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Abstract—The Covid-19 pandemic disrupted the world as
businesses and schools shifted to work-from-home (WFH), and
comprehensive maps have helped visualize how those policies
changed over time and in different places. We recently developed
algorithms that infer the onset of WFH based on changes in
observed Internet usage. Measurements of WFH are important to
evaluate how effectively policies are implemented and followed, or
to confirm policies in countries with less transparent journalism.
This paper describes a web-based visualization system for mea-
surements of Covid-19-induced WFH. We build on a web-based
world map, showing a geographic grid of observations about
WFH. We extend typical map interaction (zoom and pan, plus
animation over time) with two new forms of pop-up information
that allow users to drill-down to investigate our underlying data.
We use sparklines to show changes over the first 6 months of
2020 for a given location, supporting identification and navigation
to hot spots. Alternatively, users can report particular networks
(Internet Service Providers) that show WFH on a given day.
We show that these tools help us relate our observations to
news reports of Covid-19-induced changes and, in some cases,
lockdowns due to other causes. Our visualization is publicly
available at https://covid.ant.isi.edu, as is our underlying data.

Index Terms—Covid-19, work-from-home, visualization, drill-
down, SQL.

I. INTRODUCTION

THE Covid-19 pandemic has drastically changed how we
gather and interact with others, changing our social pat-

terns, work habits, and interactions. Throughout 2020, health
experts have suggested that social distancing and reduced face-
to-face communication are necessary to control the virus [1].
Reflecting this advice, many governments and organizations
have enacted work-from-home (WFH) recommendations or
mandates [2]. Public and political reaction has been mixed,
with some areas embracing work-from-home and others reject-
ing it [3]. Enforcement has also varied, with some instances
of local officials refusing to implement statewide policy [4].
In other areas, “personal responsibility” has been emphasized,
suggesting people should work-from-home (or not) at their
discretion [5]. As a result it is challenging to know when work-
from-home orders are actually followed, or to what extent
people voluntarily choose to work from home.

Work-from-home using our home computers has induced
changes in how we interact with the Internet, with wide
adoption of new tools for work such as video conferencing
and growth in home Internet [6].

We have developed algorithms that observe this shift
through examining the changes in Internet usage. One can
observe diurnal behaviors in the Internet as people go to

work, go home, and sleep [7]. By observing networks with
a noticeable diurnal trend that follows the typical work-week,
we can infer work-from-home by the disappearance of that
trend [8]. With new algorithms we are able to re-analyze our
scans of the global Internet which we conduct regularly to
detect Internet outages (from Trinocular [9]), to detect the
breakage of the diurnal pattern, and summarize the onset of
work-from-home as it occurs around the world.

Although these algorithms can provide us valuable data
covering much of the globe, with thousands of networks, it
can become difficult to identify the trends in the raw data
and verify these algorithms. Therefore, we need tools to
help us search through the data and find meaningful changes
within millions of records at various times and locations
around the world. Understanding this data is critical to validate
true positives in participation in work-from-home, where the
data shows the onset of work-from-home corresponding with
official policy. Validation can also help us detect surprising
true negatives—when work-from-home orders were met with
the lack of actual implementation.

The contribution of this paper is a new system that visualizes
work-from-home data on an interactive world map, along
with drill-down methods to help investigate when, how much,
and where networks changed. Our basic visualization (see
Section II-A) utilizes OpenStreetMap to show work-from-
home changes on a 2 × 2 degree latitude/longitude grid on
a world map (Section III-B). This website provides geo-
graphic context for WFH changes, and with zoom and pan
for animation, a user can quickly browse global data. We
support user-interaction and “drill-down” into the underlying
data through two new forms of pop-up information. We use
sparklines to show changes over the first 6 months of 2020
for a given location, supporting identification and navigation
to hot spots (Section III-E). Alternatively, users can report
particular networks (Internet Service Providers) that show
WFH changes on a given day (Section III-F). Finally, we
provide several case studies that demonstrate how these tools
help us relate our observations to news reports of Covid-
19-induced changes and, in some cases, lockdowns due to
other causes (Section IV). Our website is publicly available
at https://covid.ant.isi.edu/.

II. BACKGROUND AND RELATED WORK

A. Map Visualization
Web-based maps have evolved since around 2000, and have

taken off since the 2005 introduction of Google Maps and tiled
maps.
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We extend the University of Southern Califor-
nia/Information Sciences Institute’s Internet Outage World
Map [10], which in turn is built on OpenStreetMap’s data
and their slippy map implementation [11]. OpenStreetMap
provides us a map framework, API, and tiles. The Outage
World Map locates Internet outages [9], mapping IPv4 /24
blocks into grid cells of different resolutions (0.5, 1, or 2
degree latitude/longitude). Each grid cell shows a colored
circle, unless there is no shift from the diurnal trend at that
timestamp, with the area of the circle representing the number
of IPv4 blocks that are out in that region, and the color of
the circle showing the fraction of blocks that are out. In this
paper, we replace outage data with Covid-WFH data and add
new methods for interaction with drill-down (Section III).

B. Detecting Covid-19 Work-From-Home

Our Covid-19 Work-from-Home visualization uses data
from our Covid-WFH algorithm [8]. We summarize the four
steps of the algorithm here: (1) data collection, (2) identify-
ing change-sensitive blocks, (3) de-trending, and (4) change
detection.

The input to Covid-WFH detection are ICMP echo requests
(“pings”) that cover as much of the public, unicast IPv4
network as possible. We use the data from Trinocular [9, 12],
covering about 5M /24 IPv4 address blocks (as of 2021) with
new data arriving for each block every 11 minutes. While
active probing cannot see behind network-address translation
and firewalls, Trinocular [9], with improvements [12], provides
quite accurate outage detection.

Covid-WFH detection reinterprets this raw data, aggregate
multiple observers and accumulate it over time to estimate the
current state of each address (not just outages).

Next, we identify change-sensitive blocks in this data. A
block is considered to be change-sensitive if we observe regu-
lar daily changes in it (that is, it shows a diurnal pattern [7]),
and if those changes are large enough that we believe we can
tell when they change. All in all, we detect approximately
447k change-sensitive blocks.

We then look for trends in this data. The daily and
weekly fluctuations may blur the long-term changes in usage
so we employ Seasonal-Trend decomposition using LOESS
model [13] for extracting the baseline diurnal-use signal from
the data.

Finally, we look for downward changes in the trend of
change-sensitive blocks. A downward trend indicates a drop in
the number of daily users of that block, after we filter out the
daily and weekly trends. We apply CUSUM, a change-point
detection algorithm, to the baseline for detecting the specific
point when the decline begins. Our assumption is that this
point will capture the start of work-from-home trend, because
it indicates that the work-day induced diurnal pattern becomes
suddenly less prominent or even disappears. The evaluation
of accuracy of randomly selected locations shows the large
number of WFH detections on dates that correspond to news
reports about the country starting lockdown.

C. Other Studies of Covid-19 and the Internet

Covid-19 led to an increase in Internet traffic as many work-
places switched to an at-home, virtual setting, and people’s
social lives moved on-line. Facebook reported an increase
in traffic [14]. Feldmann et al. observed and evaluated how
the Internet reacted at several European ISPs and Internet
Exchange Points [15]. While these papers studied how Covid-
19 affected Internet use, we instead visualize the changes in
Internet indicative of the public’s response to Covid-19.

More closely related to our work, researchers from Tele-
fonica examined data from mobile telephones to evaluate data
usage, user mobility, and response to work-from-home [16].
They are able to identify the location and mobility pattern of
specific users from mobile phone identities and GPS, informa-
tion available only to mobile network operators. Visualizing
user location only in general ways, Telefonica researchers
evaluate the amount of mobility per day and group users by
city. In contrast, our work uses information gathered from a
third-party location (pings of public IP addresses). Since we
do not possess individual user identities and therefore cannot
evaluate per-user mobility, we choose to report changes by
region.

D. Other Visualizations of Covid-19

Multiple groups visualize Covid-19 information at the
county, state, or national level [17, 18, 19]. Typically, they
are visualizing data from public health reports (displaying
number of Covid-19 cases in an area, etc.). The way in which
these groups display the data varies, using heat maps, line
graphs, scatter graphs, etc. Additionally, some of these sites
support interactive geographic drill-down, zooming in on states
to show counties.

Our work instead uses data inferred from measurements of
the Internet on a global scale. It is therefore independent of
public health records. Strong public health data can be very
powerful, including factors such as race and ethnicity that
we cannot measure. However, our independent source of data
can provide insight into countries or regions that lack public
health data, or that decline to publish it [20]. In addition, our
visualization allows users to drill-down into the underlying
data through timeseries graphs and tables.

III. METHODOLOGY: VISUALIZATION TO MAKE THE DATA
USEFUL

A. Problem Statement

Our goal is to support human interaction with our Covid-
19 work-from-home findings. We begin with our Covid-WFH
data in a database. While SQL supports sophisticated users
with tabular output, it cannot accommodate a casual user or
provide geographic context. Our goal is to support both casual
and sophisticated users to answer different questions that often
benefit from geographic context.

Where (geographically) do events happen? Our first goal is
to determine where events, each a real-world change in Internet
usage, occur. Generally, Covid-WFH mandates are enacted by
governments and affect their local jurisdiction. To display this
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Fig. 1. Grid cells at 2-degree resolution containing Covid-WFH downtrends.

information, we create a world map, allowing users to identify
these jurisdictions.

When do events happen? Once we know where an event
occurs, the subsequent question is when. Understanding the
timing of an event requires tools to navigate to different dates
and view global changes over time.

In addition, we want to understand the intersection of
geography and time. How does a particular location change
over time? Or what about several locations in a region?

Why do events happen? Given an event at a specific location
and date, we would then like to know why it happens there,
and what specific changes occurred. To validate “why” is
outside the scope our data—it requires consulting media and
government documentation of policy changes.

B. Map-based Visualization: Where do events happen?

To place the Covid-WFH geographically, we begin by
displaying the data on a world map, as shown in Figure 1.
We divide the world up into geographic grids of 0.5-, 1-, or
2-degree latitude/longitude cells, switching to a finer resolution
with a smaller grid size as the user zooms in. Internet networks
are unevenly spread around the globe, correlating with the
population density. The grid allows for a roughly uniform
geographic coverage, and it is easy to map to a database, unlike
alternatives that dynamically place variable numbers of map
markers.

Each grid cell shows a circle representing the downward
trend in Covid-WFH for that cell on that day. The area of
the circle is in proportion to the number of networks showing
Covid-WFH fluctuations on that day—in Figure 1 we see very
large numbers of networks (large circles) in South Korea and
China, and more uniform networks across most of Europe.
The color shows the fraction of networks that change. In
Figure 1 all circles are dark or medium blue, showing 0-15%
of networks in each region demonstrate a downward trend in
diurnal signal.

Finally, our map supports user interaction in several ways.
Users can pan and zoom, and clicking on a grid cell renders
drill-down to provide additional information on that location
as described below in Section III-D.

date selector playback back/forward 1 day

Fig. 2. Details of date selector and playback buttons on 2020-03-24.

C. Time Travel: When do events happen?

Covid-19 affected different parts of the world at different
times, so we support temporal browsing in two ways.

First, the overall map has both a date and time selector for
the user to select which day to display across the whole map
as shown in Figure 2. (Currently we display the first 6 months
of 2020.) We also have previous and forward buttons that jump
by one day in either direction. We find that this combination
allows users to quickly transition to a date of interest (with the
date selector), or to browse around a given date (with arrows).

We also support automatic playback—the user can select
the “playback” button and the map will automatically advance
into the future. This animation can be paused and resumed,
and the playback speed can also be set. We find that playback
makes it easy to browse through a period of interest, watching
for events, as we discuss in Section IV-A.

Temporal browsing integrates well with the world map—the
user can select a geographic area of interest and then browse
through time, or play back a large part of the globe and then
zoom in on areas of interest.

D. Prioritizing Information with Drill-down

While the world map provides a “big picture,” we need
more details to investigate specific events. We use drill-down
to annotate the world map with information about specific
locations.

When the user selects a specific event (a circle on a grid),
we display a pop-up with more information about that area.
This basic pop-up provides general information: the location’s
coordinates, the total number of IPv4 blocks that are change-
sensitive at that location, the number of IPv4 blocks experi-
encing a downtrend on the current day, and the percentage
of change-sensitive blocks that show a downtrend. Figure 3
shows this information for a location in China in March 2020.

This information provides a view of the quantitative data
behind our visualization. The numeric values of numbers
of blocks help evaluate when large changes are meaningful
compared to large shifts that happen because of changes to a
few blocks in a very sparsely populated area. In addition, the
latitude/longitude coordinates can be useful for manual queries
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Fig. 3. A drill-down pop-up showing basic information with a sparkline
(Section III-D). Shown here: the Laiwu District, Laiwu, Shandong, China on
2020-03-11.

Fig. 4. Details of the sparkline for Laiwu District, Laiwu, Shandong, China
from Figure 3.

in SQL by expert users. Finally, to answer other questions in
the UI, we augment this basic information with sparklines and
ISP tables as described next.

E. Drill-down with Temporal Sparklines: When do events
happen at a specific location?

While animations and temporal browsing (Section III-C)
allow one to scan a region of the globe for changes over time,
the screen shows only one day at a time.

Complementing this view, we also support temporal
sparklines to show how a particular location changes over
time. A sparkline is shown at the bottom of the pop-up in
Figure 3; we show only the sparkline in Figure 4. The sparkline
shows 6 months of data across the x-axis, with the height of
the line showing the percentage of change-sensitive blocks
experiencing a downtrend on each day for that location. To
emphasize peaks, we color the vertical stripes for each day
based on that day’s percentage using the the same color scale
as the circles on the world map.

By showing the timeline, the sparkline makes it easy to
identify days with large downtrends.

A common discovery process is to scan the map for changes
with animation playback, look at a specific hot spot in the
sparkline to find the most prominent events for that location,
and then shift the world map to the time of those events
to understand context around the location. To support this
process, our sparklines are interactive—a user can hover their
mouse over the sparkline to see numeric values for a given
date, and clicking on the sparkline causes the world map
to jump to the target date. This process can be viewed in
Section IV-B.

Fig. 5. An example of the pop-up’s second tab which is rendered when
the user selects Laiwu District, Laiwu, Shandong, China on 2020-03-11
(Section III-F).

F. Drill-down for ISPs: Why do events happen?

With support for where events happen (Section III-B) and
when (Section III-C and Section III-E), we finally turn to why.
To answer this question, we compare the date and location with
external news sources. To assist in this process, our second
drill-down mode provides information about the ISPs that
change on a given day. ISP names can help identify the nature
of the networks that show changes in Internet use: residential,
government, universities, or commercial workplaces.

Figure 5 shows ISP-based information in Laiwu, China
in March 2020. We show each ISP name, the Autonomous
System number, and the number of blocks in that organization
that change on that day. These dynamic ISP tables can also
lead to interesting discoveries, such as in Section IV-C.

G. Implementation Details

We next summarize specific implementation challenges we
encountered and choices that had a positive effect.

Database storage: We store all underlying data in a
database, organized in three pre-computed grid resolutions.
Since we have only one data point per day per location, and
only about 4000 locations on the globe are ever active, with
an average 630 active location per day, this data is relatively
small (114,291 records for 6 months). So searches are fast,
and MySQL provides a good abstraction to extract the data
in different ways (across the world on one day for the world
map, or across all days for one location for the sparkline).

To keep the main database tables small, we normalize ISP
information in a separate table, joining a list of downtrend
blocks against ISP metadata on-the-fly to support ISP drill-
down.

Screen size: We use a pop-up to keep drill-down information
in context. However, pop-ups use only a fraction of the screen.
To reduce the amount of space taken up by the pop-ups, we
implement tabs to grant the user the option of transitioning
back and forth between the data, as seen in Figure 3. By doing
so, the user can view changes on the map while simultaneously
examining a detailed break-down at a specific location.

Grid cells can have very different numbers of change-
sensitive blocks, from a handful in rural areas to thousands in
cells that contain large cities. As a result, information in the
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Fig. 6. Cluster of downtrends in Thailand on 2020-02-22, discovered using
the play button located in the navigation bar (see Section IV-A).

ISP drill-down can range from a few to hundreds of lines. We
group blocks by ISP (eliminating specific IP address ranges)
and add a scroll bar on the second tab for the user to browse
the data.

IV. EVALUATION: DISCOVERING NEW EVENTS AND
CAUSES

To evaluate our work we next examine several events
discovered using our enhanced visualization system. These
events complement the ones we have previously documented
when developing the algorithms [8], and they illustrate the
benefits of our various exploration methods provided by our
visualization.

A. Playback Button: Discovery in Thailand

We first look at how the overall world map and playback
assists in discovery. Playing out 2020 data through the ani-
mation while watching Asia, shows a “hot spot” in Thailand
at the end of February. We then zoom in on the location,
jump backwards in time, and play the data out more slowly,
examining unique events in Thailand.

Figure 6 shows a snapshot of what we found on 2020-
02-22. News reported that multiple institutions experienced
disruptions from student-led protests in response to the Thai
government’s decision to disband the opposition party on this
day [21].

Although this event was not due to Covid-19, it was
captured due to a real reduction in Internet usage as shown
in our data. Without our world map and animation, we would
not have discovered this prominent event.

B. Sparkline: Discovery in Malaysia

Next, we demonstrate the utility of the interactive
sparklines. While examining a change in Malaysia, we notice
a large red spike in the middle of the sparkline. Hovering
over the pop-up shows the change occurs on 2020-04-02,
and clicking on that peak shifts the world map to that date,
allowing us to closely examine the event, as seen in Figure 7.

According to media reports, Malaysia hit a record high
of Covid-19 cases on 2020-04-02 and increased lockdown
restrictions on that day leading to an increase in Covid-19
work-from-home [22].

Fig. 7. Widespread downtrend in Malaysia on 2020-04-02 discovered using
the interactive sparkline (see Section IV-B).

Fig. 8. Discovered using the ISP drill-down tables, central Indiana experi-
enced its largest downtrend on 2020-03-15 due to Indiana University ending
classes for spring break (see Section IV-C).

Unlike Thailand, this event was a result of shifts to work-
from-home due to Covid-19. While this event was in the
underlying data we had processed, the sparkline made it very
quick to find and navigate to the correct date.

C. ISP Drill-down: Discovery in Indiana

Finally, we were exploring downtrends in the United States
in mid-March 2020, during early Covid-19 reactions, when
we observed a moderate-size circle in Indiana and wanted to
investigate why.

We turned to ISP drill-down. With the time selector, we see
a large downtrend on 2020-03-15. The ISP drill-down shows
that all the networks involved belong to Indiana University, as
shown in Figure 8.

Prompted by this information we searched for news reports
about Indiana University on this date. University websites and
local news reported that Indiana University ended classes for
spring break, and that they continued with remote classes
following break due to Covid-19 [23].

This example shows that the network information can help
bridge the gap between basic network observations, seen
geographically, and logical locations (like a university), and
that this link can help associate what we see with ground
truth. In this case, the event began with a regular spring break
and followed on with Covid-19-driven work-from-home.
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D. Unintended Discoveries

Greater visibility into our data also helped us improve
confidence in our system and detect inconsistencies. The
ability to easily view the numeric values in our visual display
assisted in confirming when red circles were real and backed
by significant amounts of data, and when they reflected large
changes in percentages based on random movement of a few
blocks in rural areas.

We also discovered a comparison between different forms
of drill-down and different zoom resolutions to be helpful. In
some cases we found inconsistencies in the absolute number
of blocks showing a downtrend on the first tab with the
count of blocks listed on the ISP drill-down. We traced these
discrepancies to an inconsistent handling of SQL queries in
our code.

V. CONCLUSIONS

This paper described our new website https://covid.ant.isi.
edu to visualize Covid-19 Work-from-Home detection based
on changes in Internet usage. We built on our prior work
visualizing Internet outages with OpenStreetMap’s slippy map.
We added Covid-19-WFH detections to this map, and extended
it with interactive drill-down. We showed the importance of
the map to quickly scan large amounts of data, of sparklines
to show changes in Covid-19-WFH over time at a specific
location, and ISP-reporting to indicate which ISPs are reflected
in this data. We used these tools to discover several events
in our data, some related to political protests that caused real
Internet shutdowns but not Covid-19-related, as well as several
events that we tied to Covid-19-WFH changes. We hope this
interactivity will be useful to similar kinds of data visualization
in the future, and look forward to visualizing Covid-19-based
return-to-work events as part of our future work.
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[3] D. Allain-Dupré, “The territorial impact of COVID-19: Manag-
ing the crisis across levels of government.” https://www.oecd.
org/coronavirus/policy-responses/, 2020.

[4] ABC7 News, “Orange County sheriff says deputies won’t
enforce SOCAL’s new stay-at-home order.” https://abc7.com/

orange-county-coronavirus-don-barnes-southern-california/
8537280/, 2020.

[5] R. T. Garrett, “Texas Gov. Greg Abbott issues broad COVID-
19 order that touts ‘personal responsibility,’ not edicts.” https:
//www.dallasnews.com/news/politics/2021/07/29/, 2021.

[6] B. Chakravorti and R. S. Chaturvedi, “Which countries were
(and weren’t) ready for remote work?.” https://hbr.org/2020/
04/which-countries-were-and-werent-ready-for-remote-work,
2020.

[7] L. Quan, J. Heidemann, and Y. Pradkin, “When the Internet
Sleeps: Correlating Diurnal Networks With External Factors,”
in Proceedings of the ACM Internet Measurement Conference,
(Vancouver, BC, Canada), pp. 87–100, ACM, Nov. 2014.

[8] X. Song and J. Heidemann, “Measuring the Internet dur-
ing Covid-19 to Evaluate Work-from-Home,” Tech. Rep.
arXiv:2102.07433v2 [cs.NI], USC/ISI, Feb. 2021.

[9] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: Under-
standing Internet Reliability Through Adaptive Probing,” in
Proceedings of the ACM SIGCOMM Conference, (Hong Kong,
China), pp. 255–266, ACM, Aug. 2013.

[10] ANT Project, “ANT Internet Outages Interactive Map.” https:
//outage.ant.isi.edu/ and https://ant.isi.edu/blog/?p=1141, Dec.
2017.

[11] Open Layers, “Openlayers: Free Maps for the Web.” http:
//openlayers.org, 2012.

[12] G. Baltra and J. Heidemann, “Improving coverage of Internet
outage detection in sparse blocks,” in Proceedings of the,
(Eugene, Oregon, USA), Mar. 2020.

[13] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Ter-
penning, “STL: A seasonal-trend decomposition,” Journal of
Official Statistics, vol. 6, no. 1, pp. 3–73, 1990.
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