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Abstract—This paper develops two parametric methods
to detect low-rate denial-of-service attacks and other simi-
lar near-periodic traffic, without the need for flow separa-
tion. The first method, the periodic attack detector, is based
on a previous approach that exploits the near-periodic
nature of attack traffic in aggregate traffic by modeling the
peak frequency in the traffic spectrum. The new method
adopts simple statistical models for attack and background
traffic in the time-domain. Both approaches use sequential
probability ratio tests (SPRTs), allowing control over false
alarm rate while examining the trade-off between detection
time and attack strength. We evaluate these methods with
real and synthetic traces, observing that the new Poisson-
based scheme uniformly detects attacks more rapidly, often
in less than 200ms, and with lower complexity than the
periodic attack detector. Current entropy-based detection
methods provide an equivalent time to detection but
require flow-separation since they utilize source/destination
IP addresses. We evaluate sensitivity to attack strength
(compared to the rate of background traffic) with synthetic
traces, finding that the new approach can detect attacks
that represent only 10% of the total traffic bitrate in
fractions of a second.

I. INTRODUCTION

Early detection and mitigation of denial of service
(DoS) attacks, link congestion and other traffic anomalies
are vital to efficient network management. While a DoS
attack is obvious at the victim, who is overwhelmed with
traffic, it is much more difficult to detect attacks near
their source, where network operators can take remedial
actions. A common concealment method is to transmit
attacks from multiple hosts (“zombie” machines) with
each zombie sending at a low rate; thus detection of
low-rate traffic at or near zombie sources is an important
problem. In this paper we introduce new parametric
detection methods that allow one to tune detection sen-
sitivity to latency, making detection of low-rate zombies
near the source feasible.

Our approaches are parametric—our detection method
models key, gross features of the traffic to enable in-

formed decisions after changes in traffic. We propose
the parametric Modeled Attack Detector (MAD) based
on time-series data and modify the method of He et al
[7] to a sequential version, the Periodic Attack Detector
(PAD), using spectrally-based techniques [4], [7], [8].

MAD models traffic without attacks as Poisson traffic,
and it assumes that a constant rate attack results in
a fixed increase in the number of packet arrivals per
unit time. We do not believe that that model represents
general Internet traffic accurately. However, we show
that, in spite of this known mismatch, it is sufficient to
effectively capture changes in the level of traffic which
are associated with a DoS attack. Our goal is to see
whether these simple and only approximate statistical
models can yield detection methods of high performance
by capturing sufficient, salient features of the traffic.
Although we cannot quantify the error due to this model
inaccuracy, our proposed models are able to detect
attacks in real Internet traces as shown in Section V.
Since our goal here is to develop new detection meth-
ods, not develop general traffic models, we believe this
preliminary evidence suggests that a perfect model fit is
not required to detect attacks in our case.

PAD is based on spectral methods which are motivated
by the fact that constant rate attacks result in a prominent
spectral peak that is computed as

Dominant frequency =
Link Bandwidth

Packet Size
.

We refer readers to the work by He et al [7] for an
exposition on spectral detection methods.

The contributions of this paper are therefore to develop
the new MAD detection scheme and sequentialize the
scheme in [7]; these methods operate on aggregate
traffic streams and we quantify their effectivness on both
controlled synthetic traffic and real traces captured in the
wild. We show that MAD can detect attacks as small as
10% of total traffic in less than a second. This work
suggests it is feasible to detect and prune attacks at



network edges based on aggregate traffic, and not just
near attack victims.

II. RELATED WORK

Other authors have considered change-point algo-
rithms for a variety of Internet detection problems. Non-
parametric methods in are able to detect a TCP SYN
attack within a few seconds, as [15] and [18] show. The
challenges with the methods of [15] and [18] are the need
for an empirically designed threshold, and knowledge of
the SYN flag within the TCP header via flow separation,
respectively. Exponential signal models were the basis
for worm detection as developed in [2].

The techniques in [6], [12] and [17] use the entropy
content of certain flow-separated traffic parameters, e.g.
source and destination IP addresses, to detect an attack.
Other methods, such as in [9] and [13], use parameters
in the TCP field to detect an attack.

The above methods directly employed packet arrival
time-series data; a contrasting approach is to compute
the power spectral density of the time-series. It has
been argued that spectrum-based approaches are adept
at detecting features with near-periodic signatures, such
as bottlenecks in the link layer, the TCP windowing
mechanism and DoS attacks [7], traffic anomalies [1],
and even for attack fingerprinting [8]. The sequential
probability ratio test (SPRT), a time-adaptive detec-
tion technique, has been used to distinguish between
reduction-of-quality (RoQ) flows and legitimate TCP
flows in a distributed setting [4] and fast portscan de-
tection [10].

The important features of our parametric detection
schemes include:

• The fact that the analysis is based on packet in-
terarrival times, not packet contents. Unlike the
algorithms in [9] and [13], our methods are robust
to changes in the transport-layer headers, e.g. time-
to-live (TTL) in the IP header.

• In contrast to [4], [6], [12], [17] and [18], we
operate on aggregate traffic without flow separation,
enabling analysis of encrypted traffic in a passive
monitoring framework.

• We estimate attack parameters in real-time and do
not assume them a priori; our method requires
less tuning and empirical parameter design than the
work in [15].

• Our approach can accurately detect low-rate attacks,
i.e. cases where attack traffic is 10% or less of the
total bitrate.

Both the PAD and the MAD can detect attacks on the
order of milliseconds when the attack bitrate is around
10% of the total traffic bitrate. We empirically find that
the MAD is at least twice as fast as the PAD, and also
test our detection methods on real Internet traffic.

III. OVERVIEW OF SEQUENTIAL DETECTION

METHODS

Hypothesis testing exploits prior knowledge of statis-
tical descriptions of data in order to choose amongst a
candidate set of populations. In our problem setup, we
have two hypotheses:

H1 : Presence of an attack in traffic,

and H0 : No attack.

Assume that we are given independent and identically
distributed (i.i.d.) observations {xk, k = 1, 2, . . .} which
are drawn from one of the two probability distributions;
the conditional probability density when Hi is true is
denoted p(x|Hi) for i = 0, 1. Focusing on methods that
detect quickly, we design SPRTs which take observations
one at a time until a confirmed decision can be made.
We refer readers to the seminal work by Wald [16] for
details and derivations.

Given the two hypotheses, there are four possible
outcomes for the detector; we focus on a particular pair
of outcomes. A false alarm (FA) or false positive is
declared when the algorithm selects H1 when H0 is
in fact true. Similarly, choosing H0 even though H1 is
true is termed a miss (M) or false negative. We use the
probabilities of these two outcomes,

α = PFA = P [H1|H0] , γ = PM = P [H0|H1], (1)

to specify the performance criterion of the sequential
detection test.

Having defined the detection performance criterion,
we consider the statistical measure used to implement
the SPRT, which is termed the likelihood ratio. Since
the likelihood ratio is employed to decide between the
two hypotheses, it is defined in terms of the associated
conditonal densities. Given i.i.d. observations xN =
{x1, . . . , xN}, the likelihood ratio is defined as

LN (x) =
p(x|H1)
p(x|H0)

=
p(xN |H1)
p(xN |H0)

LN−1(x), (2)

where the second equality illustrates that the likelihood
ratio can be updated as each new observation is made
available.

Given a new observation, the likelihood ratio is com-
pared to two thresholds A and B, which correspond to
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Fig. 1. Depiction of the sequential probability ratio test (SPRT).

choosing H0 or H1, respectively. Figure 1 depicts a real-
ization of the SPRT wherein if A < LN (x1, . . . , xN ) <
B, the experiment continues, and an additional obser-
vation xN+1 is taken. But if LN (x1, . . . , xN ) ≥ B or
LN (x1, . . . , xN ) ≤ A, the test terminates and we choose
hypothesis H1 if the former, or hypothesis H0 if the
latter, is true. The boundaries, A and B, of the SPRT
would ideally be selected to minimize the probability
of error for all possible values of N . Determining the
exact value is generally intractable, thus we use Wald’s
approximations [16] to approximate

B ∼= (1 − γ)/α and A ∼= γ/(1 − α), (3)

which are a function of the required detection perfor-
mance parameters from Equation (1). We observe that
the approximate values of A and B are independent of
p(x|Hi).

Since the number of samples required for the sequen-
tial hypothesis test is a random variable, the efficacy
of the test can be evaluated by computing the average
number of samples required to make a decision by
a particular test. This average sample number (ASN)
function is simulated experimentally, and is used as
the performance metric to compare the two methods
developed. In the following section, we describe the
parametric detection methods and derive the associated
SPRTs.

IV. DEVELOPING THE DETECTION ALGORITHMS

The MAD operates on the sampled time-series of
network traffic, whereas the PAD uses traffic spectra
obtained from processing non-overlapping segments of
the sampled time-series. The purpose of segmentation
in the latter method is to ensure that traffic spectra are
computed and compared for constant time intervals as

described by He et al [7]. Both methods assume that
the parameters related to the background traffic, i.e. the
null hypothesis H0, are initially known. The background
parameters are updated in real-time whenever the H0

hypothesis is chosen, and the attack parameters are
continually updated with each available observation. In
this section, we outline the development of the SPRT
for these two methods, particularized to the specific
densities used in the PAD and MAD, based on the
generic framework from the previous section.

A. The Modeled Attack Detector (MAD)

The MAD models the attack stream as a constant rate
source with deterministic, unknown rate rA > 0. The no-
attack case is modeled as Poisson arrivals, and the attack
case as a constant rate attack in Poisson background
traffic, which corresponds to the shifted Poisson density1.
The relevant densities are given by

p(x|H0) =
λx

Be−λB

x!
and p(x|H1) =

λx−rA

B e−λB

(x − rA)!
(4)

for an attack with rate rA and background Poisson traffic
with rate λB , where x represents the number of packet
arrivals in a unit time.

The likelihood ratio assumes that parameters of the
underlying probability density are known. Since the
attack rate is not known, we employ the generalized
likelihood ratio test (GLRT) [3]. The GLRT uses each
observation for two tasks: to compute the maximum
likelihood estimate (MLE) of the rate parameter r̂A and
to decide between H1 and H0. The MLE of the attack
rate, from N observations, is

r̂A︸︷︷︸
estimate of

attack rate

= −λB︸︷︷︸
known background

traffic rate

+
1
N

[
N∑

i=1

xi

]
︸ ︷︷ ︸

estimated rate

of total traffic

, (5)

wherein we assume the background rate λB is known or
can be estimated previously. We can further derive the
corresponding SPRT as

N∏
i=1

λλB−xi

B xi!
Γ(xi + λB − xi + 1)

≥ B (6)

for the test to determine the presence of an attack, where
xN is the mean of observations {xk, k = 1, . . . , N}.

1The shifted Poisson density with parameters (λ, c) is similar to
the Poisson density, but requires that at least c arrivals occurs in any
unit of time, and thus the number of arrivals when there is an attack
is always strictly greater than zero.



As the mean and background rate are generally real
numbers, we round the quantity λB − xi to the nearest
integer in practice. This is the generic SPRT equation
LN (x1 . . . , xN ) > B, particularized to the Poisson and
shifted Poisson densities for the MAD, and incorporating
the MLE of the attack rate r̂A.

B. The Periodic Attack Detector (PAD)

This frequency-domain method uses the traffic spec-
trum to decide between the two hypotheses. The PAD is
the sequential version of the scheme developed by He et
al [7] with the attack parameters estimated in real-time,
rather than known a priori. A detailed methodology and
processing details for obtaining a traffic spectrum from
a trace of packet arrivals is provided in [7].

As mentioned in Section I above, spectral methods
for the detection of periodic attacks are motivated by
the presence of a dominant frequency. This dominant
frequency, or base frequency, is the statistic in the
spectral-domain that we use to detect between H1, the
presence of an attack, and H0, no attack (the case of
just background traffic). Even if packets are of different
sizes, a few common packet sizes (in particular those
related to a DoS attack) tend to dominate the traffic [5],
[14]. We model the log of the maximum amplitude in
the traffic spectrum for both hypotheses with a Gaussian
distribution [7]. This specifies the detection problem as
distinguishing between two Gaussian distributions with
parameters (µ1, σ

2
1) and (µ0, σ

2
0). Given the Gaussian

distribution N (y; µ, σ2), y represents the log of the max-
imum amplitude of the traffic spectrum. The parameters
for the null hypothesis H0 are pre-determined using
training data, and perioddically updated. On the other
hand, similar to the MAD, the parameters for hypothesis
H1 are estimated using each observation at the same time
as PAD is deciding between the two hypotheses.

The SPRT to determine the presence of an attack,
given N observations, is:

a2

N∑
k=1

y2
k + 2a1

N∑
k=1

yk + Na0 ≥ τ (7)

where

a2 = σ̂2
1 − σ2

0 , a1 = µ̂1σ
2
0 − µ0σ̂

2
1 ,

a0 = µ2
0σ̂

2
1 − µ̂2

1σ
2
0 ,

and τ = 2σ2
0σ̂

2
1

[
lnB − N ln

σ0

σ̂1

]
,

and yk is the log of the maximum amplitude of traffic
spectrum for k-th segment. The MLEs of the mean and

variance parameters for hypothesis H1 are computed as

µ̂1 =
1
N

N∑
k=1

yk and σ̂2
1 =

1
N

N∑
k=1

(yk − µ̂1)
2 . (8)

The SPRTs derived for the MAD and PAD are used for
both synthetic traces and real traffic in the following
section. The simulations yield the experimental ASN that
is used to compare the two detection schemes, which we
discuss in the next section. As an aside, we outline an
argument for the lower complexity of the MAD in the
following subsection.

C. Computational Complexity

We shall see that MAD detects more quickly than
PAD; herein we show that it is also more computationally
efficient. The cost of PAD is a function of sample rate
and the FFT window size,

PAD ∼ O
(
ASNPAD + ASNPAD · NFFT/p log NFFT/p

)
,

while the cost of MAD is proportional only to the sample
rate,

MAD ∼ O (ASNMAD) .

Thus, MAD is algorithmically more efficient than PAD
(O(n) compared to O(n log n)) in the limit.

Furthermore, the sample rate of MAD is approxi-
mately a factor of 100 smaller than PAD. Normalizing to
the cost of each sample, MAD costs 103 samples/second,
while PAD costs 2 × 105 samples/second plus an FFT
for each of the 1000 segements/second, with each FFT
costing about as much as 1600 samples.

V. NUMERICAL RESULTS

We use both synthetic traces and real traffic to validate
and characterize the detection methods developed in this
paper. The synthetic traces allow us to methodically
examine the sensitivity of our algorithm: the trade-off
between time-to-detection and the rate of the attack.
We first note that the sampling rate for MAD is 103

Hz, i.e. each observation xi represents the number of
packet arrivals in the interval

[
i

103 ,
i+1
103

)
seconds. On the

other hand, PAD segments the trace into 1 ms segments,
samples each segment at 2 × 105 Hz, and computes
the traffic spectrum via the discrete Fourier transform.
Each observation yk represents the log of the maximum
amplitude of the traffic spectrum of the k-th segment.

A. Synthetic Traces

Both the MAD and PAD have been characterized
using synthetic traces2 generated from real background

2The five-minute attack traces are available as PREDICT ID USC-
LANDER UniformAttack-Traces-Generated20070821-20041202.
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Fig. 2. Comparing time to detection for the MAD (solid lines) and
PAD (dashed lines) as a function of false positive rate.

traffic and artificial attacks with rates ranging from 60
Mbps to 7 Mbps using the stream merger application
[11]. The attack rate is expressed as a percentage of the
total traffic, i.e.

% attack =
attack rate

attack rate + background rate
,

e.g. a 60 Mbps attack in 196 Mbps background traffic is
denoted as a 23% attack.

To test the capabilities of the detection algorithms,
we fix the probability of miss to be 10−3 and vary
the probability of false alarm from 10−2 to 10−6. The
experimental ASN curves in Figure 2 were generated by
simulating the SPRTs of the two methods, Equations (6)
and (7), and averaging the results over 25 runs.

The experimental ASN for both the MAD (solid lines
in Figure 2) and PAD (dashed lines in Figure 2) decrease
sublinearly as the attack rate increases; specifically, they
require 50% and 80% as many samples when the attack
rate doubles. We also see that the average number of
required samples increases as the probability of false
alarm decreases, which is equivalent to the performance
constraints becoming more demanding. Both methods re-
quire an average of 40% more samples as the probability
of false alarm changes from 10−2 to 10−6.

A direct comparison between the detection methods
shows that the MAD uniformly detects attacks more
quickly than the PAD. Furthermore, we find that the PAD
requires relatively more time as the attack rate increases,
e.g. the PAD takes three times as long to detect a 7
Mbps attack, but eight times as long to detect a 30 Mbps
attack in 196 Mbps background traffic. The PAD relies
on the near-periodic nature of the trace to achieve rapid
and efficient detection, which is not always a realistic

assumption. We are currently investigating whether the
collisions resulting from the merger of attack and back-
ground streams as attack rate increases introduces jitter
in the packet arrivals, potentially affecting the periodicity
of the resulting trace.

The synthetic trace simulations provide us with guide-
lines on the effectiveness and capability of our detection
methods. They suggest that low-rate attacks, even as low
as 3.5%, can be detected on the sub-second timescale
with no a priori knowledge of the attack parameters.
We do, however, need to know the background traffic
rate and we are currently examining methods to estimate
this quantity as well. Furthermore, we can use the
experimental ASNs as rough estimates when detecting
real attacks. The detectability of low-rates attacks and
the average time to detection obtained from the synthetic
trace simulations will necessarily be optimistic due to
the controlled setup, and this must be noted when real
attacks are detected.

B. Real Attacks

MAD uniformly detects attacks more quickly than the
PAD; we use the former method to detect the presence
of an attack in real Internet traces3. The second subplots
in Figures 3 and 4 plot the evolution of the SPRT until
the likelihood ratio crosses the threshold B, at which
point the attack is detected. The technique proposed
by Feinstein et al [6] was also simulated (in the third
subplot) by computing the entropy of the destination IP
address using a window of 5000 packets. A comparison
of the two methods yields equivalent detection times, but
the method in [6] requires flow-separated traffic since it
uses the IP address as part of its statistic.

The time to detection of the real attacks using MAD
confirms that the average time to detection of the syn-
thetic attacks is indeed very optimistic. For similar 25%
attacks, the time required to detect a real attack is
approximately 10 times greater than the detection delay
associated with the synthetic trace.

VI. DISCUSSION AND FUTURE WORK

We have developed the MAD and PAD, which can
detect low-rate attacks on sub-second timescales. The
MAD operates on the sampled time-series and can detect
attacks more quickly than the PAD, which relies on the
near-periodic nature of the traffic. The lack of strong
periodicities adversely affects the performance of the

3The traces used to validate the performance of the MAD are
available as PREDICT ID USC-LANDER DoS traces-20020629 and
PREDICT ID USC-LANDER TBD
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Fig. 3. Detection of a 24% reflector attack (time-series in subplot
1) by both the MAD (subplot 2) in 150 milliseconds, and the method
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Fig. 4. Detection of a 46% IP-proto 255 attack (time-series in
subplot 1) by both the MAD (subplot 2) in 27 milliseconds, and the
method in [6] (subplot 3) in 55 milliseconds.

latter method. The MAD is also lower complexity than
PAD, both theoretically and practically.

When tested on real Internet traffice, the MAD de-
tected a 24% attack in under 0.2 seconds. We have fur-
ther characterized the capabilities of the two methods us-
ing synthetic traces. We find that the results of testing on
real Internet traffic are within the experimental limits of
those predicted by the experimental ASNs from synthetic
traces. Our current work focuses on incorporating more

features of the traffic spectrum into the PAD to lessen
its dependence on the trace periodicities, designing other
parametric variations of the MAD to operate at different
timescales, and further validating the model using real
traffic.
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