

x)(y − μy)(sx − σ2
x)

+fsxsx(μy, σ2
x)(sx − σ2

x)2
]

+ higher-order terms ,

wherein the partial derivatives are to be evaluated at y = μy

and sx = σ2
x. We only need to compute the second derivatives

and can ignore the higher-order terms in (42) since we want to
derive expressions that are accurate to order N −1 and M−1.

6For the purposes of this derivation, we use sx to represent the second
sample central moment s2x, and not its square root as the notation may suggest.
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To obtain terms for the expected value which give an accu-
racy of (N−1, M−1), we calculate the following expectations:

E {(y − μy)} = 0, (43)

E
{
(sx − σ2

x)
}

= −σ2
x

N
, (44)

E
{
(y − μy)2

}
=

σ2
y

M
, (45)

E
{
(sx − σ2

x)2
}

=
μ4(X) − (σ2

x)2

N
+ O (N−2

)
, (46)

and
E
{
(y − μy)(sx − σ2

x)
}

= 0 (47)

since the samples from the GPD and sGPD are independent.
Substituting these values into (42) yields

E {f(y, sx)} = f(μy, σ2
x) − σ2

x

N
fsx(μy , σ2

x)

+
1
2

μ4(X) − (σ2
x)2

N
fsxsx(μy , σ2

x) (48)

+
1
2

σ2
y

M
fyy(μy, σ2

x) + O(N−2).

B. Biases of Moment Estimators

Recall that the bias of an estimator X̂ is defined as

b
(
X̂
)

= E

{
X̂ − X

}
= E

{
X̂
}
− X . (49)

For both estimators, note that we evaluate the partial deriva-
tives at

y = μy = θ(1 − λ)−1 (50)

and sx = σ2
x = θ(1 − λ)−3 . (51)

We first consider the moment estimator θ̂x of the parameter θ
which is given by

θ̂x =
√

y3/sx (52)

as the function f(y, sx). For this particular function, we can
compute the derivatives:

∂

∂sx
f(μy, σ2

x) = −1
2
(1 − λ)3, (53)

∂2

∂sx
2
f(μy, σ2

x) =
3
4

(1 − λ)6

θ
, (54)

and
∂2

∂y2 f(μy, σ2
x) =

3
4

(1 − λ)2

θ
. (55)

Furthermore, the fourth central moment for the sGPD is [10]

μ4(X) = 3θ2(1 − λ)−6 + θ(1 + 8λ + 6λ2)(1 − λ)−7, (56)

and thus the bias of the estimator of the parameter θ of the
sGPD is computed as

b
(
θ̂x

)

 1

8N

[
10θ +

18λ2 + 24λ + 3
1 − λ

]
+

1
8M

3
1 − λ

, (57)

which has error terms of the order N −2.
Similarly, we consider the moment estimator λ̂x which is

given by
λ̂x = 1 −

√
y/sx (58)

as the function g(y, sx), and compute the derivatives:

∂

∂sx
g(μy, σ2

x) =
1
2

(1 − λ)4

θ
, (59)

∂2

∂sx
2
g(μy, σ2

x) = −3
4

(1 − λ)7

θ2
, (60)

and
∂2

∂y2 g(μy, σ2
x) =

1
4

(1 − λ)3

θ2
. (61)

We can now derive the bias of the estimator of the parameter
λ of the sGPD as

b
(
λ̂x

)

 −10θ(1 − λ) + 18λ2 + 24λ + 3

8Nθ
+

1
8Mθ

. (62)

C. Asymptotic Variances of Moment Estimators

Continuing with the function approach, we can compute the
variances of the moment estimators via

V {f(y, sx)} and V {f(y, sx)} . (63)

To this end, we first rewrite

V {f(y, sx)} = V
{
f(y, sx) − f(μy, σ2

x)
}

= E

{[
f(y, sx) − f(μy, σ2

x)
]2}

− [E{f(y, sx) − f(μy, σ2
x)
}]2

, (64)

and then substituting the expression from (42), and simplifying
since the second term in the above equation is of order N −2

and M−2 or lower, we obtain

V {f(y, sx)} =
σ2

y

M
f2

y (μy, σ2
x)

+
μ4(X) − (σ2

x)2

N
f2

sx
(μy, σ2

x) (65)

which is accurate on the order of N −1 and M−1. We first
compute the partial derivatives

f2
y (μy, σ2

x) =
9
4
(1 − λ)2, f2

sx
(μy, σ2

x) =
1
4
(1 − λ)8 (66)

g2
y(μy, σ2

x) =
1
4

(1 − λ)4

θ2
, g2

sx
(μy, σ2

x) =
1
4

(1 − λ)8

θ2
(67)

and now obtain expressions for the variances of the estimators
which are given by

V
(
θ̂x

)

 θ(1 − λ)Q(θ, λ)

4N
+

9θ

4M(1 − λ)
, (68)

and

V
(
λ̂x

)

 (1 − λ)Q(θ, λ)

4Nθ
+

1 − λ

4Mθ
, (69)

where

Q(θ, λ) = 2θ(1 − λ) + 6λ2 + 8λ + 1. (70)
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Fig. 16. Comparison of the theoretical and simulated mean-squared errors
for the sGPD parameters for the case when {θ = 20, λ = 0.5, r = 7}.

D. Analysis of the MSE

Given these expressions for the bias and variance of an
estimator, we can compute the MSE of the estimator via

MSE = b2
(
θ̂x

)
+ V

(
θ̂x

)
(71)

and we notice that the MSE goes to zero for the estimators
of all three sGPD parameters as the number of samples M
and N go to infinity. Thus we conclude that r̂, θ̂x and λ̂x are
consistent7 estimators.

Figure 16 provides a numerical comparison between the
mean-squared error (MSE) in the theoretical and simulated
cases. We consider the GPD and sGPD distributions with
parameters {θ = 20, λ = 0.5, r = 7}, and an update window
of length N = 750 for hypothesis H1. The length of the
growing window, for hypothesis H0, is varied from M =
250, . . . , 1500. The simulated mean-squared error, plotted in
Figure 16 for each of the three sGPD parameters, was averaged
over 2000 runs. We see that the theoretical expression derived
for the estimator mean-squared errors (71), which is accurate
on the order of N−1, seems to be a lower bound on the error.
The estimators have a low MSE when 1 second of observations
are used, and the estimation of λ is very accurate.

The value of θ does not significantly affect the performance
of the estimators, but the value of λ does, as evidenced in Fig-
ure 17. The estimator θ̂ exhibits a slightly better performance
when λ ≈ 0.55, and the error in the estimation of r becomes
significant when λ > 0.6. In this latter case, we can conclude
that the joint estimation of the GPD and sGPD parameters will

7A sequence of estimators for a parameter θ is said to be consistent (or
asymptotically consistent) if this sequence converges in probability to θ. In
our case, the estimator is a function of the sample sizes M and N . Thus, as
M and N tend to infinity, the estimator converges in probability to the true
value of the parameter, and the mean-squared error tends to zero [13].
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Fig. 17. Effect of λ on the performance of the θ̂ and r̂ estimators; parameters
for the sGPD are {θ = 20, r = 7} with varying λ ∈ [0.1, 0.8].

be very poor. For the traces we have considered, we find that
λ < 0.5, and thus the error in estimating r is less than unity.
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