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The principles of sensor networks—low-power, wireless, in-situ sensing with many inexpensive
sensors—are only recently penetrating into underwater research. Acoustic communication is best

suited for underwater communication, with much lower attenuation than RF, but acoustic prop-
agation is five orders-of-magnitude slower than RF, so propagation times stretch to hundreds
of milliseconds. Low-power wakeup tones are present in new underwater acoustic modems, and
when added to applications and MAC protocols they reduce energy consumption wasted on idle

listening. Unfortunately, underwater acoustic tones suffer from self-multipath—echoes unique to
the latency that can completely defeat their protocol advantages. We introduce Self-Reflection
Tone Learning (SRTL), a novel approach where nodes use Bayesian techniques to address interfer-

ence by learning to discriminate self-reflections from noise and independent communication. We
present detailed experiments using an acoustic modem in controlled and uncontrolled, in-air and
underwater environments. These experiments demonstrate that SRTL’s knowledge corresponds
to physical-world predictions, that it can cope with underwater noise and reasonable levels of

artificial noise, and that it can track a changing multi-path environment. Simulations confirm
that these real-world experiments generalize over a wide range of conditions.
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1. INTRODUCTION

Sensornets are transforming for science and industry by enabling pervasive, in-situ
sensing through inexpensive, wireless sensors. Their success has sparked interest
in bringing these characteristics underwater to improve our ability to chart the
oceans, lakes, and waterways that strongly influence our environment and can pro-
vide natural resources [Vasilescu et al. 2005; Partan et al. 2006; Heidemann et al.
2006].

Perhaps the most significant to changes when deploying sensornets underwater
is the use of acoustic instead of radio-frequency-based (RF) communication. Radio
communication is significantly attenuated underwater, and while optical links can
provide high-speed communication over short-range, point-to-point links, they re-
quire careful aiming and so cannot fulfill the need for easy deployment as is possible
with surface sensornets.

Underwater acoustic communication poses several challenges. The most serious
is large propagation delays. With the speed of sound around 1500m/s underwater,
and ranges of 0.1 to 10km, delays of 100ms are common and multiple seconds
are possible. The large delay makes adapting traditional media access protocols
difficult, since channel sensing time follows propagation delay, a simple CSMA
MAC will consume a great deal of power listening to an idle channel. In addition,
the underwater channel poses additional challenges, including temperature-based
delays, ducting and significant problems due to multi-path interference. Several
papers summarize these challenges [Catipovic 1990; Stojanovic 2003; Preisig 2006]

Since energy is a constraint in many underwater networks (for example, station-
ary networks, or battery powered gliders), some modems employ special wake-up
tones and low-power wakeup receivers to activate modems [Benthos, Inc. ; Wills
et al. 2006]. The use of tones (detecting energy on a channel), instead of a control
packet, can reduce energy consumption of coordination. These energy savings occur
because detection can be quick, as seen in low-power listening with radios [El-Hoiydi
and Decotignie 2004; Polastre et al. 2004], and dedicated hardware can carry out
detection with very little power, as seen in radio-based pagers and recent underwa-
ter modems [Wills et al. 2006; Schurgers et al. 2002]. Recent work has shown how
to integrate tones into low-power MAC protocols, for broadcast [Mirza et al. 2009]
and contention resolution [Syed et al. 2008]. Tone-based wakeup is also important
for wakeup after long-duration sleep [Li et al. 2006], or triggering more sophisti-
cated data reception algorithm [Benthos, Inc. ; Freitag et al. 2005; Wills et al.
2006; Schurgers et al. 2002].

Multipath interference is a problem in all wireless communication. For data,
it causes inter-symbol or inter-chip interference. These problems have been ex-
tensively studied in radios [Price and Green 1958; Kuperman et al. 1998]. Long
propagation makes multipath worse underwater, and only in the 1990s was coherent
communication demonstrated underwater [Stojanovic et al. 1994]; managing data
multipath is still an area of research [Song et al. 2007].

When tones are used for coordination, reflections from stationary objects cause
the transmitter to hear echoes or self-reflections of their tones. More concretely,
just like multipath-caused inter-symbol-interference (ISI) at a receiver, echoes cause
tone self-multipath when tones are used in protocol level coordination. This paper is
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the first to identify the problem of self-multipath for low-power underwater acoustic
communication and we illustrate its impact on T-Lohi MAC protocol as an example
(Section 2). In Section 3.2, we later discuss why other alternatives to using binary
tones that help identify self-multipath are not viable due increased complexity and
energy consumption.

The challenge of self-multipath is that a transmitter will always interfere with
itself. We show that this challenge provides the means to address the problem:
senders can and must learn their self-multipath patterns. This goal is difficult be-
cause of the unique challenges of underwater sensornets. First, current data-focused
multi-path techniques do not directly apply because we are concerned with self-
multipath, not sender-receiver multipath. In addition, the constraints of low-cost
and low-power receivers require implementation of wakeup tones with simple sig-
nals; these constraints make sophisticated coding untenable. Finally we must allow
for long acoustic propagation times and reflections to hundreds of milliseconds. In
Section 3 we describe Self-Reflection Tone Learning (SRTL) where we use Bayesian
techniques to learn the channel state using low-power acoustic wake-up hardware.
In addition to directly applying to underwater MAC protocols, SRTL’s ability to
estimate the number of reflecting surfaces in the environment also indicates the
sparsity of the channel. This information may assist optimizations that exploit
sparsity in managing the complexity of multipath in data reception [Li and Preisig
2007].

Since wireless channels are very difficult to model or simulate, in Section 4 we
demonstrate the effectiveness of our approach with experiments using an acoustic
modem in three different physical environments. We establish that what SRTL
learns matches to physical-world predictions through tests in a completely con-
trolled anechoic chamber (Section 4.2). We show that SRTL copes both with rea-
sonable (on average two spurious detections per sample) amounts of artificial noise
through in-air experiment, and real underwater noise in a marina (Section 4.3).
Furthermore, our underwater experiments show large temporal variation (changes
within seconds) of the underlying reflection structure. Finally, we show that SRTL
can track these changes to the environment (Section 4.4), and how environmental
parameters and their estimates affect the accuracy of algorithm (Section 5 ).

The contributions of this paper are to identify self-reflections as a new problem
posed in low-power, high-latency underwater communication; to show how Bayesian
learning with SRTL can mitigate this problem on low-cost and -power hardware;
and finally to show that it works experimentally in an underwater scenario. We
believe this approach will be essential to energy conserving underwater media access
protocols, and also useful for long-duration sleep, and may apply to the broader
problem of multipath in high-latency channels. We have previously outlined the
problem of self-reflection and potential solutions in a poster abstract [Syed et al.
2010]; this paper provides a more complete view of the problem and solutions with
simulations and experiments.

2. PROTOCOL PROBLEMS RESULTING FROM SELF-MULTIPATH

While problems of multipath interference are well known, we next explore the neg-
ative results of self-multipath on network protocols. Self-multipath can cause prob-
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Fig. 1. Explaining T-Lohi and the impact of tone reflection on the protocol. Reflections prevent
vanilla T-Lohi from transmitting data, even with no contention.

lems in any protocol that uses tones, including T-Lohi [Syed et al. 2008], fast-boot
from long-duration sleep [Li et al. 2006], and tone-based broadcast MAC proto-
cols [Mirza et al. 2009]. As a concrete example, here we focus on Tone-Lohi (T-
Lohi), a tone-contention-based MAC protocol [Syed et al. 2008], to show the failings
caused by tone self-multipath.

2.1 Overview of T-Lohi

The key features of T-Lohi are that all contention is done with short wake-up tones,
that can be observed with sub-mW energy consumption [Wills et al. 2006] and that
it converges quickly due to accurate estimates of the number of contenders [Syed
et al. 2008]. As a result, overall energy consumption is minimal even in the face of
contention periods that may last up to a second. A full description of T-Lohi can
be found elsewhere [Syed et al. 2008]; we summarize it here to show how tones are
key to its energy-efficient operation.

In T-Lohi, nodes contend to reserve the channel to send data. It requires that
nodes first send a short tone and then listen for the duration of the contention round

to decide if reservation is successful. If only one node contends in a contention
round, it wins, ending the reservation period and then transmitting its data. When
nodes detect another concurrent tone, they interpret it as another node’s contention
and extend the reservation period by randomly backing-off. As tones are short and
distributed over a long contention round (due to space-time uncertainty in high-
latency communication [Syed et al. 2007]) each contender can do contender counting

by counting the tones received. This count gives a good estimate of the number
of other contenders, allowing the channel to quickly converge by adapting back-
off in proportion to the number of contenders. Figure 1(a) shows an example of
this process: nodes A and C have data to transmit but first send tones indicating
contention. At the end of the first contention round both A and C have a count of
two and back-off to attempt uniformly in one of the next two rounds. If no other
tone is detected in a given round (like A does not in round two), collision free data
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transmission occurs in the subsequent round.

Three significant sources of energy consumption in media access are idle listening,
collisions, and control overhead [Ye et al. 2004]. T-Lohi addresses these sources of
waste with two different mechanisms. First, in lightly used networks such as many
sensornets, the majority of time is spent waiting for traffic, or idle listening [Ye
et al. 2004]. Terrestrial sensornets have reduced this cost with scheduling [Ye et al.
2004] and low-power listening [El-Hoiydi and Decotignie 2004; Polastre et al. 2004].
In T-Lohi, we exploit very-low power dedicated hardware for tone reception, where
tone listening consumes only 500µW [Wills et al. 2006], Second, to reduce the cost
of collisions and control overhead, T-Lohi converges very quickly to a collision free
channel reservation when traffic occurs. Quick convergence is possible because of
contender counting, allowing the MAC protocol to converge in a small constant
number of rounds with high probability, instead of the O(log n) convergence from
binary-exponential backoff (as in Ethernet and 802.11).

2.2 Impact of Multipath

We now show how tone echoes result in self-multipath that cripples the T-Lohi
protocol.

Figure 1(b) shows multipath occurring between two contenders, A and B. A tone
sent by A reaches B directly and, a little later, via a surface reflection. This regular
(receiver) multipath will cause multiple tones to be detected at B increasing B ’s
contention counts. Although the throughput decreases due to slightly longer dura-
tion before a packet is sent, as T-Lohi converges time to data transmission is almost
independent of density, T-Lohi will successfully contend the medium to send data.
On the other hand A’s echoes interferes fatally in its understanding of the con-
tention status, and causes self-multipath (Figure 1(b)). As opposed to traditional
multipath that results in data interference at receivers, self-multipath is essentially
echo-interference amplified in the acoustic channel due to large propagation delays.

This self-multipath breaks T-Lohi MAC in such a way that contending nodes are
never able to transmit data. This is because a self-reflection 1 for a contention tone
sent in any contention round will result in an echo-induced tone detection. Since
contenders transmit data in T-Lohi only when no other tone is detected, even a
single reflecting surface, results in a contender always hearing an echo tone that it
interprets as another contender. Thus a contender will always backoff and never be
able to transmit data.

While one could work around this problem, perhaps by timing out after non-
convergence, or by sending information with the tone, these approaches would
increase energy consumption. Instead, we next show how Bayesian techniques al-
low contenders to learn about self-reflections, then choose to ignore them while
remaining within the limitations imposed by a cost and energy-efficient wakeup
tone receiver.

1We refer to each echo as self-reflection, distinct from the broader protocol-interference concept

of self-multipath.
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Fig. 2. Key idea for SRTL algorithm: tone echoes after transmission repeat with same delay (or
in discrete bins) but non-echo detections do not.

3. SRTL: LEARNING TO IGNORE ECHOS

We now introduce the Self-Reflection Tone Learning (SRTL) algorithm, our ap-
proach to manage self-reflection. We first give an overview of SRTL, then review
Bayesian learning, the theory we draw upon (Section 3.3). We then cover SRTL
details: what it observes about the channel, sources of error in those observations,
and how these factors come together.

3.1 Overview of SRTL

The goal of SRTL is to learn about self-reflection and allow higher-level protocols
(such as T-Lohi) to distinguish between echoes, random background noise, and
tones sent for protocol-level coordination.

The key intuition behind SRTL is that echo time is deterministic and repeatable

relative to a transmission, while noise and tones from other senders are independent
and uncorrelated. An example of this observation is shown in Figure 2. Whenever
transmitter sends a tone, it receives echoes from reflective surfaces (A and B in
Figure 2) with a consistent delay. The tone receiver can also trigger in response
to ambient noise (shown as bolts in Figure 2), or other transmitters, but these
triggers occur independently of transmission times (compare location in Figure 2(a)
and 2(b)). SRTL can therefore use this feature to learn and distinguish echoes from
other tone triggers.

SRTL makes two assumptions: echoes are repeatable (over a short time period),
and other triggers are independent. Since echoes are dependent on the physical
placement of nodes and reflecting surfaces, they will be repeatable in a static envi-
ronment. We confirm both of these assumptions, showing in Section 4.2 that the
echoes we observe correspond directly with the physical environment. We tolerate
minor variation in echo delay by discretizing responses into bins; in Section 5.3
we show our choice of bin size is reasonable and that we tolerate responses on bin
edges. To manage changes in echos over time, we relax our our assumption of a for
static environment in two ways. Over short time scales we use discrete bins (a 3ms
bin can handle variation due to wave heights of 2.5m) to handle jitter (for example,
due to tides). Over longer time scales, our experiments show (Section 4.4) that
SRTL accommodates change due to drift or movement, adapting to a change in 3
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to 48 samples (Table III).

The second assumption is that other (than echoes, for example from other T-Lohi
contenders) tone triggers are independent of local transmissions. In other words,
we assume random noise and asynchronous transmission of tones. Most observa-
tions confirm that underwater noise is uncorrelated and random [Catipovic 1990;
Stojanovic 2003]; we also confirm this observation with experiments at the Marina
del Rey harbor. It is possible that higher-level protocols or applications would cre-
ate synchronization, either intentionally or accidentally [Floyd and Jacobson 1994].
However, typically MAC protocols explicitly randomize transmissions to eliminate
deterministic synchronization caused by MAC or higher-layer protocols.

It is possible that higher-level protocols or applications would create synchro-
nization, either intentionally or accidentally [Floyd and Jacobson 1994]. While
some variations of T-Lohi intentionally synchronize transmissions similar to slot-
ted ALOHA, MAC protocols in general can explicitly randomize transmissions
to guarantee protocol-level synchronization does not occur, and thus concurrent
application-level transmissions (by, say, an event trigger) are desynchronized at the
MAC-level.

3.2 Alternate Approaches

Other approaches to tone identification are possible in addition to learning about
echos. We consider related work in detail in Section 6; here we focus on two alternate
approaches that use signal processing or coding techniques to disambiguate echoes
from transmitted tones. For example, Rake receivers handle data multipath [Price
and Green 1958] using chip-correlations, but because its complexity is proportional
to delay, it doesn’t easily scale to high-latency acoustic communication. Similarly
Girod and Estrin use a similar approach for acoustic localization [Girod and Estrin
2001]. Coding sender identification in a data packet can also solve the issue of
self-multipath. Alternatively, we could use time-based codes, pulsing the tone on
and off. Frequency-based schemes are an area of potential future work (Section 7).

Most such schemes, directly or indirectly, reduce or eliminate the energy benefit
of tone wake-up. To reach low power (0.5mW), low-cost operation, tone wake-up
circuits use simple electronics and employ long activation times (up to 5ms) to
maximize sensitivity [Wills et al. 2006]. Implementing signal processing or coding
techniques on top of such hardware would require continuous, and therefore energy-
inefficient, operation. For comparison, reception of just a single data byte, at 80b/s
and receive power of 180mW [Freitag et al. 2005], requires 180mJ, compared our
hardware’s ability to detect a 5ms tone with only 1.5µJ [Wills et al. 2006]. Thus
the cost of use of full data for signaling relative to binary tones is five orders-of-
magnitude in energy consumption.

Alternate techniques also minimize the ability to detect and count contenders, as
tones need to be of longer duration (to carry more than binary information), thus
loosing the biggest advantage of tone-based protocol coordination. Thus, applica-
tion requirements to minimize energy consumption preclude alternate approaches.
We therefore turn to learning, and next provide background about Bayesian infer-
ence as employed by SRTL.

ACM Transaction on Sensor Networks, Vol. 9, No. 3, Aug. 2013.
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3.3 Bayesian Inference Background

Bayesian Inference is a well established approach that measures a probabilistic
belief or knowledge regarding an event or hypothesis [Jaynes 2003]. We next briefly
introduce the Bayes’ theorem and show how it can be extended to perform inference
based on empirically collected data.

The classical Bayes’ theorem as defined for a bimodal hypothesis H, incorporating
current evidence X is:

P (H|X) =
P (X|H)P (H)

P (X|H)P (H) + P (X|H)P (H)
(1)

We assume, in all cases, either the hypothesis holds (H) or is not true (H).
The prior probability, P (H) is the confidence before considering evidence X, while
P (H|X) is the confidence after incorporating this evidence. P (X|H) is likelihood
that event X occurs when hypothesis H is true, while P (X|H) is likelihood X

occurs even though the hypothesis is not true.
The Bayes theorem describes how a single observation modifies a belief. We build

on localization work in robotics where successive observations allow robots to learn
environmental features [Thrun 1998]. Observations of landmarks represent evidence
increasing belief in the current location; manipulation and movement change the
environment and decrease belief. Changes in belief are scaled by models of accuracy
of sensing and actuation. Next, we describe how SRTL “senses” echoes, and how
we model its accuracy to scale the belief update, thus learning echo locations.

3.4 Sampling in SRTL

To apply Bayesian reasoning, inspired by work in robotics, we must decide how to
sense the environment, and how our samples correspond to our hypothesis. Thus,
each time we send a tone, we keep track of any ensuing tone detections for a fixed
duration, the sampling period (as in Figure 2), until any additional echoes would
be too faint to detect.

To manage observations, we divide the sampling period into fixed-duration bins.
For each bin i, we track the hypothesis H representing belief that the ith bin cor-
responds to a self-reflection; we call such bins self-reflection (SR) bins. After a
transmission and the entire sampling period, we have an array of evidences, one
evidence per bin. Each sample can take on two values, either Ei for a tone detection
(possible echo), or Ei when no tone is detected in that bin.

Bayesian learning has a rich mathematical background for estimating hypothesis
by incorporating empirical data. While we currently model static nodes, incre-
mental Bayesian learning can also incorporate motion if an appropriate model is
provided [Thrun 1998]. To handle mobility, coordination between localized neigh-
boring nodes can provide sufficient information to track location of reflecting sur-
faces and thus modifying the belief distribution. Thus we believe that a Bayesian
learning approach is appropriate for learning tone-echoes.

3.5 Modeling Truth and Observations

A transmitter’s observation corresponds to four possible real-world events: true
echo detection, true silence detection, Non-echo Detection (ND), and Tone Cancel-
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lation (TC). The first two events represent accurate observations about the world
by the transmitter. However, we model the next two events because they represent
observation error that can influence our reasoning.

Non-echo detection corresponds to an incorrect observation where our tone de-
tector triggers for reasons other than our echo. Channel noise is a common source
of a ND event. It may also be caused by an uncoordinated, valid tone transmis-

sion from another node. We cannot distinguish between both types of non-echo
detections, but our approach will filter both out, since both are effectively random
sources of noise (see assumptions in Section 3.1). A second source of error is Tone

Cancellation—when there is energy on the tone channel (from either an echo, noise,
or even another tone) at a receiver, but channel noise or another tone destructively
interferes and prevents tone detection. In these cases, we falsely identify silence. A
similar effect of tone cancellation occurs when a tone vacillates between two bins
due to a dynamic environment (as we study in Section 4.4).

We model the event ND and TC with parameters pnd and ptc. These parameters
are, for a given hardware and physical environment, our best estimates of the
probabilities of the corresponding events. We show in Section 5 that our algorithm
tolerates a margin of error in these estimates, so they need not to be set exactly.
However, SRTL responds more rapidly when the estimate is close to the actual
probability of each event.

3.6 The SRTL Algorithm

We now apply Bayesian learning to our system. We apply our algorithm in parallel
to the hypothesis Hi and Hi for each bin, using the samples array observed in each
sample period. For simplicity we stop using the subscript and describe a single bin.
We refer to E and E as positive and negative evidence of a tone activation in that
bin. Each bin is initialized with an initial belief, Bel(H)init , that is subsequently up-
dated after each sample period. We next describe our algorithm’s update equations
and its decision threshold.

3.6.1 Update for Negative Evidence. We consider absence of a tone as negative
evidence (E) that indicates a bin does not receive echoes. We therefore update our
estimate from Equation 1, replacing X with E. Also, we replace the term P (H|X)
with Bel(H)posterior (belief after incrementally incorporating current evidence) and
P (H) with Bel(H)prior (current belief incorporating all prior evidence) to reflect the
standard Bayesian inference terminology [Thrun 1998].

Bel(H)posterior = P (E|H)Bel(H)prior

P (E|H)Bel(H)prior+P (E|H)Bel(H)prior

We next explore how this update equation for negative evidence is modeled using
our parameters pnd and ptc.

P (E|H) is the conditional probability for the event when no tone is detected,
given that we know there was energy in the tone channel from an echo. This
event is essentially the failure of our tone detection hardware to be triggered in the
presence of tone energy. Assuming that bin duration is small enough to allow only
a single detection, such an event can happen only if the tone echo is canceled by
noise or interference. Thus, we can now define P (E|H) ≡ ptc.

ACM Transaction on Sensor Networks, Vol. 9, No. 3, Aug. 2013.
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Table I. Payoff table used in determining decision threshold that maximizes payoff.
Reality

Decision SR bin not a SR bin

SR bin (Ignore tones) 10 2

not a SR bin (Count tones) 1 9

P (E|H) is the probability for the event when no tone is detected given that we
know that no echo can occur in that bin. However, this knowledge does not rule
out non-echo detections caused by noise or other transmitters. Thus the event can
be described by the union of two disjoint events: no non-echo noise is detected (the
ND event) union with the event that although wake-up-triggering noise could have
been detected it was canceled (the ND

⋂
TC event). Noting that the above events

are disjoint, P (E|H) ≡ (1 − pnd) + pnd × ptc.
Using the above definitions the update equation for negative evidence becomes:

Bel(H)posterior =
ptcBel(H)prior

ptcBel(H)prior + (pndptc + 1 − pnd)Bel(H)prior
(2)

This update is applied to our current belief Bel(H)prior to realize a new belief
Bel(H)posterior when no tone is detected within that bin (negative evidence).

3.6.2 Update for Positive Evidence. Tone detection, E, is considered positive
evidence of a bin being a SR bin. Similar to the negative update, we update our
belief according to Equation 1, replacing E for the update event X. We next define
the components of the update equation for positive evidence based on pnd and ptc.

P (E|H) is the conditional probability for the event that tone detection occurs
in a bin with known self-reflection. This probability is simply the complement of
P (E|H) ; Thus, P (E|H) ≡ 1 − ptc.

On the other hand, P (E|H) is the conditional probability for a detection oc-
curring in a bin we know has no echoes. This detection can, therefore, occur only
because of wake-up-triggering noise (ambient noise and other contention tones) that
is not canceled; the event ND

⋂
TC . Thus, P (E|H) ≡ pnd(1 − ptc).

Finally, using the above definitions the update equation for positive evidence
becomes:

Bel(H)posterior =
(1 − ptc)Bel(H)prior

(1 − ptc)Bel(H)prior + (pnd(1 − ptc))Bel(H)prior
(3)

This update is applied to our current belief Bel(H)prior to realize a new belief
Bel(H)posterior when a tone is detected within a bin (positive evidence).

While Bayes works as described in theory, in our experiments we observed that
long runs of consistent evidence would saturate the bins with perfect positive or
negative belief (Bel(H) = 1 or Bel(H) = 0). We expect saturation occurs because
of floating point rounding error. These equations are unable to shift from certainty,
even in the face of later contrary evidence. We therefore cap the belief for each bin
at a maximum value of 0.999 and a minimum value of 0.0001 to avoid saturation.

ACM Transaction on Sensor Networks, Vol. 9, No. 3, Aug. 2013.
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Table II. Research questions asked about the merits of our Bayesian learning algorithm.
Environment

Questions asked about SRTL Section Controlled Lab Underwater

Correctly ID known surface? 4.2 Yes n/a n/a

Is robust to Noise? 4.3 Yes Yes Yes
Can handle dynamic environment? 4.4 Yes n/a Yes

How sensitive to parameters? 5.1 Yes Yes Yes
What’s the impact of discrete bins? 5.3 Yes n/a n/a

3.6.3 Identification of SR Bins. We intend for SRTL to work continuously in
the background of any tone-based protocol. In T-Lohi, for example, we automat-
ically get one sensing period for each contention round, so SRTL can sample the
environment without incurring any additional overhead. We translate these con-
tinuous observations into decisions using a threshold. We bias our estimates by the
payoffs of correct or incorrect decisions, then select the decision threshold that will
be most profitable. For the values given in Table I, we can derive a fixed threshold
of 0.45. Thus if the Beli(H) is greater than 0.45 we will consider that to be a SR
bin. We use this threshold in our experiments. In principle, one could adapt these
values to the environment.

3.6.4 SRTL Implementation Details. Our algorithm uses fixed size bins; bin
granularity is one factor to the sensitivity of our algorithm. In practice, bin size is
limited by hardware. As a lower bound, our micro-controller has a millisecond level
clock granularity, and interrupt debouncing causes a 2ms delay between successive
tone detections. We therefore set bin size conservatively at 3ms for our experiments.

Our algorithm is quite lightweight. Its run-time and memory requirements are
O(n), where n is the number of bins that need update after each sample For 3ms
bin, our algorithm easily runs on mote-class devices with n = 60.

4. EXPERIMENTAL EVALUATION OF SRTL

We now evaluate SRTL through experiments, both in the controlled setting of
an anechoic chamber and a less controlled open lab. Table II summarizes our
research questions, but our overall goal here is to show that SRTL can successfully
manage echoes. To do that, we first confirm SRTL’s conclusions are justified by
the physical environment (Section 4.2), and evaluate how to copes with different
levels of noise (Section 4.3). Finally we verify that the algorithm adapts to changes
in environment, either due to movement of the node or other objects (Section 4.4).
We begin by summarizing our experimental methodology.

4.1 Experimental Methodology

We evaluate SRTL using our acoustic modem in three different environments: a
controlled, anechoic chamber, a less controlled laboratory setting (both using in-
air acoustics), and in-water tests at Marina del Rey. We next describe details in
common to the three environments we report here, how they differ, and bounds on
our ground truth.
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(a) Anechoic chamber experi-
ments: in-air; single known re-
flecting surface as ground truth

(b) Laboratory experiments:
in-air; no ground truth

(c) Marina experi-
ments: underwater;
no ground truth

Fig. 3. Experimental setup at various location to answer the research questions posed in Table II.

4.1.1 Details common to experiments. We run experiments using the SNUSE
acoustic modem [Wills et al. 2006], hardware revision 2. We use tweeters for in-air
tests, and hydrophones when underwater. The modem is driven by a custom data
collection program running on a Mica-2 mote. The microcontroller directly controls
modem operation via I/O through a custom digital interface.

Each experiment consists of 200 sample periods of tone transmission followed by
echo observation. For each sample, the mica2 configures the modem to transmit
a wake-up tone, then switches to tone-sleep where it is quiescent until woken up
by a tone. We timestamp each tone reception on the Mica-2 with 1ms resolution,
then compute delay between initial transmission and echo. We later map detection
delay into a corresponding 3ms bin (Section 3.6.4). Recall that these bins define the
spatial sampling granularity for detecting echos (Section 3.4). The choice of 3ms is
an engineering decision to manage the trade-off between the detection granularity
and complexity. We later evaluate the impact of this bin size in detail (Section 5.3).

The SRTL algorithm currently runs in a host PC connected to Mica-2, allowing
evaluation of SRTL response for the same underlying data set, although in principle
it could run on the mote itself. After each transmission we record all tone triggers
as positive evidence (E), and assume negative evidence (E) for all other bins. We
then update SRTL belief estimates based on Equations 2 and 3.

We set the sensing duration based on the maximum observed in-air range of our
modem. We measure in-air range at 20m, so we anticipate reflections from objects
up to 10m from the transmitter. We therefore anticipate echoes arriving with up to
60ms delay (20m, with speed of sound as 343m/s at 24◦ Celsius). We conservatively
extend sensing duration to 100ms after each transmission.

We next describe details specific to our three experimental locations.

4.1.2 Location-specific experimental details. We carried out experiments at three
locations, each providing us with different level of complexity in the reflective nature
of the environment.

The first experiment location is an anechoic chamber at USC’s UltraLab Lab-
oratory. The chamber is designed to absorb all RF radiation for controlled radio
experiments, but it also provides a good acoustically neutral environment. When
necessary we place a large metallic pan in the chamber to act as a reflecting sur-
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face (Figure 3(a)). We measure the distance from our transmitter as described in
Section 4.1.3. Since the anechoic chamber is designed to be reflection free, this
configuration lets us confirm against a strong ground truth: the physics of the
measured location of our reflecting surface.

Our second environment is an office laboratory (Figure 3(b)). This location is
much more complex, with multiple possible reflecting surfaces (walls, file cabinets,
machine rack doors, etc.). We therefore observe more complicated channel response
and so cannot provide firm ground truth. However, this more complex environment
provides a richer level of noise and signal response.

For both in-air tests (anechoic chamber and laboratory), the modem uses high
efficiency, Motorola piezoelectric tweeters that were impedance matched for both
transmission and reception.

Our final experimental environment explores underwater performance. We test in
the marina at Marina del Rey (Figure 3(c)). We use Benthos AT-18AT hydrophones
as acoustic transducers that are optimal for our operating range of 17–19 kHz. Our
samples were taken by dangling the hydrophone from the pier at 1m depth below
surface (inset Figure 3(c)). The underwater environment provides little chance to
estimate ground truth. However we observe several potential reflection surfaces
nearby: Boat hulls, pier-wall, water surface, and Marina bottom. Our observations
show deposit of large amounts of sediments and mud at the Marina bottom which
make it a bad acoustic reflector. Similarly all reflection observed do not correspond
to the water-surface (too close, reflections arrive before end of transmission) or
pier-walls (too far, reflections die out before being received). We thus believe our
reflection sources are nearby boat hulls with two identified reflection surfaces (shown
with arrows in Figure 3(c)) at a distance of 6.2m and 2m.

4.1.3 Estimating ground truth. We estimate ground truth based on the physical
distance between transmitter and reflector and compare this distance to measured
echo distance (converted from measured echo delay). Both these measurements,
however, have potential sources of error due to our modem hardware and the mea-
surement process.

The largest source of error in measurement of echo delay is the detection circuit
of our modem. We time-stamp the transmit time of tone and detection time of
echoes to calculate the distance to reflector. Due to transmit side warm-up, the
actual transmission time of the tone can vary by about 1ms. Similarly the actual
detection time can vary by 2ms based on the strength of echo.

We measure the physical distance with a HILTI PD-40 high-precision laser range-
finder. Accuracy is ±1mm, so we believe error in the distance measurement is
minimal. However, the most significant source of error is in our measurement
process when we approximate the angle for the line-of-sight measurement between
the piezoelectric crystal located inside the transducer and the reflecting surface.
This measurement error is approximately ±2cm and results in a corresponding
delay error of about ±0.5ms (with speed of sound as 343m/s at 24◦ Celsius).

When comparing the ground truth to identified echoes, we have to reconcile the
above independent errors, in both measured distance and echo location. In the
figures, we show the tolerance region that accounts for the worst case error in each
measurement. The identified location can safely be considered to match the ground
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(a) Reflecting Surface at 3.36m (b) Reflecting Surface at 4.11m

Fig. 4. Experimental results showing the CDF of 200 samples and SRTL response with objects at
known location, adjusted for measurement error (shown as the shaded area with dashed boundary).

truth if these regions overlap. Thus, due to the resulting overlap of the error bounds,
the tolerance region varies on a case-to-case basis for each measurement.

4.2 SRTL Correctness

We first seek to confirm that SRTL can correctly identify the location of a known
reflecting surface: does our algorithm and experimental setup match the physical
configuration of the world?

Since this experiment needs knowledge of the ground-truth, we use the anechoic
chamber to perform controlled experiments. For this experiment we place a reflect-
ing surface perpendicular to the piezoelectric tweeters, measure its distance and
compute the expected delay. We take several measurements (as described in Sec-
tion 4.1) with the surface at a particular location. Since there is only one reflecting
surface in the room, our algorithm should only identify the bin corresponding to the
measured distance. We then compare SRTL’s estimate with our prediction from
the physical distance.

Figure 4 shows the result of our experiments for reflectors at two different dis-
tances. Each figure combines three different values: prediction from physics, all
observations, and the SRTL belief distribution. The dotted box indicates the pre-
diction from our distance measurements, including estimated error. The solid black
line represents the cumulative distribution function of delay values for all the sam-
ples considered by SRTL, measured against the left axis. Finally, solid blue bars
represents the belief distribution (Beli(H)) for each bin in the 100ms sensing period
(we show only the first 25ms and omit the remainder since there is no belief there).
Bin indices are given on the top axis.

Figure 4(a) shows the result of our experiment with the surface measured to be
at 3.36m from the transmitter. The sample CDF shows that nearly all samples are
received at a delay of 17ms, which corresponds to the fifth bin. SRTL is able to
identify this bin with complete confidence and we can see that the identified bin
lies within the error bounds of the physically measured surface location.

Figures 4(b) shows results from the same experiment with the surface at 4.11m
(the seventh bin). We observe that the bin identified by SRTL matches the location
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(a) Noise source, with ground truth. (b) Noise source, with no ground truth.

Fig. 5. SRTL response for a noise source that produces on average two artificial detection for each

SRTL sample.

indicated by the CDF and predicted by our range measurements.
From these experiments we conclude that we can completely explain SRTL per-

formance under known conditions; SRTL places known reflections in their correct
bin as predicted by the physical setup.

4.3 Robustness to Noise

Although we verified that SRTL works as expected in perfect conditions, we also
care about performance in the face of environmental noise or additional, but un-
synchronized (assumptions in Section 3.1), transmitters. We evaluate this aspect
by first adding a controlled in-air noise source and then performing experiments in
a naturally noisy underwater environment.

4.3.1 In-air, Controlled Noise source. We investigate this question by adding
an artificial noise source to our experiments. This noise source is a second modem
that transmits tones, triggering non-echo detections at our original sender (on which
SRTL algorithm is running). Our artificial noise source transmits tones repeatedly,
with inter-transmission times chosen uniformly randomly within a fixed interval.
We then vary this interval to adjust the degree of noise, with smaller intervals
causing greater (more frequent) noise. Since timing of noise is random, we expect
SRTL to ignore such noise and still be able learn reflections from known surfaces.
(We select this noise model to provide simple, controlled tests. Exploration of richer
noise sources is an area of future work.) We perform our experiments with different
levels of noise in both controlled and uncontrolled environments (with known and
unknown ground truth).

Figure 5(a) shows the result for the controlled environment of the anechoic cham-
ber. The presence of a gradual slope in the sample CDF (the solid black line) in-
dicates the presence of noise. We looked at several noise levels, Figure 5(a) shows
the case where there are, on average, two noise triggers in each sample period for
the single true echo. However, SRTL identifies the correct bin of the reflector even
with substantial interference as it can suppress the randomly distributed noise and
learn the true echo locations. We conclude from this experiment that while SRTL
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(a) Raw underwater noise and reflection struc-
ture.
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(b) SRTL response to the tone transmission re-
sponse structure.

Fig. 6. The structure of underwater tone-reflection and SRTL’s (pnd=0.5, ptc=0.5) response. The

figures are showing time-series of observation, each 100ms long, where each circle represents a
detection and the SRTL confidence shown as a grayscale overlay.

will learn its environment, it will not be fooled by other tones (for contention in
T-Lohi) or some levels of environmental noise.

Since an uncontrolled environment provides a richer, and more complex, multi-
path structure, we next reproduce this experiment in our lab where identification is
more challenging for SRTL. Figure 5(b) shows the result of our experiments. Over
many experiments with and without noise (not shown) SRTL detects two likely
echoes in bins 4 and 8. Although we do not know the ground truth surface, these,
and the CDF, empirically indicate the presence of two reflecting surfaces. Again,
we see that the algorithm consistently identifies these two locations as self-reflection
bins while suppressing random noise.

From the above results we conclude that SRTL can tolerate random noise up to at
least two false triggers per sample period, and shows the need to further characterize
the limits of noise tolerance. We do not characterize further due to hardware
limitation, but explore greater noise tolerance using simulations in Section 5.2.

4.3.2 Natural Underwater Noise in the Marina. We anticipate that real-world
noise and multipath will be more complex, so we next present experiments in an
underwater environment where both the noise source and environment are uncon-
trolled. We first show the nature of reflection and noise in an underwater envi-
ronment as specific for tone detection. We then show how SRTL responds to this
manner of noise.

Underwater Reflection structure: Figure 6(a) shows the raw reflection and
noise structure from an experiment performed at 1m depth. The x-axis shows bins,
each with potential reflections or noise. Each bin is 3ms wide, a function of our
minimum tone-detection time. The y-axis shows multiple rounds of transmissions,
each 100ms apart. Thus the x-axis shows a snapshot of the environment due to a
single transmission, while the y-axis shows how the environment changes over time.

This figure supports two observation about how the underwater reflection struc-
ture interacts with our algorithm. First, the reflections from surfaces can exhibit
high temporal variability. This variability is evident in the response for the second
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Fig. 7. SRTL (pnd=0.4, ptc=0.4) response to change in location of reflecting surface from 3.36m
(bin 5) to 4.11m (bin 7).

and third bin (the vertical columns at x = 2 and 3). While these two bins have
regular detections (frequent circles in either column), they also have several gaps
with no detections (for example, at time 800 in both columns, at y = 1600 for bin
3). These epochs can last from a few sample rounds, to several 10s of these rounds
that last several seconds. These gaps show evidence that reflections can vary over
very small time scales

The second observation regards the nature of underwater noise and its effects
on modeling of SRTL parameters. While the second and third bin show regular
detection, there is a scatter of seemingly random detections at bins 5 through
20. We consider those detections to be noise. With this classification our modem
detects just 11 noisy detections in over 2000 experiments (running the length of
the y axis). Thus, for 3ms bin, we can compute a 0.00016 tone error rate. While
this measurement is topically similar to our pnd parameter, it excludes the notion
of other transmitter that is central to SRTL.

SRTL’s Response to Underwater Reflections: We now look at the response
of SRTL to the temporally variable and noisy reflection structure in an underwater
environment. Figure 6(b) shows this response as a grayscale overlay on our raw
underwater data, indicating confidence that each bin is a reflection. We observe
that the confidence of SRTL for each bin increases (becomes darker) in lock-step
with the circles representing actual detections. Thus we see that SRTL is not only
able to detect bins, but also roughly matches the temporal nature of the raw data.
To get a better understanding of how SRTL responds to variable reflections we
quantitatively analyze its response time in Section 5.1.

4.4 SRTL in a Changing Environment

Most underwater environment change, either due to tides or currents, precession
on an anchor, or movement of human artifacts or fish. Since in the last section we
argue that reflections show significant temporal variation, we next evaluate how well
SRTL adapts to a changing environment. Properly configured, Bayesian learning
can track changes in belief so we expect SRTL to track changes in the environment
successfully.

4.4.1 Controlled Experiment: Anechoic chamber. To investigate SRTL response
to environmental changes, we return to the anechoic chamber. We place a reflecting

ACM Transaction on Sensor Networks, Vol. 9, No. 3, Aug. 2013.



18 · Syed, Heidemann, and Ye

Bin Index (3ms)

T
im

e
 (

in
 r

o
u

n
d

s
 o

f 
1
0
0
m

s
)

 

 

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 8. SRTL adapting to temporal variability of underwater reflection structure. This figure

magnifies a portion of Figure 6(b), replacing circles with stars for clarity. Whitespace in the figure
represents SRTL not assigning importance to bins which lack echoes.

surface at a known location (at 3.32m, corresponding to the fifth bin). We then take
twenty consecutive samples at that location to train the SRTL algorithm to identify
that location with maximum confidence. We then move the reflecting surface to a
different location (4.11m, corresponding to bin 7) relative to the transmitter. We
then observe how SRTL’s belief distribution (about which bins are SR) evolves as it
collect additional observations. We expect SRTL to track the changed environment
and identify the new bin after incorporating a few samples. The decision threshold
is set using the mechanism described in Section 3.6.3.

Figure 7 shows how SRTL’s belief changes as it takes more observations. Initially
SRTL is certain that bin five is the surface, but after 5 samples (the second figure
from the left), this believe begins to waver. At 10 samples it has begun recognizing
bin 7, the new location, as a self-reflection, although it still remembers the old
location. Finally, after about 15 samples, SRTL has nearly completely shifted its
understanding of the environment. This experiment demonstrates that SRTL will
adapt to changes in environment.

4.4.2 Uncontrolled Underwater Experiments. In the last section we showed that
underwater reflections show large variability in time. This result validates the need
for SRTL to adapt to changes in the environment. To understand SRTL adaptivity,
we next zoom in to Figure 6(b).

Figure 8 shows the first 200 samples of our experiment. The magnified response
clearly shows that when successive detections occur in a bin (e.g., the continuous
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Table III. Quantifying the rise and fall time (in number of observations) of SRTL.

Parameter Settings (pnd , ptc)
(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.5,0.5) (0.5,0.7) (0.7,0.5)

Rise-time (min-max) 6 6 26 14 14 26
Fall-time (max-min) 7 22 12 23 48 36

Rise-time (min-threshold) 3 3 13 7 7 13
Fall-time (max-threshold) 4 17 7 12 25 19

vertical column of dots for the first 10 samples for bin 2 and 3), SRTL quickly
adapts and increases confidence (the overlay becomes darker). At the same time,
successive samples without any detection (samples 40–60 for the second bin ) leads
to a gradual decrease in confidence (light colored to no overlay). Moreover, we
observe the SRTL algorithm adapts to variability within successive samples (e.g.,
between samples 60–100 for the second bin) and tracks the raw data by increasing or
decreasing confidence (observe the variation in grayscale during that period). Thus
we claim that SRTL adapts to the temporal variability of an underwater reflection
structure. In the Section 5.1 we quantitatively characterize the response time of
SRTL and its dependence on algorithm parameters.

5. SRTL PARAMETER SENSITIVITY

The previous section describes experiments that show SRTL works well, even with
noise and environmental change. SRTL has several parameters that affect its oper-
ation, including estimates of ND and TC events and choice of bin size. While the
previous section validated the accuracy and robustness of our algorithm, any real
implementation needs to correctly understand how significant each parameter is to
SRTL’s accuracy and robustness. We next evaluate how sensitive SRTL is to choice
of these parameters to provide guidelines that will help in any real deployment and
use of the algorithm.

5.1 Estimates of Observation Errors

SRTL’s learning algorithms takes two parameters, pnd and ptc, that are used to
adapt its belief to new observations. In Section 3.5 we describe how these param-
eters model our estimates of observation errors. The Bayesian update equations
completely depend on these two parameters. Thus these two parameters will have
the largest impact on accuracy and response time of SRTL, both metric being of
importance when defining the usability of our algorithm for echo-identification. To
understand how the parameters affect SRTL, we first evaluate the response time of
SRTL in a controlled but emulated setting. We then reexamine parameter setting
in the more complex and uncontrolled underwater environment.

5.1.1 Parameter Choices: Controlled Emulated Environment. A quantitative
measure of the impact of SRTL parameters allows us to better predict its behavior
in a time-varying underwater channel, compared the intuition presented Section 4.3,
For this purpose we first measure the algorithm’s rise-time and fall-time, i.e. the
number of observations to cross the decision threshold and reach minimum or max-
imum confidence, in either direction. These two metrics, along-with the behavior of
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(a) Low parameter settings (b) Medium parameter settings

Fig. 9. Confidence curves for SRTL showing the impact of parameters on its response time. We

show SRTL response for 40 consecutive positive and then 40 negative inputs. The legend reads
as {pnd , ptc}.

SRTL during these transitions, give us a quantitative measure of the impact each
parameter has on SRTL’s response. To measure these metrics we emulate a con-
trolled environment by feeding SRTL an artificial reflection series, where the first
40 samples are positive in a specific bin. From this series we measure the rise-time
of confidence. These are then followed by another 60 negative samples, causing
SRTL to loose confidence and allowing us to measure the fall-time. Figure 9 shows
the result of these experiments for three different combinations of parameters with
low, medium and high values (0.2, 0.5, and 0.7). Table III quantifies the rise and
fall time of SRTL for these parameter settings in number of observations.

We first look at the absolute value of the rise- and fall-time as these allow us to
quantitatively understand the behavior of SRTL in a changing underwater environ-
ment. The first thing we observe is that the rise-time of SRTL depends solely on
the pnd parameter (the first and third row of Table III). This result is corroborated
by the positive update Equation 3 which can be simplified to completely remove the
ptc parameter. On the other hand, the fall-time depends on both parameters (veri-
fied by Equation 2), but here ptc has the greater influence. Thus (0.7, 0.5) requires
13 more samples than the 23 for (0.5, 0.5) fall time; compare that with 25 more
samples needed for (0.5, 0.7). We conclude that high ptc values act to damp the
response of our algorithm to missed reflections, while large pnd dampens response
to new bins. At the end of next section we discuss the impact of these results,
controlled experiments, and how these can inform setting SRTL parameters.

We can also understand the impact of parameters on SRTL’s response to changes
in environment by observing the rate-of-change, or slope, of the curves during rise
or fall-time. The slope of these curves determines the stability of the confidence
with time varying reflections. Thus, if at some confidence value a curve responds to
a single positive evidence with a rise in confidence that is larger, in absolute terms,
to the decrease for a single negative evidence (like (0.5, 0.5) and (0.2,0.2) cases), it
requires fewer successive detections to maintain confidence. In the inverse case of
a larger confidence drop than rise, (like the (0.7,0.2) case), a few missed detections
can keep the confidence low.
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(a) pnd=0.5, ptc=0.7
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(b) pnd=0.7, ptc=0.5

Fig. 10. Impact of parameter setting on SRTL response (as grayscale) for the same underwater
reflection structure as shown in previous figures.

The slope of these curves allow us to reason about the choice of decision threshold.
As these slope are asymmetric, with small values at low and high confidence ends
but fairly sharp slope between 0.15 and 0.9. Such a behavior indicates that once
the initial inertia is overcome, a few consistent observations can reach any decision
threshold in the middle range. Thus, any decision threshold within the [0.3, 0.7]
confidence range (but not at either extremes) can be reached within 3—7 samples.
We conclude that, for most practical thresholds, the accuracy of SRTL is marginally
affected by the exact decision threshold.

Finally, detection theory allows one to trade certainty of detection for time; we
observe this tradeoff in the value of parameters. Thus, a high value of pnd confirms
a new reflecting surface slowly, but also increases accuracy as we now do not react
to spurious detections. A similar tradeoff in reacting to transient reflection-loss
occurs for higher values of ptc.

5.1.2 Parameter Choices: Uncontrolled Underwater. Our controlled experiments
allow us to conclude that pnd alone impacts the increase in confidence while ptc has a
more dominant impact on the decrease. We now want to see if these conclusions can
shed light on the behavior of SRTL for an uncontrolled underwater environment.

For this purpose we look at SRTL’s response to the raw data shown in Figure 6(a).
Figure 10 shows its response for the first 200 samples (having large temporal vari-
ability) for two parameter settings, while Figure 8 shows result for a third setting
of (0.5,0.5). We first observe the impact of pnd by comparing Figure 10(b) ,with a
higher pnd=0.7, to Figure 10(a) with pnd=0.5. We observe that even with the same
reflection structure, Figure 10(b) never gains much confidence for bin 2 as a SR
bin (between 0-40 samples), while Figure 10(a) does so consistently. This response
is mostly explained by the conclusion from last section that a large pnd damps the
rise-time and requires more consecutive detections to cross the decision threshold.

A second observation is that between 40-60 samples, the confidence for bin 1
in Figure 10(a) does not decrease significantly even with no reflections arriving.
We compare with Figure 8, where the confidence at the beginning of the range is
similar, however by the 50th sample it has minimal confidence. Again this result
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Fig. 11. Fraction of false positive and false negative as simulated noise and chosen noise estimates
vary. Error bars show 95% confidence intervals.

is explained by our previous conclusion that a higher ptc in Figure 10(a) damps
the effect of missed reflections, thereby retaining the confidence in a particular bin
longer.

Overall, we conclude that for use in T-Lohi where we prefer a false positive
for a SR bin identification (to mitigate the chance of a transmission deadlock), a
low value of pnd and a higher value of ptc allows us to detect a possible reflection
surface quicker while also increasing the memory for that location. However, these
values still need to carefully chosen as even in T-Lohi,as consistently ignoring actual
contenders (a possibility with such parameter settings and a few false positives) will
lead to packet collision. Of course, different applications (than T-Lohi) will have
different preference for parameter settings.

5.2 Parameter Alignment with Environmental Conditions

Hardware limitations prevent us from introducing large amounts of non-echo or
tone cancellation noise in these experiments. To study both types of noise, we
simulate the algorithm with artificial noise, allowing us to explore arbitrarily high
noise levels under controlled conditions. Our goal is to understand what levels of
noise cause SRTL to fail, and how SRTL behaves when our noise estimates (pnd and
ptc) differ from the actual amount of noise.

To observe false positives, we vary simulated (wake-up tone triggering) noise
in the environment. In Figure 11(a) we fix both the simulated and algorithm
parameters of tone cancellation probability at 0.05, we then vary noise (the x-
axis) and observe the fraction of false identifications for different values of pnd .
Figure 11(a) shows that the fraction of incorrectly identified bins increases as the
simulated environmental noise increases. However, the exact rate is a function of
our noise estimate pnd , with larger estimates making SRTL more skeptical that
tone-triggers indicate self-reflections, thus reducing the number of false positives.
Thus, with pnd = 0.4, 70% simulated noise (the second line from the left) leads to
just 0.11 faction of false positives, but an estimate pnd = 0.7, gives nearly no false
positives at the same simulated noise level. In general, SRTL performs reasonably
as long as the estimate is at least as large as true noise, with some leeway when
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Fig. 12. An effect of discrete bins is for reflections at boundaries might fall in either bins. We

consider the worst-case where alternate samples fall in adjacent bins.

noise is low.
To observe false negatives we vary the simulated probability of a tone cancel-

lation. In Figure 11(b) we fix both the simulated and algorithm input values of
noise detection probability at 0.4. Figure 11(b) shows that the fraction of SR bins
that are SRTL fail to identify (false negative) increases with the simulated tone
cancellation probability. Just as with false positives, performance is best when the
estimate (ptc) is close to actual tone cancellation probability, but at low levels SRTL
will tolerate noise two or three times that estimate. The main difference is that
SRTL is less forgiving of tone cancellation than noise. Because there are few echoes,
moderate cancellation makes them difficult to identify. Fortunately, as it is rarer
for interference to completely suppress channel energy, so cancellation is rarer than
non-echo noise.

Thus we conclude that SRTL can tolerate a wide range of noise in the environ-
ment, provided that corresponding estimates (both ptc and pnd) are reasonable ap-
proximations. Moreover, over-estimating the actual observation errors has a lesser
penalty than under-estimating these parameters.

5.3 Impact of Bin Discretization

SRTL uses discrete bins to track belief and provide efficient and low-complexity
operation even on mote-class devices. Our final question is to explore how bin
size affects our algorithm. We have three concerns: bins that are too small may
disperse observations, bins too large may cause echoes to hide real tones from other
transmitters, and even with correctly sized bins, tones might fall on the border
between two bins. Our observations about system sensitivity (Section 3.6.4) limit
our bins to at least 3ms, and even with our underwater experiment we have not
observed drift by more than a few ms, thus we believe this bin size is appropriate.
We next look at echoes that lie at bin-borders to investigate the worst case impact
of using such a low-complexity, low-memory implementation.

For a reflecting surface exactly on the edge of two bins, minor observation jitter
(hardware delays, software locks, clock granularity, or simply very slight motion
of either the node or reflecting object) can easily move observations in either di-
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rection. To simplify evaluation, we consider the worst case scenario: each sample
produces detection at an alternate of two adjacent bins. We emulate this scenario
by artificially providing such a sample input to our SRTL algorithm.

Since the bins see equivalent observations (modulo a two sample period), belief in
each bin is identical. Figure 12 plots the belief in one of the adjacent bins as more
samples are incorporated by the algorithm. We see that combining a low value of
tone cancellation probability with a higher value of noise detection, the (0.7,0.2)
and (0.7,0.5) tuples, makes it unlikely for either bin to be identified as reflection.
This result is because low value of ptc implies any confidence is lost quickly, while
a higher value of pnd requires long time for new identification to be made. This
result is also supported from our observation about the slope of confidence curves in
Section 5.1 as the change for a positive evidence is easily offset by these parameter
settings.

However, by choosing parameters that increase the memory of location (higher
ptc) and have more agile response to detection (lower pnd), results in a rise in
the confidence for each bin. The rate of this change is, again, dictated by the
parameter values. Thus, equal parameter, like (0.5,0.5) and (0.2,0.2), result in a
gradual increase as the positive agility of pnd is nearly equally (but not completely,
as discussed in Section 5.1) balanced by the damping of ptc. A larger imbalance,
in the case of (0.7,0.5) and (0.7, 0.5), leads to a much faster rise in confidence,
respectively taking 17 and 7 samples to cross the decision threshold.

The SRTL input parameters, therefore, provide us with a fine-tuning-knob to
adapt our algorithm to the need of our environment. As we argued before (at the
end of Section 5.1), these parameters should be set based on the required accuracy
(in false positives and negatives) of the application using SRTL. Our analysis here
provides guidance to set these parameters.

6. RELATED WORK

Our work on tone self-multipath is related to three areas: data multipath, echo-
detection techniques, and Bayesian learning. We next describe background for each
related area and highlight the novelty of our approach.

Combating the large multipath spread to achieve robust data communication is
considered the most challenging task of an underwater acoustic (UWA) commu-
nication system [Stojanovic 1996; Catipovic 1990]. Coherent systems, bandwidth
efficient for the band-limited UWA channel, are much more sensitive (than non-
coherent systems) to this large multipath spread which can result in inter-symbol
or inter-chip interference. Stojanovic et al. were the first to propose a suboptimal,
and therefore less complex, Decision Feedback Equalizer (DFE) jointly optimized
with a Phased Locked Loop (PLL) that enabled coherent underwater communi-
cation [Stojanovic et al. 1994]. Recently Time-Reversal-Mirror (TRM) has also
been considered as a mechanism to handle multipath in an underwater environ-
ment [Song et al. 2007]. Such existing physical-layer techniques, including Rake
receiver [Price and Green 1958] or TRM [Song et al. 2007], distinguish between
several copies of the same signal at a receiver. However, we are faced with the chal-
lenge of self-multipath, where a transmitter must identify echoes of its own signal,
while using low-power acoustic tones, not the more energy consuming data. We
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therefore require different approaches at the transmitter.
Perhaps the closest to our work are acoustic signal processing techniques based on

interpreting echoes from the environment, including echolocation, echo-sounding,
and sonar [Knight et al. 1981; Hammerstad et al. 1993]. While sonar is used to
detect the presence of obstacles for navigation [Knight et al. 1981], echo-sounder
are widely deployed for bathymetric data collection [Bourgeois et al. 1999]. In
both active sonar and echo-sounding, sound pulses, often called “pings”, are sent
for echoes detection that measures the distance to a reflection surface. In these
techniques signal correlation or matched filters are used to disambiguate echoes.
Furthermore, sonar identifies targets by comparing echoes with pre-recorded signa-
tures. However, such techniques are not designed for energy-efficient applications.
Underwater sensornets use low-power, wake-up circuit that focus on energy and
cost-efficiency. Thus the wake-up circuit is a simple analog part that precludes
the use of any complex signal-processing techniques. Our work tackles this unique
problem of echo identification for low-cost, low-power acoustic tone signals by using
the simple tone activation signal provided by such devices to probe the medium and
learn to accurately identify echoes.

Bayesian learning as a field builds upon the rich mathematical history of Bayesian
statistics. Bayesian learning uses empirical data (collected by sensors) to progres-
sively improve estimates of system parameters [Thrun 1998; Hertzmann 2004]. Re-
searcher have used Bayesian inference to learn complex CGI (computer graphic
imagery) models from human actors [Hertzmann 2004] as well as to localize robots
using landmarks [Thrun 1998]. The problem of self-multipath is unique for low-
power acoustic tone-based communications. We are the first to use Bayesian learn-
ing mechanism to overcome the impact of such tone echoes within the constraints
of low-cost, energy-efficient hardware necessitated in underwater sensornets.

7. FUTURE WORK AND CONCLUSIONS

There are several possible future directions. Although we focus on Bayesian ap-
proaches, other possibly simpler approaches like exponential weighted moving av-
erages, may also work. We plan to integrate our approach into T-Lohi and validate
that SRTL provides a solution to problems described in Section 2.2. We believe
our approach will work better in deep water where surface and bottom reflection
are absent. However, since current experiments are in shallow water, verifying this
claim requires future deepwater experiments. The approach also requires addi-
tion evaluation in rapidly changing conditions like rough weather; while we have
shown in Section 4.4 that SRTL can adapt to change in environment, optimizing
performance under rapid changes is an open question. Finally we can use SRTL to
suppress receiver multipath of contention tones and explore using our algorithm in
conjunction with other protocols for underwater sensornets, such as the tone-based
broadcast mechanism proposed in TB-MAC [Mirza et al. 2009].

An orthogonal area of future work is to explore wakeup tones where each device is
assigned a unique frequency. Such an approach simplifies the issue of tone reflection
for protocol coordination, but raises new issues of the effects of frequency-varying
attenuation on wakeup, as well as configuring and managing frequencies across very
limited bandwidth.
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In this paper we first identified the issue of tone self-multipath unique to the large
propagation delays of acoustic networks. We then used T-Lohi as an example to
show that this delay can significantly reduce the throughput of our MAC protocol.
We then introduced a Bayesian learning algorithm, Self-Reflecting Tone Learning
(SRTL), that can be used to learn-and-ignore these self-multipath or echo tones.
We performed experiments to verify that our algorithm is correct, robust to noise,
and can adapt to a dynamic environment.

REFERENCES

Benthos, Inc. Fast And Reliable Access To Undersea Data. http://www.benthos.com/pdf/

Modems/ModemBrochure.pdf.

Bourgeois, B., Martinez, A., Alleman, P., Cheramie, J., and Gravley, J. 1999. Autonomous

bathymetry survey system. IEEE Journal of Oceanic Engineering 24, 4 (Oct), 414–423.

Catipovic, J. Jul 1990. Performance limitations in underwater acoustic telemetry. IEEE Journal
of Oceanic Engineering 15, 3, 205–216.

El-Hoiydi, A. and Decotignie, J.-D. 2004. WiseMAC: an ultra low power mac protocol for the
downlink of infrastructure wireless sensor networks. In Proceedings of the 9th IEEE Symposium

on Computers and Communications. IEEE Computer Society, Washington, DC, USA, 244–251.

Floyd, S. and Jacobson, V. 1994. The synchronization of periodic routing messages.
ACM/IEEE Transactions on Networking 2, 2 (Apr.), 122–136.

Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., and Ball, K. 2005. The WHOI
Micro-Modem: An acoustic communications and navigation system for multiple platforms. In

Proceedings of the MTS/IEEE Oceans Conference. IEEE, Washington, DC, USA.

Girod, L. and Estrin, D. 2001. Robust range estimation using acoustic and multimodal sensing.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, Maui, Hawaii, USA.
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