Mote Herding for Tiered Wireless Sensor Networks

Thanos Stathopoulgs Lewis Girod]L John Heidemanin Deborah Estri#ﬂ

Center for Embedded Networked Sensing
T UCLA, Department of Computer Science
i USC, Information Sciences Institute
{thanos@cs.ucla.edu, girod@Ilecs.cs.ucla.edu, johnh@isi.edwing@ss.ucla.edy

Abstract ing scaling to larger numbers of nodes, more and more
We proposeMote Herding a new system architecture distant communication, and use of more sophisticated

for large scale, heterogeneous sensor networks. Mot8€NSOr processing algorithms inside the network.

herding uses a mix of many 8-bit sensor nodes (motes) Currently, wireless sensor network devices fall into
and fewer but more powerful 32-bit sensor nodes (mi-two main categories. The first category includes tiny,

croservers). Mote herding groups motes iflazksthat inexpensive, resource-constrained nodes that operate for
are connected via a multihop network to a microserverOng periods of time on battery power. The most widely
acting as ashepherd Shepherds exploit their greater used deV|c_e in this qlass is the Crossbow Mote [14] based
communications and compute power to form an overlayon the 8-bit AVR microcontroller. The second category
network, with many flocks joining to form herd By includes small 32-bit nodes that host sophisticated pe-
keeping each flock small and utilizing several shepherdsiPherals and megabytes of RAM and flash and typi-
the herd can support many nodes with better latency, recally either run duty-cycled or connected to large energy
liability, and energy efficiency than homogeneous archi-Sources. The XScale-based Intel Stargate [16] platform
tectures. Using the Mote Herding abstractions, we havéS & Popular representative of this category. The type of
implemented a set of services that run across both pla@dévice used in a sensor network is paramount in defining
forms, namely a mote routing service, a data reliabilitythe capabilities and limitations of the entire system.
service and a resource discovery service that is based on However, neither class is suitable fif applications.
three subservices. We evaluate the performance of op general, low-cost platforms are ideal for applica-
services using simulations and emulations of both samtions that can operate with that level of functionality,
ple scenarios and a habitat monitoring application. Ou@nd suited for highly energy-optimized, vigilant applica-
results show that the mote routing service is able to maintions. But there are also applications that require more
tain better than than 99% connectivity at high networkcomputation or storage and can justify the additional
densities, while incurring 60% lower transmission over-C0Sts [4]. Moreover, many applications will require a
head than two other routing protocols. We also show thafnixture of both in order to combine densely deployed
the data reliability service is able to deliver 100% of the lower-end sensors with more sparsely deployed higher-
data even when more than 30% of the network exhibit$nd nodes [2]. Itis for those reasons that the sensor net-
failures. Finally, we show that the habitat monitoring ap-Work community has been increasingly exploriigred
plication that uses Mote Herding is able to deliver all of architecturesvhere the system is composed of a mixture

the data with low control overhead and latency. of platforms with different costs, capabilities and energy
budgets.

i While adding more powerful hardware increases the

1 Introduction capability of the network, there are currently few guide-

o lines about how to structure software to easily take ad-
The past year has seen the realization of several succe%intage of a heterogeneous sensor network

ful sensor network deployments [26, 19, 2, 23]. This de- Mote Herdingis a system architecture and a set of

{Jloymter:t exp;ahr |ence”|s n:jovm%_the f"?'d (|jnto ? mokre Ma-services that targetarge scale heterogeneouwireless
ure state, IWI Sml‘f" te}n me Flumk}sme networ ts ru';'sensor networks. Its basic network abstraction and build-
ning sampling applications. ushing sensor hetwor ?ng block is theflock The flock is a collection of motes

beyond simple s_ampl_e and return appllc_atlons will in- that connect via a multi-hop routing tree to a microserver
troduce new engineering challenges, particularly regard-

called theshepherd The microservers communicate P
among themselves with a separate, higher-capacity net- 7 Rlock ¢ Shepherd
work over which they can exchange information more s
rapidly and more reliably than motes. The collection of
flocks and corresponding shepherds formshibel The
end result is dieredsystem, that can disseminate data ef-
ficiently through an overlay network and multiple trees.
Mote Herding is based on the principle that moving
complexity from the mote network to the microserver
network aids development of more reliable and efficient
services. Mote Herding accomplishes this by leveraging
the CPU and storage resources of microservers to im-
prove the computational capability, decision-making and
long-term reliability of the deployed network. To demon- Figure 1:The Mote Herding architecture and its components,
strate this we have developed several Mote Herdierg theflock theshepherdand theherd
vicesbased on this principle. We consider two classes _ ,
of services:flock services run on a single flock and the CrOServers ab(_)ut.motes in a shepherd's ﬂQCk are an-
corresponding shepherd, whiterdservices span the en- swered authoritatively by the shepherd. This however

tire herd and use flock services to interface to the moté °°>. not preclude pther MICTOSETVETS 1N t’he' network
network. eeping cacheo_l copies o_f another shepherd’s list. In that
The main contribution of this paper is to introduce aspect,_ the_deS|gn IS S|m|Iar_to DNS' L
Mote Herding as a new architecture for large, tiered, To S|mpI|fy.on—mote routing, mtra—flock routing s
wireless sensor networks. We present the design print—ree'baSEd’ with _each mote knovx{n_qg ohly how to reach
ciples behind this architecture (Section 2), and demon:[he §hepherd of its flock . In addmon, inter-flock com-
strate the effectiveness of these principles by design[nun'_cat"‘-Jn can only take_ place mtlsbepherchetwo_rk. .
ing communication services tailored to this architectureIn this archltecture,_ arbiirary mote-to-mote routing is
(Section 3) and building higher-level services on thistherefore only possible through the herd-level overlay

foundation (Section 4). We then evaluate the benefit etwork. Compared to the intra-flock network, herd-
of tiered architectures (Section 5). Our results sho evel (inter-flock) routing is mesh-based, treating all mi-

that our routing service is able to maintain higher thanCTOSEIVETS as Peers.

99% connectivity in medium or high network densities Based on the above, Mote He_rd'T‘g can be_ thought of
while incurring a low overhead. In addition, our reli- as alocally centralized/globally distributedrchitecture.

ability service is able to delivet00% of the data with Ea((j:f;l ﬂOka h&:s ICE ntralized p:ﬁperrt:esf,] 5|gce :.?te:hfusmtn
low latency even in the presence of considerable link fajl-21d TlOCK controthappens on the shepherd, whiie the net-

ures. Throughout the paper we present related work as }Q/mk O.f shepherdss a distributed system that shares in-
arises. ormation about each flock, delegates tasks to the appro-

priate shepherds and makes collaborative decisions.
While there have been several specific approaches to
2 MoteHerding Architecture exploit the capabilities of tiered networks [24, 15], devel
opment thus far has been difficult because each approach
The basic network abstraction of the Mote Herding archi-has been hand-crafted. Mote Herding begins to explore
tecture is thdlock The flock is a collection of motes that guidelines to clarify how services should be developed
can communicate (with the routing protocol we describein tiered networks, as some other concurrent projects are
in Section 3.1) to a microserver, called the flockteep- also doing [12]. Mote herding preserves the peer-nature
herd Shepherds use standard IP-based ad hoc routingf original sensor networks, but only at the microserver
over an 802.11 network to runraliable state replica- tier, adopting a centralized approach to simplify the mote
tion protocol (described in Section 3.2) that allows themlevel.
to easily share changing information like flock member-
ship. Theherdis the collection oflocksandshepherds 2
that forms the entire mote/microserver network. Figure 1
illustrates the components of the architecture. Mote Herding revolves around the following primary de-
Each mote has a one-to-one relationship with its shepsign principle:
herd, and so is part of exactly one flock at a time. The Shift system complexity from motes to microservers for
shepherd is responsible for its own flock and is a@lse those operations that require distributed decision making
thoritative for it: for example, queries from other mi- on the motes.

1 Design Principles

Herd Services

‘ A ‘ ‘ B ‘ ‘ A ‘ 4----»‘ B ‘ Herd Foundation Service
L * l‘ ‘ Microserver |:l'> Data Resource Taski
@ @ @ @ State Replication Replication | | Discovery ey
A) Flock Foundation Service ﬂ Flock Services
Figure 2: A sink selection scenario that illustrates the dif- I
. - Mote Routing |::> CElR) Registration| | g o1er
ference between mote-based and microserver-based distribute Reliability | | Protocol

decision making.
Figure 3:The Mote Herding Service Classes and their corre-

This design principle yields several corrolaries: sponding foundation services.

1. Centralize decision making on a microserver

thereby improving system performance as decision?_nces bereen mote—pased and microserver-based _deC|—
can be made based on a more complete data set. sion making. Mote3 wishes to attach to the best avail-

: : . able sink, based on some well-defined selection metric.
2. Reduce volatile state required for system functlon—In (a), the microservers send beacons (dashed arrows)
lity onm . '
3 %ﬁ(o otes tational q icati that get propagated to the mote network. The mote re-
- Ctlize computational and - communication Te- .oy a5 the peacons from both microservers and selects
sources on microservers along_wnh.thelrpeernatur(?he best one to reply to. In (b), the mote sends a join
to support m.ore.‘ F:omplex functionality.) .. beacon (dashed arrows) that eventually reaches the mi-
4. Program asignificant part of the system in a familiar orservers, The microservers compare metrics and the
and resource-rich environment. “winner” replies to the mote. In (a), the memory and
In a collaborative distributed system, nodes make deygndwidth requirements on mogescale linearly with
cisions based on their local information as well as infor-ihe number of microservers. In (b), memory and band-
mation shared by other nodes. In the_majo_rlty _of caseSyjidth requirements aré(1). By delegating decisions
the accuracyand correctnesf the decision is directly 5 the microservers, we can therefore reduce the motes’
proportional to the amount of information available t0 gtate and bandwidth requirements and thus improve the
the node, both spatially (i.e., reports from as many nodeg atwork densitgcaling properties.
as possible) and tempprally (i.e., hist_ory of past reports) The mote network bandwidth still places a limit on the
The resource constraints of the 8-bit platform howeverymount of data that can be sent to a single microserver.
place a limit on the _sp_atlal and temporal fidelity of th_e As networks grow in numbers of nodes, at some point
data. However, the limited storage and network capacitsenging all relevant data to a central point becomes im-
available to an 8-bit mote platform constraints their spaossible. Ifmultiple microservers exist, each gathering
tial and temporal views. As a result, decisions made oryystem data for its own flock, the microservers can then
a mote often must be based on limited information, everpyp|oit their high-bandwidth network harethat infor-
assuming complete message reception. mation among themselves. By replacing a flat network
On the other hand, the 32-bit platform has ampleyith two radio tiers it becomes possible for each mi-
storage and computational power to support collaboragygserver to maintain a view of the entire network while
tive decision-making algorithms and more complex al-not overburdening individual motes. Adding multiple
gorithms than are possible on motes. They also havgicroservers to the system therefore has a dual effect: it

sufficient network bandwidth to operate in a distributed o ces theffectivediameter of the mote network while
manner. This observations suggests that microserverg<1-\,ingI each microserver global view

can serve as “concentrators” or “fusion points”, taking

input from multiple motes in a flock and combining this

information to provide better decisions than an individ-2.2 M ote Herding Services

ual mote can make alone. Such an operation requires that

motes send data back to their microserver. However, thi§uilding on the concepts dfocksandherds Mote Herd-
does not apply to all forms of data; only data required foring services are split into flock- and herd-wide services.
decision-making needs to be sent. Sensor ddt& i to Flock servicesare services that operate on a flock of

a node and does not require knowledge of or communimotes under supervision of a single shepherd. Those ser-
cation with other nodes. In contrast, neighbor estimationYices are “hybrid” in the sense that they reside on both
path estimation and best sink selection are operations tha#otes and microservers. Flock services adhere to the de-

need data from other nodes and as such incur a comm&gn principles outlined above: motes deliver data to the
nication cost as well as a storage cost. shepherd; the shepherd makes decisions based on that

Figure 2 presents an example that illustrates the differdata and then forwards those results back to each mote.
These services emphasize tinaster-slaveelationship

that exists between flock motes and their shepherd. Flocknd neighbor tablego dynamically discover the topol-
services can use other services in the same flock (wegy of the wireless network. With distance vector rout-
show example interactions in Sections 4.1 and 4.2.1), buihg algorithms, each node independently selects a next
they do not interact with motes in other flocks. hop from its neighbors that reduces its distance towards
Herd servicesare services that operate on the en-the sink. Some protocols use different different metrics
tire network, building on flock services to provide more (such as ETX [6]) to define the “best” next hop, possibly
complete applications. Unlike flock services, herd ser-based on link quality, available energy, or other charac-
vices run only on the higher-performance microserverteristics.
network. If they need to interact with motes, they do so Recent experiences with the ESS deployment have
with an appropriate flock service. Herd services treat aluncovered several underlying issues that stem from the
microservers as peers, allowing distributed and collaboaforementioned properties of those routing algorithms
rative decision making based on both flock services andombined with the resource constraints of the mote plat-
other herd services. form. Those issues are: (a) neighbor-table overflow, (b)
The commonality across all services is distributed de-count-to-infinity and (c) routing loops. We address each
cision making. Multi-hop communication and informa- of these issues in more detail.
tion sharing is therefore the foundation of other services. To populate its neighbor table, the mote needs to learn
Thesefoundationservices for communication are sim- about its neighbors. The state requirements for the neigh-
ple multi-hop routing inside flocks, and a state replica-bor table are therefor®(n), wheren is the number of
tion service calledStateSynat the herd level. We ex- neighbors that a mote can have. Because of resource con-
plore these foundation services in the next section thestraints, motes are typically configured with relatively
present several higher-level services built on top of thissmall, statically sized neighbor tables. In dense wire-
foundation in Section 4. Figure 3 shows the relationshipless sensor networks, the number of potential neighbors
between foundation and composite services at the flockan exceed the available storage capacity allocated for
and herd levels. the neighbor table [22]. In that case, the designer of
the routing protocol must implemennaighbor eviction
policy[22]. In doing so however, the selection of a parent
is now based on aubsef the actual neighbor list, thus
rtificially limiting the choices (and paths) a mote can
ave. Moreover, eviction/insertion policies suffer from
hrashing where a mote is inserted in the table only to
e removed in the next iteration. This can lead to routing
instabilities if this mote was indeed the next hop towards
the sink.
The distance-vector protocol is known to suffer from
3.1 Flock Foundation Service: Mote Rout- the “count-to-infinity” problem. This can adversely af-
ing fect the performance of routing by creatitopps As a

) L result, special care (like poison-reverse or split-har)zo
Flock services depend on communication between mMotes, st be taken to avoid loops or repair them if they

and their shepherd. Motes pass data, possibly over mu{"orm.

. . ; . In MintRoute, motes monitor forwarding traffic
tiple hops, to their shepherd, while the shepherd disy 4 snoop on the parent address in each neighbor's mes-

patche; control messages t(_) mote_s. This se_ctlon.ex.plorgages in order to identify neighboring children and thus
our design of centralized, bidirectional routing within a disqualify them from the parent selection process. Nev-

flock. q ing i widel , K ertheless, those mechanisms are not infallible and loops
Tree-based routing is widely used in sensor networ Scan still form (especially n-hop loops). In particular,

where all nodes construct a multi-hop routing tree 10 &y, one of our MintRoute simulations, we experienced a
centralized root (or gateway or sink). In Mote Herding system-wide count-to-infinity problem that resulted in all
we construct many such trees, one per flock, between thfﬁe motes in the network having routing loops

motes of the flock and their shepherd. The aforementioned issues are examples of distributed

MintRoute [22] and Directed Diffusion [13] are tWO e igion-making on the motes that is basedirom-
routing protocols that are often used in sensor networkspleteand potentiallystale data

The Multihop routing protocol which is part of the ESS
deployment at James Reserve [26] combines a simpli
fied Diffusion and MintRoute. Each of these protocols
uses adistance-vectotike routing algorithm to deter-
mine routes back to the sink, and emplépk estimation

3 Foundation Services

Mote Herding foundation services provide the essentiaﬁ
functionality on which higher-layer services build upon.
These services are bidirectional mote-to-microserve
routing at the flock level, and reliable state replication
at the herd level.

In mote herding we use CentRoute to communicate
between motes and their shepherd. Following the princi-
ples layed out in Sections 2.1 and 2.2, CentRoute shifts
all decision making to the shepherd. CentRoute ad-

needs to be attached to a tree. When the network starts
‘ up, no motes (besides those directly attached to mi-
/ \ /: \ croservers) are parts of a tree. Initially, only the motes
@ @ @ @ that are one hop away from a microserver will be within
range of an attached node (in this case, the microserver).
In the next round, the motes that are two hops away will
be able to attach, and so on, until the entire network be-
comes connected. Figure 4 shows an example tree form-
ing operation. In (a), all motes send a join request, but
only motesl and?2 are within range of an existing tree
(the shepherd itself). In (b), the shepherd sends join re-
ply messages (dashed arrows) to mdtesd2, thereby
grafting them to the tree. In (c), moesends another
join request. This time, motdsand2 which are now part
of the tree forward the join request towards the shepherd.

dresses the main problems described above: since it rud8 (d), the shepherd grafts nodevia the path that goes
on a microserver with megabytes of memory, neighbo,through motel. Mote 3 also sets its parent to be node 1,
table size is not a limitation. Since all path selection andS© any subsequent upstream traffic will be sent to it.
routing decisions are made centrally, different motes will The centralized nature of the tree formulation in con-
not come to different decisions that can lead to inconsisiunction with source routing and the absencemymote
tencies. In Section 5.1.1 we conduct a number of sim¥ecisions concerning path selection results in a consid-
ulations to show that these approaches in CentRoute afable reduction in the number of transient loops (Sec-

successful at providing high network connectivity and re-tion 5.1.1). In particular, routing state is always set up by
ducing the number of loops. constructing a path from the shepherd to the mote via a

source routed packet. This packet trails behind it a loop
free path to the shepherd so any old state in the network
3.1.1 Routingtreeformulation that somehow happened to meet this path would there-
fore have a loop free path to the shepherd as well. As a

Following the principles outlined in section 2.1 we de- o1t 1o route is ever added that can have a loop, and no
signed CentRoute to be a dynamic single-shepherd rout-

) . , X old” route that is disrupted can result in a loop because
ing protocol based on source routing, with all routing de-; it can do is join a loop free route, or not work at all.
cisions made on a centralized point, the shepherd. A formal analysis of the loop performance of CentRoute
In orde_r tq join a tree and th_u_s be part of a flock, eacf*iS part of future work.
mote periodically broadcasts join request messages. If a
mote that is already part of a tree receives this message, it
fo.rwardsit.towards its shepherq,. via its parent, py gener-31 2 Routing Metric and Link Quality Estimation
ating a unicast packet. In addition, the forwarding mote
adds its own address to the packet, thus recording th8ince path selection is done on a centralized point in
path the packet is taking towards the sink. This is essen€entRoute, the motes need to provide the shepherd with
tially a similar approach to Source Routing [17]. Upon sufficient information for that decision. When a mote re-
reception of a request message, either by direct broadseives a request, it will include link quality estimate
cast or via a forwarded packet, the microserver will gen-when forwarding the request towards the shepherd.
erate a join reply packet and unicast it towards the re- In the example of Figure 4, motes 1 and 2 will write
quester, by reversing the packet's received path and ugheir estimate of link quality to mote 3 into the request
ing source routing. In addition, the microserver storesbefore passing the join request towards the shepherd.
this path information to use whenever it needs to send &hese estimates computed at join time enable the shep-
unicast packet to that mote. When the mote receives thieerd to annotate a tree with link quality estimates along
join reply message, it becomes attached to the replyingach edge, and thus to select paths using ETX [6] as a
microserver—its shepherd (we discuss multi-shepherdouting metric.
resolution in Section 3.1.4). It also sets the last mote Motes in CentRoute use the join request beacons to get
that forwarded the join reply as iparent Finally, since link quality estimates, by having each mote send several
the mote is now part of a flock, it stops generating furtherbeacons in quick succession. In order to reduce control
join request messages. overhead, receiving motes that are part of the tree only
The join operation in CentRoute happenspimases forward anaggregatejoin request that contains the the
since, in order to forward a join request packet, a motdotal number of broadcast requests received by that mote

®

Figure 4:A CentRoute tree forming (join) operation.

in that period. Using this information, the microserver When multiple microservers exist in the network,
has sufficient data to form dnstantaneoudink quality = a mote join request can be received by several mi-
estimate and subsequently, a path estimate. croservers, as shown in Figure 2. Since mote-to-
An important property of the estimation algorithm is shepherd assignment is one-to-one, the “competing” mi-
that link quality estimates need only be kept for as longcroservers need to select which flock the mote should
as the mote is trying to join. This is in contrast with join. As each microserver already knows the best path
traditional link estimation schemes where estimates neetb the mote from its own flock, the microservers need
to be kept at all times and cannot be discarded unless anly compare the values of their local path metrics for

mote is evicted from the neighbor table. the mote in question. Essentially, this is the same op-
eration as path selection on a single microserver, with
3.1.3 Stability and Maintenance information about alternative paths through other flocks

provided by other microservers.
In order to increase the stability of the network, we de-
signed CentRoute so that it doesn't try to find improved . L
paths (in terms of its routing metric) once the original 3.2 Herd Foundation Service: Microserver

paths have been established. As long as the individual ~ State Replication
link qualities don’t change radically, the initially seted Herd services run on the microserver network, joining

path will not be too far from theptimal path, at any o microservers into a common distributed system. To

IOOIB;E n t|m:a. .AS a rﬁ?”“' thgf_p_rotocol_canl_ form more support distributed algorithms that depend on informa-
stable topologies, while sacrificing optimality at SOome i, ¢rom multiple flocks,microserver state replication

future point in time. This process also has an anneal~Is provided as the foundation of herd services.

ipg" effect tqwards stability,' because temporally stable \1ote Herding uses a protocol called StateSync [10] as
links, once discovered, are likely to remain selepted. its foundation service for reliable state replication asro
Even though CentRoute does not_attempt to_fmd abthhe herd. StateSync is a proactive publish-subscribe
ter path when one has been established, it still needs [sttem that strives to provide low-latency updates to
ensure that _the existing path\iglid,_i.e., all links from published data over multiple hops with low overhead.
the mote to its shepherd are still wablg. (;entRoute use§tateSync is a reliable protocol with a probabilistic la-
I!nk-layer ACKs and p_acket_ retransmissions to d_Educe[ency bound that publishes a node’s state over multiple
link failure. Once the link fails, the mote at the point of hops by proactively sending differences. Through the
failure cop;iders itself detached.from. the tree. It then_ in'StateSync API, a node publishes a table of data, and
vokes thq_o'(‘ !“eCha”'Sm’ described in 3.1.1, by startmg the StateSync system automatically computes the diff re-
.to' transmit join request messages. If, a mote receives auired to update the subscribers. StateSync is designed
join request from its parentz i |mmed|§\tely detaghes o support applications that need reliable publication of
sglf from the tree and als_o |n_/ol_<es fuen mechanism. oir oyrrent state and timely propagation of updates, for
_Sl_nce the repair _m_echa_nls_m Is in effect the same as th(‘?ases where the subscriber needs access to the data at
join mechanism, it inherits its loop prevention properties a higher rate than the rate of change of the data values.

In qrder_to reduce the CO””,O' overhead when the NeYs|s also provided reliable shared data, but targeted pri-
work is quiescent CentRoute is an-demandprotocol. rnarily at LANS [3]

As a result, CentRoute does not require periodic contro StateSync's proactive publishing model does not fit

messages to maintain its paths; instead it discovers angh applications. Those that have a high ratio of data

repairs broken paths on demand, when triggered by dat@iements and updates to data access require a cached

packets. This approach trades off reduced control OVeltoquest-reply protocol such as Hood 211, This tvoe of
head for potentially higher path repair time. q Yy p [21]. P

service is important future work for Mote Herding.

3.1.4 Dynamic shepherd selection .
y ® 4 Flock and Herd Services

To increase the robustness of the network, CentRoute

was designed to suppodynamic shepherd selection Using the foundation services we can now build compos-
Since the mote assignment to flocks and shepherds ite flock and herd services. In addition to the foundation
not pre-configured, a mote can associate with a differenservices for flock and herd communication, Mote Herd-
shepherd and flock if its current shepherd becomes urning currently provides two flock services, mote data re-
available, such as due to microserver failure. We chooséability and a mote registration protocol and three herd
not to allow motes to associate with multiple shepherdsservices, resource discovery, resource caching and query
in keeping with our goal of minimizing mote-side com- dissemination. We have considered a number of possi-
plexity (Section 2.1). ble additional services, including a global tasking sexvic

that distributes tasks to each mote in the network, a data

. Resource
replication service that replicates flock data at each mi- DS EOVERY
croserver to improve robustness and a system monitoring T
service that continually monitors the entire network. Im-
plementation of these additional services is future work.

Query
Resolution

i

StateSync

Resource
Caching

i

In mote-based Wireless Sensor Networks, the wireless RO

communication is known to show variable and often < Protocol

4.1 Mote Data Reliability

large loss rates [5, 25, 22]. As such, application design- Gemiieie i
ers need to take packet loss as a given and design appli- Reﬁ::)eillity
cations to be loss-tolerant. An important class of appli-
cations require high reliability and would benefit from a Figure 5: The Resource Discovery service connection dia-
data reliability service. gram.

DataRelis the Mote Herding data reliability protocol,
a flock service that strives to provide guaranteed data dd© Select subsets of the network based on other factors,
livery in a lightweight manner. As a result, we designedSUCh as location or coverage area. , _
DataRel to be a window protocol that uses end-to-end C0Mmon approaches to resource discovery include:
ACKs and source-based packet buffering, in a mannepwectquene; on demand, in-network caqhmg orc_achmg
similar to TCP. DataRel can use end-to-end ACKs effi-at @ central site. The one-phase pull variant of Directed
ciently, since the CentRoute service allows for unicastiffusion [13] is an example of a direct query approach,
packet transmissions from the shepherd to any mote i¥hile the Ninja Service Discovery Service [7] is an ex-
the flock. In addition to end-to-end ACKs, DataRel uti- @MPle of an in-network caching approach. The caching
lizes link-layer ACKs and hop-by-hop retransmissions to@PProaches in general provide faster query resolution
improve the probability of successful delivery, contrary SP€€d, at the expense of additional complexity and over-
to PSFQ [20] and similar to RMST [18]. RMST operates Néad for handling cache misses or "stale” data.
solely on 32-bit nodes over Directed Diffusion with all Much like routing, the main factor that influences the
nodes being peers while DataRel is a mote-to-shepherghice between on-demand and a priori approaches is the
reliability protocol. PSFQ is a mote-based hop-by-ho fam_ount of temporal variation in the data. Sensor data
protocol that uses NACKs for error recovery and a con-IS ti€d to physical phenomena and as such can change
trolled flooding algorithm for data distribution. rapidly or slowly, depending on the physical process be-

The mote’s shepherd is not necessarilyfihal desti- N9 measured. For example, an acoustic signal changes
nation for a data packet. Once the packet reliably reacheg®uch more rapidly than a temperature value. In addition
the shepherd, it can be forwarded to its final destinalC Sensor data, link quality, instantaneous queue size and
tion using a conventional IP reliability service, like TCP. réceived signal strength indicator are other examples of
However, for the purposes of the DataRel protocol—andTeduently varying data. On the other hand, hardware and
since DataRel is a flock service—we consider the engSeftware capabilities of a platform constitute informatio
points to be the source mote and its shepherd. This aghat changes slowly over time. For example, the actual

proach, which is similar to Split-TCP [1], is based on S€NSOrs installed on a mote (as opposed to their values)
the realization that, like satellite and terrestrial net@o ©F the mote’s radio constitute information that character-

the mote network and the microserver network have veryZ€s the mote and does not change often. In terms of
different communication properties, especially in terms°verhead, an on-demand polling protocol is more appro-
of bandwidth, latency and bit error rate. Alternatively, Priate for high temporally varying data, while an a pri-
one could view DataRel as an example of delay-toleranf'! €aching approach is better suited for low temporally
networking [8], where the flock and the herd are separat¥@rying data as information can remain “fresh” for larger

DTN regions. periods of time.
We have implemented ResDisc using the mote herding
principles. Since mote resources for the most part ex-
4.2 Resource Discovery hibit low temporal variation, we adopted the in-network
caching approach. The design of ResDisc is based on

Our first composite service at the herd levetésource o < b-services. Thegistration protocolflock ser-

discovery Resource discovery is essential in sensor Netyice provides resource data from the motes in the flock.

w_orks where nodes have different capab|I|t_|es,_ such ¥ heresource cachindrerd service is responsible for ex-
different sensors or actuators, or where applications wish

porting local resource data provided by the registration 120 N
protocol as well as maintaining its cache of resource data Winisotte
from other shepherds. Finally, tlygery resolutiorherd R = yu*p
service is responsible for replying to resource discovery rome .
queries. Figure 5 presents the Resource Discovery ser-
vice diagram.

In the following sections, we describe the registra-
tion protocol and resource caching service in more detail.
The query resolution service has not been completely im- 20 1
plemented yet and as such we defer its discussion to fu- S
ture work. 4 8 12 16 20 24 28 32

Mote neighbor density (number of motes)

80 |
6of ¥ "

40 -

Network connectivity (%)

Figure 6: Network connectivity percentage as a function of
mote neighbor density for CentRoute, MintRoute and Multi-
The goal of the registration protocol is to “register” re- hop.
source information of a mote with its shepherd, as well _.. . .

rar ; cation herd foundation service. In each shepherd, re-
as keep the shepherd updated if this information changes.

. . . . Source caching maintains a table containing all motes it
Consequently, the registration protocol iiack service . : .
. . has data for (potentially all motes in the network). This
To reduce communication overhead as well as improv

the update time, we designed the registration protoccﬁae?iﬁczan then be used as an inputto the query resolution

to be event-based as opposed to using a periodic refres

mechanism. As a result, the protocol is invoked automat-

ically when one of the following events occurs: the mote5 Evaluation

joins a shepherd’s tree, a registered resource changes

value or when instructed by an application. A further op-In this section we evaluate the three Mote Herding ser-

timization that has not been implemented yet includes revices that have been fully implemented, namely routing

sponding to direct queries from the shepherd. To ensur@nd data reliability for flocks, and resource discovery for

correct ordering of events as well as resolve potential amberds. We also use a habitat monitoring application to

biguities, we used a simple sequence number scheme Rvaluate a set of Mote Herding services working in col-

which a new sequence number is generated when a nel@boration. We run our experiments using the EmStar

event occurs. framework [9]. The flock services are evaluated using
The absence of a periodic refresh mechanism introthe EmTOS [11] emulation module of EmStar, which al-

duces a reliability issue, as registration messages,tif loslows development of fully functional NesC applications

will not be repeated. As a result, the registration protocolin the resource-rich environment of a 32-bit platform.

uses the DataRel mote data reliability service introduced

in section 4.1 to guarantee reception of its messages bg 1 M ote Routing

the shepherd. Finally, to allow for flexibility in the regis-

tration data, we chose to use a variable-size type-lengtHour routing experiments focus on three important as-

value (TLV) format for the actual data transfer. pects of any routing algorithm, specifically network con-
nectivity, loop probability and control overhead. In all

our routing experiments, the experimental topology con-
sisted of a 100-mote simulated network, arranged in a
One of the goals of the resource discovery service is thd0-by-10 grid with uniform 10m spacing between motes.
ability to reply to any query as quickly as possible, by We then place a single sink, in the middle of the bottom
having all available information on each microserver. Torow of the grid at coordinates (50m,0m). To study vari-
accomplish this, we designed the resource caching seable network densities we keep this topology fixed and
vice, a herd service that supplements the registration prosary the simulated radio range. In all our routing ex-
tocol flock service. periments, we compare the performance of CentRoute
Resource caching is a simple service that is responto MintRoute and Multihop. The neighbor table size
sible for exporting resource data obtained through theon both MintRoute and Multihop was set at their default
registration protocol to other shepherds. At the samevalue of16. We vary network density, so at high densities
time, it receives similar data from the remote shepherdsve expect the number of neighbors to exceed this fixed
and caches it. To accomplish this functionality as wellrouting table size. The periodic beacon rate for Mint-
as ensure consistency among caches throughout the nfRoute and Multihop was set &) seconds. Since Cent-
croserver network, resource caching uses the state replRoute is an on-demand protocol, it requires data trans-

4.2.1 Registration Protocol

4.2.2 Resource Caching

missions to perform route maintenance, as seen in Sec-[Neighbor | CentRoute MintRoute Multihop
tion 3.1.3. Therefore, the CentRoute experiments con- | density loop prob. loop prob. loop prob.
tained data transmissions, at a rate of one packet every| (motes) (%) (%) (%)
30 seconds per mote. The maximum number of trans- 4 0 0.47 211
mission retries per packet, used in the CentRoute repair 8 0 0.01 1.92
mechanism was set o 12 0 0.02 1.88
16 0 0.03 2.48
20 0 0.03 3.65
.- 24 0 0.04 4.8
5.1.1 Network Connectivity o8 0 0.04 312
First we look at how well each routing protocol main- 32 0 0.02 7.27

tains connectivity to the sink. We study how connectiv- Table 1:Average loop occurrence probability as a function of
ity varies as we change the network density by increasingensity for CentRoute, MintRoute and Multihop.
the simulated radio range.

For the purpose of our experiments, we definete
neighbor densityto be the number of one-hop neigh-
bors of a given mote that have a link quality ©3% or
higher. Since we use a grid topology with even spacing, >
thg neighbor density inc?easesin sg:)e!ps.dNe noterihat ° complexity in the mote network.

the actual number of motes that a single mote can hear Multihop exhibited its best performance in medium
can be considerably higher than its neighbor density [ZZEensmes (8-24 neighbors/mote). At high densities (24—

mote B has evicted mote A. As a result, a mote is unable
to find a parent and stays disconnected for large periods
of time. This problem could possibly be solved by ex-

changing neighbor evictions at the cost of even greater

. ? 2 neighbors/mote), Multihop performance is hampered
and that property is reflected by our simulated channe y a high probability of doop occurrence in addition to

model. the table thrashing problem. At 4 neighbors/mote, Multi-

In order to measure network connectivity, we periodi- . :
. hop could not connect the network because of its routing
cally trace a path from each mote in the network towards_", . . .
. . : metric, an 8-bit value that decreases exponentially (based
the sink. If a path is found, we consider the mote to be . . .
) . . —~on link quality) as the path length increases. In low den-
connected for that particular time sample. At each time_. . ; .
sities, when path lengths are considerable, the routing

sample, network connectivity is the sum of all the motesmetric reaches its minimum value ofafter a few hops

that have a path to the sink. The duration of all our rout-and as such no more motes can be added to the path. In

Ing experiments was hours_ and our sampling penod effect the current Multihop implementation has an arbi-
was10 seconds. The first minutes of each experiment . .
trary maximum path length cutoff point.

were discarded, so as to allow each routing algorithm to L .
. . . The initial decreased performance of CentRoute is due
reach stable state. In this and all following experiments, _ . ; . .) .
to its centralized nature in conjunction with the tree for-

error bars in experimental results &% confidence in- mulation and repair mechanism. A path in CentRoute

tervals. ;)
: . . will be invalidated ifany node in the path fails to trans-
Since CentRoute does not contain any neighbor tables . : Y path
.mit a packet to its parent, after a certain number of re-

or any other per-neighbor state thgt is limited to a maxl-es (currently set di retries per attempt). Therefore the
mum number of motes, we expect it to perform better as " Lo TR)
robability of a path invalidation is directly proportidna

mote neighbor density increases. By contrast, we expe o0 the path length, which in turn is inversely proportional

MlntRogte .and Multihop to exhibit Ioop; anq blackholes io neighbor density.We could reduce this problem by in-
as density increases, for the reasons given in Section 3.1. " : o
Creasing the number of retries at low densities, or after

From Figure 6, we note that with CentRoute the net-)
repeated failures.

work is almost always connected, regardless of mote .
: : To understand the relative effect of loops on network
neighbor density. In fact, the performance of CentRoute o -
) - o connectivity, we explicitly measured the number of loops
actuallyimprovesas density increases, rising frad%
. : that occurred for each protocol. The CentRoute protocol,
at mean density ofl neighbors t099.9% when nodes : ; .
. . due to its centralized shepherd-based path construction
have 12 or more neighbors. In contrast, MintRoute

starts ab7% connectivity then reach&9.9% in medium and source routing is expeqted to have very feyv, i any,
. 2 . loops (Section 3.1.1). The distance-vector algorithms are
densities, but connectivity falls off as density exceeds :
expected to have more loops than CentRoute. Multihop,

the static routing table size (above 16 neighbors). This . . co
L . . in particular, that has no loop-prevention mechanism is
degradation is because, when neighborhood size exceecps

. .) Xpected to have the worst performance.
the routing table size, there are several cases in botﬁ P P

MintRoute and Multihop when mote A considers mote Table 1_shows the. percentage of Ioop-s encountered
: : o S as a function of density for the three routing protocols.
B a neighbor but not vice versa. This disparity is due

to table thrashing—mote A has mote B in its table, butCentRoute did not exhibit any loops that were detectable

——— fected. !n con'trast, the distance—vegtor protocoldado
Minttoute +—— cal repairs which are not as expensive. As a result, we
] expect the CentRoute overhead to be high when the net-
work is sparse and get progressively lower as the density
increases.

Figure 7 depicts the average per-mote transmission
overhead in bytes per second for the three routing pro-
tocols as a function of mote neighbor density. In the
lowest density, CentRoute has the highest cost of all the
S three protocols. This is due mainly to the repair mecha-
4 8 12 16 20 24 28 32 nism’s inability to find good paths, as the available selec-

Wote Neighbor density (number of motes) tions are limited. As the network progressively becomes
Figure 7:Per-mote byte overhead as a function of mote neigh-more dense, CentRoute can find alternate paths to the
bor density for CentRoute, MintRoute and Multihop. sink that are more stable than the initial selection. The
repair mechanism does not need to be invoked as often

Overhead (bytes/sec/mote)
w

Usage RAM ROM RAM cost - . .

(bytes) per neighbor and transmission overhead is reduced con&dergply.
CentRoute | 1274 17184) MintRoute and Multihop, on the other hand, initially
MintRoute | 1689 12588 18 start with a low transmission overhead but grow greatly
Multihop | 1560 17292 19 as the neighbor density increases. Since neighbor tables

are transmitted by each mote as part of the link estimator,
higher densities result in a higher transmission overhead,
up to a saturation point that is based on the maximum
with our 5-second sampling period. A proof that Cent- size of the table. The overhead reduction for MintRoute
Route is loop free is an area of active work. MintRouteand Multihop in very high and very low densities is due
loop probability was highest in the low density case butto their route advertisements, which are only transmit-
was an order of magnitude less in all other case. Wded when a mote is connected. As shown in Figure 6,
believe that this disparity is due tohop loopsin con- network connectivity for MintRoute and Multihop is re-
junction with the particular geometric properties of the duced at very low and very high densities and as such
grid topology. MintRoute does not allow a mote to se-less route advertisements are transmitted.
lect any of its neighboring child motes as a parent, thus A second kind of overhead is memory usage of each
preventing 1-hop loops. N-hop loops cannot be detectedlgorithm. Table 2 shows the RAM and ROM foot-
however. At very low densities, the limited number of print of each of the three routing algorithms, using the
alternative paths in the network combined with the largerTinyOS default message length (29 bytes payload). We
path lengths and the geometric properties of a grid topolnote that CentRoute has the lowest RAM usage which
ogy result in n-hop loops occurring more often. Finally, doesn't increase with the neighborhood size. In contrast,
Multihop which lacks a loop-prevention mechanism andMintRoute and Multihop have comparable RAM usage
also uses a non-monotonic routing metric has the highestnd per-neighbor costs. The per-neighbor cost places a
probability of a loop occurrence. considerable limitation in the operation of the distance-
vector alrogithms. Increasing the neighbor table from its
default size ofl6 to 50 so as to support larger numbers
5.1.2 Control Overhead of neighbors incurs an additional RAM cost of ab680

) . . bytes, while the size of the table itself is almdsi00
The control overhead of the routing algorithms is thebytes i.e.25% of the total RAM of the Mica2 mote

transmission overhead incurred by their operation as welre rea| advantage of CentRoute here is that it shifts the
as tr;]ew(;nefmo_ry usage on the mote. The transmIssiop, qen of variable size data structures like the routing ta-
overhead of MintRoute and Multihop is due to their pe- o 4 yagource-rich shepherds, while the other protocols

riodic neighbor beacons and route advertisement mesy, ot ajiocate routing tables statically sized to accommo-
sages. The transmission overhead of CentRoute containg e worst-case neighborhood sizes

join requests as well as join forward and join reply mes- Based on all our routing experiments we feel that

sages. In this section we conduct experiments 0 verifyn o centroute foundation service has achieved its de-
that CentRoute control overhead is similar to overheadsign goals. By centralizing the routing decisions on the
of alternatives. . . , . microserver and removing per-neighbor state on motes

CentRoute repairs can be quite expensive especiallgnipgyte manages to scale well with increasing neigh-

if the paths are long and the failure happens close 1q,, yensity as well as avoid loops while at the same time
the sink, as a considerable number of motes will be af-

Table 2:Mote RAM and ROM usage in bytes for CentRoute,
MintRoute and Multihop.

10

160

DataRel —— DataRel ——

100 —mDTIN - B
} :
7 P | :

100

,,,,,

60 [

Packet delivery (%)
Additional transmission overhead (%)

80 | AT
40 | 60 | e
40 b
20 -
20 |
0 0
0 5 10 15 20 25 30 35 40 45 0 10 20 30 40
Mote radio failure rate (%) Mote radio failure rate (%)

Figure 8: Average packet delivery ratio as a function of mote Figure 9: Per-mote additional transmission overhead as a
radio failure rate for DataRel and mDTN. function of mote radio failure rate for DataRel and mDTN.

incurring a low overhead. However, the centralized prop-across the flock for each packet received. Maximum
erty of CentRoute is not well suited for sparse networkshop-by-hop retransmissions for each protocol was set to
with long path lengths. The reason is due to the overhead. During the course of our experiments we found that
associated with transmitting all the control data back tothe default value of the mDTN retransmission timer was
a single point in addition to the expensive repair mechaset too high, resulting in very high latencies and higher
nism is invoked more frequently. loss rates. As a result, we changed the retransmission
timer period of MDTN from10 minutes tol0 seconds,

. the same as DataRel’s retransmission timer.
5.2 Data Reliability

Our reliability expgrimgnts focus on the performance ofg 5 1 packet Delivery Ratio
two mote data reliability protocols: the DataRel flock
service introduced in section 4.1 and the mDTN relia-In order to measure the delivery ratio, we annotate each
bility protocol used in the ESS deployment [26]. a hop- data packet with a sequential sequence number We then
by-hop protocol calleanDTN that is based on the prin- inspect the sequence number space for each mote at the
ciples of Delay Tolerant Networking8]. MDTN uses receiver and discard duplicates. The remaining packets,
link-layer ACKs and hop-by-hop retransmissions to reli- divided by the total number of original packets gener-
ably deliver the data. If next-hop delivery fails, mDTN ated by each mote is the per-mote packet delivery ratio.
stores the packet in non-volatile storage (the mote’s flaslrinally, we compute the mean and 95% confidence inter-
memory) for later retransmission. DataRel ran over thevals by averaging all per-mote results.
CentRoute service while mDTN ran over the Multihop Figure 8 shows the average packet delivery ratio as a
routing protocol. For our experiments, we again usedunction of mote radio failure rate for the two protocols.
the 100-mote grid topology plus a single sink in the mid-When no failures are present mDTN delivers on aver-
dle of the bottom row. However, we now fixed the mote age96% of the data while DataRel delivei$0% The
neighbor density td2 and instead changed theote ra- situation changes however as the mote radio failure rate
dio failure probability We used a simple failure model, increases. DataRel is able to ke&% delivery rate
in which every mote has a given probabilkyfor its ra- for a failure rate of up t&0%, dropping to an average
dio link to fail. The failure generator runs periodically of 97.2% for a failure rate ofl0%. At the same time, the
and applies the failure probability to every mote in the performance of mDTN degrades considerably, especially
network. In the next iteration, the failure generator “re- at high failure rates. The performance degradation is due
vives” failed motes before applying the failure probabil- to the nature and implementation of mMDTN. Specifically,
ity again. The result is that at any point in tirk&o of mDTN uses link-layer ACKs to decide whether a packet
all the motes in the network will be unable to receive orhas been successfully delivered to the next hop; if not, it
transmit any packets. stores it. Link-layer ACKs however carry no information
In all our data reliability experiments we used a simpleabout the packet's fate inigher layers of the stackin
periodic data generating application. The data transmismDTN, a packet can be successfully delivered to a mote
sion rate was set to one packet evdtyseconds, while but subsequentigiropped This is mostly due to a re-
the fault generator ran evebyminutes. Our experiments ceive buffer overflow as a result of network congestion
lasted until all motes had transmitt@d0 packets each, but can also be caused by more complex failure modes.
or until a 6-hour limit was reached. The DataRel win- A higher-layer ACKing scheme would solve this issue,
dow size was set td, so an ACK was sent by the sink at the expense of more transmission overhead. DataRel,

11

400 S Usage (bytes) | RAM ROM
T 350 | MOTN -oooxen | DataRel 100 6952
s | v mDTN 338 13278
§ ol * | Table 3:Mote RAM and ROM usage in bytes for DataRel and
I ? mDTN.
£ 2001) * | J
% 10l = i] Latency (sec) Mean 95% Quart. Max
L Registration Protocol | 0.61 5.18 6.97
- Resour ce Caching 0.12 0.32 0.41
g Table 4:Resource update latency for the registration protocol
% 1 20 0 pm and resource caching parts of the Resource Discovery service.

Mote radio failure rate

ber of unnecessary retransmissions. In contrast, Cent-
rI]-Qoute path failure notification is very quick and as such
DataRel does not suffer from this problem.

peing an end-to-end protocol, does not suffer from such Figure 10 shows the average buffer usage required by
ISsues. each protocol as a function of mote radio failure rate.
As expected, DataRel uses less buffers than mDTN since
it only buffers a packet at theriginal sender MDTN

on the other hand can potentially buffer a packedvary

The control overhead of the reliability protocols has two intermediate hop as the packet makes its way towards the
aspects: transmission overhead and buffer overhead. TH&al destination. This case is especially probable at high
transmission overhead is the numbereafratransmis- ~ failure rates.
sions incurred by the protocol. If a packet needs to travel Buffering at intermediate nodes has another effect on
N hops to reach its destination then any additional transoverhead: it requires additional logic on the reception
missions oveN constitute the transmission overhead. data path as a mote needs to determine how to treat each
For mDTN the transmission overhead is related to hopindividual packet. In addition, mDTN includes support
by-hop retransmissions at each mote. The DataRel trand0r multiple sinks which further complicate its imple-
mission overhead includes hop-by-hop retransmissiong€ntation.
(via CentRoute), as well as packet retransmission at the Table 3 presents the RAM and ROM footprint of each
source and ACK transmissions and retransmissions. Therotocol. Due to the aforementioned reasons, mDTN is
buffer overhead is the amount of buffer space requirednore expensive than DataRel in terms of both RAM and
at each mote to store unacknowledged packets. sSind@OM. The ROM cost in particular underlines the relative
DataRel is an end-to-end protocol, we expect its transSimplicity of DataRel compared to mDTN.
mission overhead to be considerably higher than mDTN. Our reliability experiments reinforce our design deci-
At the same time, since mDTN can potentially storeSion on shifting complexity from the motes to the mi-
packets on every mote along a path, we expect it to havéroservers. DataRel, a Simp|e end-to-end prOtOCO| can
a higher buffer usage. deliver 100% of the data even at high failure rates as
Figure 9 shows the per-mote additional transmissiorPPPosed to the more complex mDTN. The difference is
overhead as a function of mote radio failure rate for thePrimarily due to the end-t