
Mote Herding for Tiered Wireless Sensor Networks

Thanos Stathopoulos
†

Lewis Girod
†

John Heidemann
‡

Deborah Estrin
†

Center for Embedded Networked Sensing
† UCLA, Department of Computer Science

‡ USC, Information Sciences Institute

{thanos@cs.ucla.edu, girod@lecs.cs.ucla.edu, johnh@isi.edu, destrin@cs.ucla.edu}

Abstract
We proposeMote Herding, a new system architecture

for large scale, heterogeneous sensor networks. Mote
herding uses a mix of many 8-bit sensor nodes (motes)
and fewer but more powerful 32-bit sensor nodes (mi-
croservers). Mote herding groups motes intoflocksthat
are connected via a multihop network to a microserver
acting as ashepherd. Shepherds exploit their greater
communications and compute power to form an overlay
network, with many flocks joining to form aherd. By
keeping each flock small and utilizing several shepherds,
the herd can support many nodes with better latency, re-
liability, and energy efficiency than homogeneous archi-
tectures. Using the Mote Herding abstractions, we have
implemented a set of services that run across both plat-
forms, namely a mote routing service, a data reliability
service and a resource discovery service that is based on
three subservices. We evaluate the performance of our
services using simulations and emulations of both sam-
ple scenarios and a habitat monitoring application. Our
results show that the mote routing service is able to main-
tain better than than 99% connectivity at high network
densities, while incurring 60% lower transmission over-
head than two other routing protocols. We also show that
the data reliability service is able to deliver 100% of the
data even when more than 30% of the network exhibits
failures. Finally, we show that the habitat monitoring ap-
plication that uses Mote Herding is able to deliver all of
the data with low control overhead and latency.

1 Introduction

The past year has seen the realization of several success-
ful sensor network deployments [26, 19, 2, 23]. This de-
ployment experience is moving the field into a more ma-
ture state, with small and medium-sized networks run-
ning sampling applications. Pushing sensor networks
beyond simple “sample and return” applications will in-
troduce new engineering challenges, particularly regard-

ing scaling to larger numbers of nodes, more and more
distant communication, and use of more sophisticated
sensor processing algorithms inside the network.

Currently, wireless sensor network devices fall into
two main categories. The first category includes tiny,
inexpensive, resource-constrained nodes that operate for
long periods of time on battery power. The most widely
used device in this class is the Crossbow Mote [14] based
on the 8-bit AVR microcontroller. The second category
includes small 32-bit nodes that host sophisticated pe-
ripherals and megabytes of RAM and flash and typi-
cally either run duty-cycled or connected to large energy
sources. The XScale-based Intel Stargate [16] platform
is a popular representative of this category. The type of
device used in a sensor network is paramount in defining
the capabilities and limitations of the entire system.

However, neither class is suitable forall applications.
In general, low-cost platforms are ideal for applica-
tions that can operate with that level of functionality,
and suited for highly energy-optimized, vigilant applica-
tions. But there are also applications that require more
computation or storage and can justify the additional
costs [4]. Moreover, many applications will require a
mixture of both in order to combine densely deployed
lower-end sensors with more sparsely deployed higher-
end nodes [2]. It is for those reasons that the sensor net-
work community has been increasingly exploringtiered
architectureswhere the system is composed of a mixture
of platforms with different costs, capabilities and energy
budgets.

While adding more powerful hardware increases the
capability of the network, there are currently few guide-
lines about how to structure software to easily take ad-
vantage of a heterogeneous sensor network.

Mote Herding is a system architecture and a set of
services that targetslarge scale, heterogeneouswireless
sensor networks. Its basic network abstraction and build-
ing block is theflock. The flock is a collection of motes
that connect via a multi-hop routing tree to a microserver

called theshepherd. The microservers communicate
among themselves with a separate, higher-capacity net-
work over which they can exchange information more
rapidly and more reliably than motes. The collection of
flocks and corresponding shepherds forms theherd. The
end result is atieredsystem, that can disseminate data ef-
ficiently through an overlay network and multiple trees.

Mote Herding is based on the principle that moving
complexity from the mote network to the microserver
network aids development of more reliable and efficient
services. Mote Herding accomplishes this by leveraging
the CPU and storage resources of microservers to im-
prove the computational capability, decision-making and
long-term reliability of the deployed network. To demon-
strate this we have developed several Mote Herdingser-
vicesbased on this principle. We consider two classes
of services:flock services run on a single flock and the
corresponding shepherd, whileherdservices span the en-
tire herd and use flock services to interface to the mote
network.

The main contribution of this paper is to introduce
Mote Herding as a new architecture for large, tiered,
wireless sensor networks. We present the design prin-
ciples behind this architecture (Section 2), and demon-
strate the effectiveness of these principles by design-
ing communication services tailored to this architecture
(Section 3) and building higher-level services on this
foundation (Section 4). We then evaluate the benefits
of tiered architectures (Section 5). Our results show
that our routing service is able to maintain higher than
99% connectivity in medium or high network densities
while incurring a low overhead. In addition, our reli-
ability service is able to deliver100% of the data with
low latency even in the presence of considerable link fail-
ures. Throughout the paper we present related work as it
arises.

2 Mote Herding Architecture

The basic network abstraction of the Mote Herding archi-
tecture is theflock. The flock is a collection of motes that
can communicate (with the routing protocol we describe
in Section 3.1) to a microserver, called the flock’sshep-
herd. Shepherds use standard IP-based ad hoc routing
over an 802.11 network to run areliable state replica-
tion protocol (described in Section 3.2) that allows them
to easily share changing information like flock member-
ship. Theherd is the collection offlocksandshepherds
that forms the entire mote/microserver network. Figure 1
illustrates the components of the architecture.

Each mote has a one-to-one relationship with its shep-
herd, and so is part of exactly one flock at a time. The
shepherd is responsible for its own flock and is alsoau-
thoritative for it: for example, queries from other mi-

Flock Shepherd

Herd

Flock ShepherdShepherd

Herd

Figure 1:The Mote Herding architecture and its components,
theflock, theshepherdand theherd

croservers about motes in a shepherd’s flock are an-
swered authoritatively by the shepherd. This however
does not preclude other microservers in the network
keeping cached copies of another shepherd’s list. In that
aspect, the design is similar to DNS.

To simplify on-mote routing, intra-flock routing is
tree-based, with each mote knowing only how to reach
the shepherd of its flock . In addition, inter-flock com-
munication can only take place in theshepherdnetwork.
In this architecture, arbitrary mote-to-mote routing is
therefore only possible through the herd-level overlay
network. Compared to the intra-flock network, herd-
level (inter-flock) routing is mesh-based, treating all mi-
croservers as peers.

Based on the above, Mote Herding can be thought of
as alocally centralized/globally distributedarchitecture.
Each flock has centralized properties, since data fusion
and flock control happens on the shepherd, while the net-
work of shepherdsis a distributed system that shares in-
formation about each flock, delegates tasks to the appro-
priate shepherds and makes collaborative decisions.

While there have been several specific approaches to
exploit the capabilities of tiered networks [24, 15], devel-
opment thus far has been difficult because each approach
has been hand-crafted. Mote Herding begins to explore
guidelines to clarify how services should be developed
in tiered networks, as some other concurrent projects are
also doing [12]. Mote herding preserves the peer-nature
of original sensor networks, but only at the microserver
tier, adopting a centralized approach to simplify the mote
level.

2.1 Design Principles

Mote Herding revolves around the following primary de-
sign principle:

Shift system complexity from motes to microservers for
those operations that require distributed decision making
on the motes.

2

A B

3

21

A B

3

21

A B

3

21

A B

3

21

a) b)

Figure 2: A sink selection scenario that illustrates the dif-
ference between mote-based and microserver-based distributed
decision making.

This design principle yields several corrolaries:
1. Centralize decision making on a microserver

thereby improving system performance as decisions
can be made based on a more complete data set.

2. Reduce volatile state required for system function-
ality on motes.

3. Utilize computational and communication re-
sources on microservers along with their peer nature
to support more complex functionality.

4. Program a significant part of the system in a familiar
and resource-rich environment.

In a collaborative distributed system, nodes make de-
cisions based on their local information as well as infor-
mation shared by other nodes. In the majority of cases,
the accuracyandcorrectnessof the decision is directly
proportional to the amount of information available to
the node, both spatially (i.e., reports from as many nodes
as possible) and temporally (i.e., history of past reports).
The resource constraints of the 8-bit platform however
place a limit on the spatial and temporal fidelity of the
data. However, the limited storage and network capacity
available to an 8-bit mote platform constraints their spa-
tial and temporal views. As a result, decisions made on
a mote often must be based on limited information, even
assuming complete message reception.

On the other hand, the 32-bit platform has ample
storage and computational power to support collabora-
tive decision-making algorithms and more complex al-
gorithms than are possible on motes. They also have
sufficient network bandwidth to operate in a distributed
manner. This observations suggests that microservers
can serve as “concentrators” or “fusion points”, taking
input from multiple motes in a flock and combining this
information to provide better decisions than an individ-
ual mote can make alone. Such an operation requires that
motes send data back to their microserver. However, this
does not apply to all forms of data; only data required for
decision-making needs to be sent. Sensor data islocal to
a node and does not require knowledge of or communi-
cation with other nodes. In contrast, neighbor estimation,
path estimation and best sink selection are operations that
need data from other nodes and as such incur a commu-
nication cost as well as a storage cost.

Figure 2 presents an example that illustrates the differ-

Mote Routing

Microserver
State Replication

Data
Reliability

Registration
Protocol

Resource
Discovery

Data
Replication

Tasking

Sampler

Herd Services

Flock Services

Herd Foundation Service

Flock Foundation Service

Mote Routing

Microserver
State Replication

Data
Reliability

Registration
Protocol

Resource
Discovery

Data
Replication

Tasking

Sampler

Herd Services

Flock Services

Herd Foundation Service

Flock Foundation Service

Figure 3:The Mote Herding Service Classes and their corre-
sponding foundation services.

ences between mote-based and microserver-based deci-
sion making. Mote3 wishes to attach to the best avail-
able sink, based on some well-defined selection metric.
In (a), the microservers send beacons (dashed arrows)
that get propagated to the mote network. The mote re-
ceives the beacons from both microservers and selects
the best one to reply to. In (b), the mote sends a join
beacon (dashed arrows) that eventually reaches the mi-
croservers. The microservers compare metrics and the
“winner” replies to the mote. In (a), the memory and
bandwidth requirements on mote3 scale linearly with
the number of microservers. In (b), memory and band-
width requirements areO(1). By delegating decisions
to the microservers, we can therefore reduce the motes’
state and bandwidth requirements and thus improve the
network densityscaling properties.

The mote network bandwidth still places a limit on the
amount of data that can be sent to a single microserver.
As networks grow in numbers of nodes, at some point
sending all relevant data to a central point becomes im-
possible. Ifmultiple microservers exist, each gathering
system data for its own flock, the microservers can then
exploit their high-bandwidth network tosharethat infor-
mation among themselves. By replacing a flat network
with two radio tiers it becomes possible for each mi-
croserver to maintain a view of the entire network while
not overburdening individual motes. Adding multiple
microservers to the system therefore has a dual effect: it
reduces theeffectivediameter of the mote network while
giving each microserver aglobal view.

2.2 Mote Herding Services

Building on the concepts offlocksandherds, Mote Herd-
ing services are split into flock- and herd-wide services.

Flock servicesare services that operate on a flock of
motes under supervision of a single shepherd. Those ser-
vices are “hybrid” in the sense that they reside on both
motes and microservers. Flock services adhere to the de-
sign principles outlined above: motes deliver data to the
shepherd; the shepherd makes decisions based on that
data and then forwards those results back to each mote.
These services emphasize themaster-slaverelationship

3

that exists between flock motes and their shepherd. Flock
services can use other services in the same flock (we
show example interactions in Sections 4.1 and 4.2.1), but
they do not interact with motes in other flocks.

Herd servicesare services that operate on the en-
tire network, building on flock services to provide more
complete applications. Unlike flock services, herd ser-
vices run only on the higher-performance microserver
network. If they need to interact with motes, they do so
with an appropriate flock service. Herd services treat all
microservers as peers, allowing distributed and collabo-
rative decision making based on both flock services and
other herd services.

The commonality across all services is distributed de-
cision making. Multi-hop communication and informa-
tion sharing is therefore the foundation of other services.
Thesefoundationservices for communication are sim-
ple multi-hop routing inside flocks, and a state replica-
tion service calledStateSyncat the herd level. We ex-
plore these foundation services in the next section then
present several higher-level services built on top of this
foundation in Section 4. Figure 3 shows the relationship
between foundation and composite services at the flock
and herd levels.

3 Foundation Services

Mote Herding foundation services provide the essential
functionality on which higher-layer services build upon.
These services are bidirectional mote-to-microserver
routing at the flock level, and reliable state replication
at the herd level.

3.1 Flock Foundation Service: Mote Rout-
ing

Flock services depend on communication between motes
and their shepherd. Motes pass data, possibly over mul-
tiple hops, to their shepherd, while the shepherd dis-
patches control messages to motes. This section explores
our design of centralized, bidirectional routing within a
flock.

Tree-based routing is widely used in sensor networks,
where all nodes construct a multi-hop routing tree to a
centralized root (or gateway or sink). In Mote Herding
we construct many such trees, one per flock, between the
motes of the flock and their shepherd.

MintRoute [22] and Directed Diffusion [13] are two
routing protocols that are often used in sensor networks.
TheMultihop routing protocol which is part of the ESS
deployment at James Reserve [26] combines a simpli-
fied Diffusion and MintRoute. Each of these protocols
uses adistance-vector-like routing algorithm to deter-
mine routes back to the sink, and employslink estimation

andneighbor tablesto dynamically discover the topol-
ogy of the wireless network. With distance vector rout-
ing algorithms, each node independently selects a next
hop from its neighbors that reduces its distance towards
the sink. Some protocols use different different metrics
(such as ETX [6]) to define the “best” next hop, possibly
based on link quality, available energy, or other charac-
teristics.

Recent experiences with the ESS deployment have
uncovered several underlying issues that stem from the
aforementioned properties of those routing algorithms
combined with the resource constraints of the mote plat-
form. Those issues are: (a) neighbor-table overflow, (b)
count-to-infinity and (c) routing loops. We address each
of these issues in more detail.

To populate its neighbor table, the mote needs to learn
about its neighbors. The state requirements for the neigh-
bor table are thereforeO(n), wheren is the number of
neighbors that a mote can have. Because of resource con-
straints, motes are typically configured with relatively
small, statically sized neighbor tables. In dense wire-
less sensor networks, the number of potential neighbors
can exceed the available storage capacity allocated for
the neighbor table [22]. In that case, the designer of
the routing protocol must implement aneighbor eviction
policy [22]. In doing so however, the selection of a parent
is now based on asubsetof the actual neighbor list, thus
artificially limiting the choices (and paths) a mote can
have. Moreover, eviction/insertion policies suffer from
thrashing, where a mote is inserted in the table only to
be removed in the next iteration. This can lead to routing
instabilities if this mote was indeed the next hop towards
the sink.

The distance-vector protocol is known to suffer from
the “count-to-infinity” problem. This can adversely af-
fect the performance of routing by creatingloops. As a
result, special care (like poison-reverse or split-horizon)
must be taken to avoid loops or repair them if they
form. In MintRoute, motes monitor forwarding traffic
and snoop on the parent address in each neighbor’s mes-
sages in order to identify neighboring children and thus
disqualify them from the parent selection process. Nev-
ertheless, those mechanisms are not infallible and loops
can still form (especially n-hop loops). In particular,
in one of our MintRoute simulations, we experienced a
system-wide count-to-infinity problem that resulted in all
the motes in the network having routing loops.

The aforementioned issues are examples of distributed
decision-making on the motes that is based onincom-
pleteand potentially,stale, data.

In mote herding we use CentRoute to communicate
between motes and their shepherd. Following the princi-
ples layed out in Sections 2.1 and 2.2, CentRoute shifts
all decision making to the shepherd. CentRoute ad-

4

Shepherd

21

3

a)

Shepherd

21

3

b)

Shepherd

21

3

c)

Shepherd

21

3

d)

Shepherd

21

3

a)

Shepherd

21

3

Shepherd

21

3

a)

Shepherd

21

3

b)

Shepherd

21

3

Shepherd

21

3

b)

Shepherd

21

3

c)

Shepherd

21

3

Shepherd

21

3

c)

Shepherd

21

3

d)

Shepherd

21

3

Shepherd

21

3

d)

Figure 4:A CentRoute tree forming (join) operation.

dresses the main problems described above: since it runs
on a microserver with megabytes of memory, neighbor
table size is not a limitation. Since all path selection and
routing decisions are made centrally, different motes will
not come to different decisions that can lead to inconsis-
tencies. In Section 5.1.1 we conduct a number of sim-
ulations to show that these approaches in CentRoute are
successful at providing high network connectivity and re-
ducing the number of loops.

3.1.1 Routing tree formulation

Following the principles outlined in section 2.1 we de-
signed CentRoute to be a dynamic single-shepherd rout-
ing protocol based on source routing, with all routing de-
cisions made on a centralized point, the shepherd.

In order to join a tree and thus be part of a flock, each
mote periodically broadcasts join request messages. If a
mote that is already part of a tree receives this message, it
forwardsit towards its shepherd, via its parent, by gener-
ating a unicast packet. In addition, the forwarding mote
adds its own address to the packet, thus recording the
path the packet is taking towards the sink. This is essen-
tially a similar approach to Source Routing [17]. Upon
reception of a request message, either by direct broad-
cast or via a forwarded packet, the microserver will gen-
erate a join reply packet and unicast it towards the re-
quester, by reversing the packet’s received path and us-
ing source routing. In addition, the microserver stores
this path information to use whenever it needs to send a
unicast packet to that mote. When the mote receives the
join reply message, it becomes attached to the replying
microserver—its shepherd (we discuss multi-shepherd
resolution in Section 3.1.4). It also sets the last mote
that forwarded the join reply as itsparent. Finally, since
the mote is now part of a flock, it stops generating further
join request messages.

The join operation in CentRoute happens inphases,
since, in order to forward a join request packet, a mote

needs to be attached to a tree. When the network starts
up, no motes (besides those directly attached to mi-
croservers) are parts of a tree. Initially, only the motes
that are one hop away from a microserver will be within
range of an attached node (in this case, the microserver).
In the next round, the motes that are two hops away will
be able to attach, and so on, until the entire network be-
comes connected. Figure 4 shows an example tree form-
ing operation. In (a), all motes send a join request, but
only motes1 and2 are within range of an existing tree
(the shepherd itself). In (b), the shepherd sends join re-
ply messages (dashed arrows) to motes1 and2, thereby
grafting them to the tree. In (c), mote3 sends another
join request. This time, motes1 and2 which are now part
of the tree forward the join request towards the shepherd.
In (d), the shepherd grafts node3, via the path that goes
through mote1. Mote3 also sets its parent to be node 1,
so any subsequent upstream traffic will be sent to it.

The centralized nature of the tree formulation in con-
junction with source routing and the absence ofanymote
decisions concerning path selection results in a consid-
erable reduction in the number of transient loops (Sec-
tion 5.1.1). In particular, routing state is always set up by
constructing a path from the shepherd to the mote via a
source routed packet. This packet trails behind it a loop
free path to the shepherd so any old state in the network
that somehow happened to meet this path would there-
fore have a loop free path to the shepherd as well. As a
result, no route is ever added that can have a loop, and no
“old” route that is disrupted can result in a loop because
all it can do is join a loop free route, or not work at all.
A formal analysis of the loop performance of CentRoute
is part of future work.

3.1.2 Routing Metric and Link Quality Estimation

Since path selection is done on a centralized point in
CentRoute, the motes need to provide the shepherd with
sufficient information for that decision. When a mote re-
ceives a request, it will include alink quality estimate
when forwarding the request towards the shepherd.

In the example of Figure 4, motes 1 and 2 will write
their estimate of link quality to mote 3 into the request
before passing the join request towards the shepherd.
These estimates computed at join time enable the shep-
herd to annotate a tree with link quality estimates along
each edge, and thus to select paths using ETX [6] as a
routing metric.

Motes in CentRoute use the join request beacons to get
link quality estimates, by having each mote send several
beacons in quick succession. In order to reduce control
overhead, receiving motes that are part of the tree only
forward anaggregatejoin request that contains the the
total number of broadcast requests received by that mote

5

in that period. Using this information, the microserver
has sufficient data to form aninstantaneouslink quality
estimate and subsequently, a path estimate.

An important property of the estimation algorithm is
that link quality estimates need only be kept for as long
as the mote is trying to join. This is in contrast with
traditional link estimation schemes where estimates need
to be kept at all times and cannot be discarded unless a
mote is evicted from the neighbor table.

3.1.3 Stability and Maintenance

In order to increase the stability of the network, we de-
signed CentRoute so that it doesn’t try to find improved
paths (in terms of its routing metric) once the original
paths have been established. As long as the individual
link qualities don’t change radically, the initially selected
path will not be too far from theoptimal path, at any
point in time. As a result, the protocol can form more
stable topologies, while sacrificing optimality at some
future point in time. This process also has an “anneal-
ing” effect towards stability, because temporally stable
links, once discovered, are likely to remain selected.

Even though CentRoute does not attempt to find a bet-
ter path when one has been established, it still needs to
ensure that the existing path isvalid, i.e., all links from
the mote to its shepherd are still viable. CentRoute uses
link-layer ACKs and packet retransmissions to deduce
link failure. Once the link fails, the mote at the point of
failure considers itself detached from the tree. It then in-
vokes thejoin mechanism, described in 3.1.1, by starting
to transmit join request messages. If a mote receives a
join request from its parent, it immediately detaches it-
self from the tree and also invokes thejoin mechanism.
Since the repair mechanism is in effect the same as the
join mechanism, it inherits its loop prevention properties.

In order to reduce the control overhead when the net-
work is quiescent CentRoute is anon-demandprotocol.
As a result, CentRoute does not require periodic control
messages to maintain its paths; instead it discovers and
repairs broken paths on demand, when triggered by data
packets. This approach trades off reduced control over-
head for potentially higher path repair time.

3.1.4 Dynamic shepherd selection

To increase the robustness of the network, CentRoute
was designed to supportdynamic shepherd selection.
Since the mote assignment to flocks and shepherds is
not pre-configured, a mote can associate with a different
shepherd and flock if its current shepherd becomes un-
available, such as due to microserver failure. We choose
not to allow motes to associate with multiple shepherds
in keeping with our goal of minimizing mote-side com-
plexity (Section 2.1).

When multiple microservers exist in the network,
a mote join request can be received by several mi-
croservers, as shown in Figure 2. Since mote-to-
shepherd assignment is one-to-one, the “competing” mi-
croservers need to select which flock the mote should
join. As each microserver already knows the best path
to the mote from its own flock, the microservers need
only compare the values of their local path metrics for
the mote in question. Essentially, this is the same op-
eration as path selection on a single microserver, with
information about alternative paths through other flocks
provided by other microservers.

3.2 Herd Foundation Service: Microserver
State Replication

Herd services run on the microserver network, joining
all microservers into a common distributed system. To
support distributed algorithms that depend on informa-
tion from multiple flocks,microserver state replication
is provided as the foundation of herd services.

Mote Herding uses a protocol called StateSync [10] as
its foundation service for reliable state replication across
the herd. StateSync is a proactive publish-subscribe
system that strives to provide low-latency updates to
published data over multiple hops with low overhead.
StateSync is a reliable protocol with a probabilistic la-
tency bound that publishes a node’s state over multiple
hops by proactively sending differences. Through the
StateSync API, a node publishes a table of data, and
the StateSync system automatically computes the diff re-
quired to update the subscribers. StateSync is designed
to support applications that need reliable publication of
their current state and timely propagation of updates, for
cases where the subscriber needs access to the data at
a higher rate than the rate of change of the data values.
ISIS also provided reliable shared data, but targeted pri-
marily at LANs [3].

StateSync’s proactive publishing model does not fit
all applications. Those that have a high ratio of data
elements and updates to data access require a cached
request-reply protocol such as Hood [21]. This type of
service is important future work for Mote Herding.

4 Flock and Herd Services

Using the foundation services we can now build compos-
ite flock and herd services. In addition to the foundation
services for flock and herd communication, Mote Herd-
ing currently provides two flock services, mote data re-
liability and a mote registration protocol and three herd
services, resource discovery, resource caching and query
dissemination. We have considered a number of possi-
ble additional services, including a global tasking service

6

that distributes tasks to each mote in the network, a data
replication service that replicates flock data at each mi-
croserver to improve robustness and a system monitoring
service that continually monitors the entire network. Im-
plementation of these additional services is future work.

4.1 Mote Data Reliability

In mote-based Wireless Sensor Networks, the wireless
communication is known to show variable and often
large loss rates [5, 25, 22]. As such, application design-
ers need to take packet loss as a given and design appli-
cations to be loss-tolerant. An important class of appli-
cations require high reliability and would benefit from a
data reliabilityservice.

DataRelis the Mote Herding data reliability protocol,
a flock service that strives to provide guaranteed data de-
livery in a lightweight manner. As a result, we designed
DataRel to be a window protocol that uses end-to-end
ACKs and source-based packet buffering, in a manner
similar to TCP. DataRel can use end-to-end ACKs effi-
ciently, since the CentRoute service allows for unicast
packet transmissions from the shepherd to any mote in
the flock. In addition to end-to-end ACKs, DataRel uti-
lizes link-layer ACKs and hop-by-hop retransmissions to
improve the probability of successful delivery, contrary
to PSFQ [20] and similar to RMST [18]. RMST operates
solely on 32-bit nodes over Directed Diffusion with all
nodes being peers while DataRel is a mote-to-shepherd
reliability protocol. PSFQ is a mote-based hop-by-hop
protocol that uses NACKs for error recovery and a con-
trolled flooding algorithm for data distribution.

The mote’s shepherd is not necessarily thefinal desti-
nation for a data packet. Once the packet reliably reaches
the shepherd, it can be forwarded to its final destina-
tion using a conventional IP reliability service, like TCP.
However, for the purposes of the DataRel protocol—and
since DataRel is a flock service—we consider the end-
points to be the source mote and its shepherd. This ap-
proach, which is similar to Split-TCP [1], is based on
the realization that, like satellite and terrestrial networks,
the mote network and the microserver network have very
different communication properties, especially in terms
of bandwidth, latency and bit error rate. Alternatively,
one could view DataRel as an example of delay-tolerant
networking [8], where the flock and the herd are separate
DTN regions.

4.2 Resource Discovery

Our first composite service at the herd level isresource
discovery. Resource discovery is essential in sensor net-
works where nodes have different capabilities, such as
different sensors or actuators, or where applications wish

CentRoute

StateSync

Data
Reliability

Registration
Protocol

Resource
Discovery

Resource
Caching

Query
Resolution

CentRoute

StateSync

Data
Reliability

Registration
Protocol

Resource
Discovery

Resource
Caching

Query
Resolution

Figure 5: The Resource Discovery service connection dia-
gram.

to select subsets of the network based on other factors,
such as location or coverage area.

Common approaches to resource discovery include:
direct queries on demand, in-network caching or caching
at a central site. The one-phase pull variant of Directed
Diffusion [13] is an example of a direct query approach,
while the Ninja Service Discovery Service [7] is an ex-
ample of an in-network caching approach. The caching
approaches in general provide faster query resolution
speed, at the expense of additional complexity and over-
head for handling cache misses or “stale” data.

Much like routing, the main factor that influences the
choice between on-demand and a priori approaches is the
amount of temporal variation in the data. Sensor data
is tied to physical phenomena and as such can change
rapidly or slowly, depending on the physical process be-
ing measured. For example, an acoustic signal changes
much more rapidly than a temperature value. In addition
to sensor data, link quality, instantaneous queue size and
received signal strength indicator are other examples of
frequently varying data. On the other hand, hardware and
software capabilities of a platform constitute information
that changes slowly over time. For example, the actual
sensors installed on a mote (as opposed to their values)
or the mote’s radio constitute information that character-
izes the mote and does not change often. In terms of
overhead, an on-demand polling protocol is more appro-
priate for high temporally varying data, while an a pri-
ori caching approach is better suited for low temporally
varying data as information can remain “fresh” for larger
periods of time.

We have implemented ResDisc using the mote herding
principles. Since mote resources for the most part ex-
hibit low temporal variation, we adopted the in-network
caching approach. The design of ResDisc is based on
three sub-services. Theregistration protocolflock ser-
vice provides resource data from the motes in the flock.
The resource cachingherd service is responsible for ex-

7

porting local resource data provided by the registration
protocol as well as maintaining its cache of resource data
from other shepherds. Finally, thequery resolutionherd
service is responsible for replying to resource discovery
queries. Figure 5 presents the Resource Discovery ser-
vice diagram.

In the following sections, we describe the registra-
tion protocol and resource caching service in more detail.
The query resolution service has not been completely im-
plemented yet and as such we defer its discussion to fu-
ture work.

4.2.1 Registration Protocol

The goal of the registration protocol is to “register” re-
source information of a mote with its shepherd, as well
as keep the shepherd updated if this information changes.
Consequently, the registration protocol is aflock service.

To reduce communication overhead as well as improve
the update time, we designed the registration protocol
to be event-based as opposed to using a periodic refresh
mechanism. As a result, the protocol is invoked automat-
ically when one of the following events occurs: the mote
joins a shepherd’s tree, a registered resource changes
value or when instructed by an application. A further op-
timization that has not been implemented yet includes re-
sponding to direct queries from the shepherd. To ensure
correct ordering of events as well as resolve potential am-
biguities, we used a simple sequence number scheme in
which a new sequence number is generated when a new
event occurs.

The absence of a periodic refresh mechanism intro-
duces a reliability issue, as registration messages, if lost,
will not be repeated. As a result, the registration protocol
uses the DataRel mote data reliability service introduced
in section 4.1 to guarantee reception of its messages by
the shepherd. Finally, to allow for flexibility in the regis-
tration data, we chose to use a variable-size type-length-
value (TLV) format for the actual data transfer.

4.2.2 Resource Caching

One of the goals of the resource discovery service is the
ability to reply to any query as quickly as possible, by
having all available information on each microserver. To
accomplish this, we designed the resource caching ser-
vice, a herd service that supplements the registration pro-
tocol flock service.

Resource caching is a simple service that is respon-
sible for exporting resource data obtained through the
registration protocol to other shepherds. At the same
time, it receives similar data from the remote shepherds
and caches it. To accomplish this functionality as well
as ensure consistency among caches throughout the mi-
croserver network, resource caching uses the state repli-

 0

 20

 40

 60

 80

 100

 120

 4 8 12 16 20 24 28 32

N
et

w
or

k
co

nn
ec

tiv
ity

 (
%

)

Mote neighbor density (number of motes)

CentRoute
MintRoute

Multihop

Figure 6: Network connectivity percentage as a function of
mote neighbor density for CentRoute, MintRoute and Multi-
hop.

cation herd foundation service. In each shepherd, re-
source caching maintains a table containing all motes it
has data for (potentially all motes in the network). This
table can then be used as an input to the query resolution
service.

5 Evaluation

In this section we evaluate the three Mote Herding ser-
vices that have been fully implemented, namely routing
and data reliability for flocks, and resource discovery for
herds. We also use a habitat monitoring application to
evaluate a set of Mote Herding services working in col-
laboration. We run our experiments using the EmStar
framework [9]. The flock services are evaluated using
the EmTOS [11] emulation module of EmStar, which al-
lows development of fully functional NesC applications
in the resource-rich environment of a 32-bit platform.

5.1 Mote Routing

Our routing experiments focus on three important as-
pects of any routing algorithm, specifically network con-
nectivity, loop probability and control overhead. In all
our routing experiments, the experimental topology con-
sisted of a 100-mote simulated network, arranged in a
10-by-10 grid with uniform 10m spacing between motes.
We then place a single sink, in the middle of the bottom
row of the grid at coordinates (50m,0m). To study vari-
able network densities we keep this topology fixed and
vary the simulated radio range. In all our routing ex-
periments, we compare the performance of CentRoute
to MintRoute and Multihop. The neighbor table size
on both MintRoute and Multihop was set at their default
value of16. We vary network density, so at high densities
we expect the number of neighbors to exceed this fixed
routing table size. The periodic beacon rate for Mint-
Route and Multihop was set to30 seconds. Since Cent-
Route is an on-demand protocol, it requires data trans-

8

missions to perform route maintenance, as seen in Sec-
tion 3.1.3. Therefore, the CentRoute experiments con-
tained data transmissions, at a rate of one packet every
30 seconds per mote. The maximum number of trans-
mission retries per packet, used in the CentRoute repair
mechanism was set to5.

5.1.1 Network Connectivity

First we look at how well each routing protocol main-
tains connectivity to the sink. We study how connectiv-
ity varies as we change the network density by increasing
the simulated radio range.

For the purpose of our experiments, we definemote
neighbor densityto be the number of one-hop neigh-
bors of a given mote that have a link quality of70% or
higher. Since we use a grid topology with even spacing,
the neighbor density increases in steps of4. We note that
the actual number of motes that a single mote can hear
can be considerably higher than its neighbor density [22]
and that property is reflected by our simulated channel
model.

In order to measure network connectivity, we periodi-
cally trace a path from each mote in the network towards
the sink. If a path is found, we consider the mote to be
connected for that particular time sample. At each time
sample, network connectivity is the sum of all the motes
that have a path to the sink. The duration of all our rout-
ing experiments was3 hours and our sampling period
was10 seconds. The first5 minutes of each experiment
were discarded, so as to allow each routing algorithm to
reach stable state. In this and all following experiments,
error bars in experimental results are95% confidence in-
tervals.

Since CentRoute does not contain any neighbor tables
or any other per-neighbor state that is limited to a maxi-
mum number of motes, we expect it to perform better as
mote neighbor density increases. By contrast, we expect
MintRoute and Multihop to exhibit loops and blackholes
as density increases, for the reasons given in Section 3.1.

From Figure 6, we note that with CentRoute the net-
work is almost always connected, regardless of mote
neighbor density. In fact, the performance of CentRoute
actually improvesas density increases, rising from90%
at mean density of4 neighbors to99.9% when nodes
have 12 or more neighbors. In contrast, MintRoute
starts at97% connectivity then reaches99.9% in medium
densities, but connectivity falls off as density exceeds
the static routing table size (above 16 neighbors). This
degradation is because, when neighborhood size exceeds
the routing table size, there are several cases in both
MintRoute and Multihop when mote A considers mote
B a neighbor but not vice versa. This disparity is due
to table thrashing—mote A has mote B in its table, but

Neighbor CentRoute MintRoute Multihop
density loop prob. loop prob. loop prob.
(motes) (%) (%) (%)

4 0 0.47 2.11
8 0 0.01 1.92
12 0 0.02 1.88
16 0 0.03 2.48
20 0 0.03 3.65
24 0 0.04 4.8
28 0 0.04 3.12
32 0 0.02 7.27

Table 1:Average loop occurrence probability as a function of
density for CentRoute, MintRoute and Multihop.

mote B has evicted mote A. As a result, a mote is unable
to find a parent and stays disconnected for large periods
of time. This problem could possibly be solved by ex-
changing neighbor evictions at the cost of even greater
complexity in the mote network.

Multihop exhibited its best performance in medium
densities (8–24 neighbors/mote). At high densities (24–
32 neighbors/mote), Multihop performance is hampered
by a high probability of aloop occurrence in addition to
the table thrashing problem. At 4 neighbors/mote, Multi-
hop could not connect the network because of its routing
metric, an 8-bit value that decreases exponentially (based
on link quality) as the path length increases. In low den-
sities, when path lengths are considerable, the routing
metric reaches its minimum value of0 after a few hops
and as such no more motes can be added to the path. In
effect the current Multihop implementation has an arbi-
trary maximum path length cutoff point.

The initial decreased performance of CentRoute is due
to its centralized nature in conjunction with the tree for-
mulation and repair mechanism. A path in CentRoute
will be invalidated ifanynode in the path fails to trans-
mit a packet to its parent, after a certain number of re-
tries (currently set at5 retries per attempt). Therefore the
probability of a path invalidation is directly proportional
to the path length, which in turn is inversely proportional
to neighbor density.We could reduce this problem by in-
creasing the number of retries at low densities, or after
repeated failures.

To understand the relative effect of loops on network
connectivity, we explicitly measured the number of loops
that occurred for each protocol. The CentRoute protocol,
due to its centralized shepherd-based path construction
and source routing is expected to have very few, if any,
loops (Section 3.1.1). The distance-vector algorithms are
expected to have more loops than CentRoute. Multihop,
in particular, that has no loop-prevention mechanism is
expected to have the worst performance.

Table 1 shows the percentage of loops encountered
as a function of density for the three routing protocols.
CentRoute did not exhibit any loops that were detectable

9

 0

 1

 2

 3

 4

 5

 6

 32 28 24 20 16 12 8 4

O
ve

rh
ea

d
(b

yt
es

/s
ec

/m
ot

e)

Mote Neighbor density (number of motes)

CentRoute
MintRoute

Multihop

Figure 7:Per-mote byte overhead as a function of mote neigh-
bor density for CentRoute, MintRoute and Multihop.

Usage RAM ROM RAM cost
(bytes) per neighbor

CentRoute 1274 17184 0
MintRoute 1689 12588 18
Multihop 1560 17292 19

Table 2:Mote RAM and ROM usage in bytes for CentRoute,
MintRoute and Multihop.

with our 5-second sampling period. A proof that Cent-
Route is loop free is an area of active work. MintRoute
loop probability was highest in the low density case but
was an order of magnitude less in all other case. We
believe that this disparity is due ton-hop loopsin con-
junction with the particular geometric properties of the
grid topology. MintRoute does not allow a mote to se-
lect any of its neighboring child motes as a parent, thus
preventing 1-hop loops. N-hop loops cannot be detected
however. At very low densities, the limited number of
alternative paths in the network combined with the larger
path lengths and the geometric properties of a grid topol-
ogy result in n-hop loops occurring more often. Finally,
Multihop which lacks a loop-prevention mechanism and
also uses a non-monotonic routing metric has the highest
probability of a loop occurrence.

5.1.2 Control Overhead

The control overhead of the routing algorithms is the
transmission overhead incurred by their operation as well
as their memory usage on the mote. The transmission
overhead of MintRoute and Multihop is due to their pe-
riodic neighbor beacons and route advertisement mes-
sages. The transmission overhead of CentRoute contains
join requests as well as join forward and join reply mes-
sages. In this section we conduct experiments to verify
that CentRoute control overhead is similar to overhead
of alternatives.

CentRoute repairs can be quite expensive especially
if the paths are long and the failure happens close to
the sink, as a considerable number of motes will be af-

fected. In contrast, the distance-vector protocols dolo-
cal repairs which are not as expensive. As a result, we
expect the CentRoute overhead to be high when the net-
work is sparse and get progressively lower as the density
increases.

Figure 7 depicts the average per-mote transmission
overhead in bytes per second for the three routing pro-
tocols as a function of mote neighbor density. In the
lowest density, CentRoute has the highest cost of all the
three protocols. This is due mainly to the repair mecha-
nism’s inability to find good paths, as the available selec-
tions are limited. As the network progressively becomes
more dense, CentRoute can find alternate paths to the
sink that are more stable than the initial selection. The
repair mechanism does not need to be invoked as often
and transmission overhead is reduced considerably.

MintRoute and Multihop, on the other hand, initially
start with a low transmission overhead but grow greatly
as the neighbor density increases. Since neighbor tables
are transmitted by each mote as part of the link estimator,
higher densities result in a higher transmission overhead,
up to a saturation point that is based on the maximum
size of the table. The overhead reduction for MintRoute
and Multihop in very high and very low densities is due
to their route advertisements, which are only transmit-
ted when a mote is connected. As shown in Figure 6,
network connectivity for MintRoute and Multihop is re-
duced at very low and very high densities and as such
less route advertisements are transmitted.

A second kind of overhead is memory usage of each
algorithm. Table 2 shows the RAM and ROM foot-
print of each of the three routing algorithms, using the
TinyOS default message length (29 bytes payload). We
note that CentRoute has the lowest RAM usage which
doesn’t increase with the neighborhood size. In contrast,
MintRoute and Multihop have comparable RAM usage
and per-neighbor costs. The per-neighbor cost places a
considerable limitation in the operation of the distance-
vector alrogithms. Increasing the neighbor table from its
default size of16 to 50 so as to support larger numbers
of neighbors incurs an additional RAM cost of about680
bytes, while the size of the table itself is almost1000
bytes, i.e.,25% of the total RAM of the Mica2 mote.
The real advantage of CentRoute here is that it shifts the
burden of variable size data structures like the routing ta-
ble to resource-rich shepherds, while the other protocols
must allocate routing tables statically sized to accommo-
date worst-case neighborhood sizes.

Based on all our routing experiments we feel that
the CentRoute foundation service has achieved its de-
sign goals. By centralizing the routing decisions on the
microserver and removing per-neighbor state on motes
CentRoute manages to scale well with increasing neigh-
bor density as well as avoid loops while at the same time

10

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t d

el
iv

er
y

(%
)

Mote radio failure rate (%)

DataRel
mDTN

Figure 8:Average packet delivery ratio as a function of mote
radio failure rate for DataRel and mDTN.

incurring a low overhead. However, the centralized prop-
erty of CentRoute is not well suited for sparse networks
with long path lengths. The reason is due to the overhead
associated with transmitting all the control data back to
a single point in addition to the expensive repair mecha-
nism is invoked more frequently.

5.2 Data Reliability

Our reliability experiments focus on the performance of
two mote data reliability protocols: the DataRel flock
service introduced in section 4.1 and the mDTN relia-
bility protocol used in the ESS deployment [26]. a hop-
by-hop protocol calledmDTN that is based on the prin-
ciples of Delay Tolerant Networking[8]. MDTN uses
link-layer ACKs and hop-by-hop retransmissions to reli-
ably deliver the data. If next-hop delivery fails, mDTN
stores the packet in non-volatile storage (the mote’s flash
memory) for later retransmission. DataRel ran over the
CentRoute service while mDTN ran over the Multihop
routing protocol. For our experiments, we again used
the 100-mote grid topology plus a single sink in the mid-
dle of the bottom row. However, we now fixed the mote
neighbor density to12 and instead changed themote ra-
dio failure probability. We used a simple failure model,
in which every mote has a given probabilityk for its ra-
dio link to fail. The failure generator runs periodically
and applies the failure probability to every mote in the
network. In the next iteration, the failure generator “re-
vives” failed motes before applying the failure probabil-
ity again. The result is that at any point in timek% of
all the motes in the network will be unable to receive or
transmit any packets.

In all our data reliability experiments we used a simple
periodic data generating application. The data transmis-
sion rate was set to one packet every30 seconds, while
the fault generator ran every5 minutes. Our experiments
lasted until all motes had transmitted200 packets each,
or until a 6-hour limit was reached. The DataRel win-
dow size was set to1, so an ACK was sent by the sink

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40

A
dd

iti
on

al
 tr

an
sm

is
si

on
 o

ve
rh

ea
d

(%
)

Mote radio failure rate (%)

DataRel
mDTN

Figure 9: Per-mote additional transmission overhead as a
function of mote radio failure rate for DataRel and mDTN.

across the flock for each packet received. Maximum
hop-by-hop retransmissions for each protocol was set to
5. During the course of our experiments we found that
the default value of the mDTN retransmission timer was
set too high, resulting in very high latencies and higher
loss rates. As a result, we changed the retransmission
timer period of mDTN from10 minutes to10 seconds,
the same as DataRel’s retransmission timer.

5.2.1 Packet Delivery Ratio

In order to measure the delivery ratio, we annotate each
data packet with a sequential sequence number We then
inspect the sequence number space for each mote at the
receiver and discard duplicates. The remaining packets,
divided by the total number of original packets gener-
ated by each mote is the per-mote packet delivery ratio.
Finally, we compute the mean and 95% confidence inter-
vals by averaging all per-mote results.

Figure 8 shows the average packet delivery ratio as a
function of mote radio failure rate for the two protocols.
When no failures are present mDTN delivers on aver-
age96% of the data while DataRel delivers100% The
situation changes however as the mote radio failure rate
increases. DataRel is able to keep100% delivery rate
for a failure rate of up to30%, dropping to an average
of 97.2% for a failure rate of40%. At the same time, the
performance of mDTN degrades considerably, especially
at high failure rates. The performance degradation is due
to the nature and implementation of mDTN. Specifically,
mDTN uses link-layer ACKs to decide whether a packet
has been successfully delivered to the next hop; if not, it
stores it. Link-layer ACKs however carry no information
about the packet’s fate inhigher layers of the stack. In
mDTN, a packet can be successfully delivered to a mote
but subsequentlydropped. This is mostly due to a re-
ceive buffer overflow as a result of network congestion
but can also be caused by more complex failure modes.
A higher-layer ACKing scheme would solve this issue,
at the expense of more transmission overhead. DataRel,

11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40

P
er

-m
ot

e
st

or
ag

e
bu

ffe
rs

 u
se

d
(a

ve
ra

ge
)

Mote radio failure rate

DataRel
mDTN

Figure 10:Per-mote average storage buffer usage as a function
of mote radio failure rate for DataRel and mDTN.

being an end-to-end protocol, does not suffer from such
issues.

5.2.2 Control Overhead

The control overhead of the reliability protocols has two
aspects: transmission overhead and buffer overhead. The
transmission overhead is the number ofextra transmis-
sions incurred by the protocol. If a packet needs to travel
N hops to reach its destination then any additional trans-
missions overN constitute the transmission overhead.
For mDTN the transmission overhead is related to hop-
by-hop retransmissions at each mote. The DataRel trans-
mission overhead includes hop-by-hop retransmissions
(via CentRoute), as well as packet retransmission at the
source and ACK transmissions and retransmissions. The
buffer overhead is the amount of buffer space required
at each mote to store unacknowledged packets. Since
DataRel is an end-to-end protocol, we expect its trans-
mission overhead to be considerably higher than mDTN.
At the same time, since mDTN can potentially store
packets on every mote along a path, we expect it to have
a higher buffer usage.

Figure 9 shows the per-mote additional transmission
overhead as a function of mote radio failure rate for the
two reliability protocols. DataRel overhead is always
above100%. This is due to the end-to-end ACKs which
even in the absence of retransmissions incur a100%
overhead for an ACK window of1, as each packet needs
to be ACKed. A larger ACK window on the sender
would reduce the transmission overhead of DataRel at
the expense of more buffer usage. As expected, mDTN
is consistently less expensive than DataRel although the
difference is less pronounced at higher failure rates. This
is mostly due to the nature of the underlying Multihop
routing protocol. When a mote radio fails, it takes a cer-
tain amount of time for Multihop to decide that this mote
is no longer a valid parent. During this time, mDTN
will continue to attempt to transmit data over that mote.
When the failure rate is high this can lead to a large num-

Usage (bytes) RAM ROM
DataRel 100 6952
mDTN 338 13278

Table 3:Mote RAM and ROM usage in bytes for DataRel and
mDTN.

Latency (sec) Mean 95% Quart. Max
Registration Protocol 0.61 5.18 6.97

Resource Caching 0.12 0.32 0.41

Table 4:Resource update latency for the registration protocol
and resource caching parts of the Resource Discovery service.

ber of unnecessary retransmissions. In contrast, Cent-
Route path failure notification is very quick and as such
DataRel does not suffer from this problem.

Figure 10 shows the average buffer usage required by
each protocol as a function of mote radio failure rate.
As expected, DataRel uses less buffers than mDTN since
it only buffers a packet at theoriginal sender. MDTN
on the other hand can potentially buffer a packet atevery
intermediate hop as the packet makes its way towards the
final destination. This case is especially probable at high
failure rates.

Buffering at intermediate nodes has another effect on
overhead: it requires additional logic on the reception
data path as a mote needs to determine how to treat each
individual packet. In addition, mDTN includes support
for multiple sinks which further complicate its imple-
mentation.

Table 3 presents the RAM and ROM footprint of each
protocol. Due to the aforementioned reasons, mDTN is
more expensive than DataRel in terms of both RAM and
ROM. The ROM cost in particular underlines the relative
simplicity of DataRel compared to mDTN.

Our reliability experiments reinforce our design deci-
sion on shifting complexity from the motes to the mi-
croservers. DataRel, a simple end-to-end protocol can
deliver 100% of the data even at high failure rates as
opposed to the more complex mDTN. The difference is
primarily due to the end-to-end ACKs made possible by
using the CentRoute flock foundation service. However,
as expected for an end-to-end protocol, DataRel incurs
a substantial transmission overhead. Nevertheless, the
overhead can be reduced by using larger ACK windows,
at the expense of more storage buffer usage.

5.3 Resource Discovery

Our resource discovery experiments focus on the time
required for updates to propagate to the entire network.
This knowledge can be then used to provide an upper
bound on the rate that a client can query the service. For
this experiment, we used our experimental mote testbed
consisting of40 Mica2 motes placed at the ceiling of our
building’s 3rd floor, as shown in Figure 11. We used

12

a simulated channel for our microserver network con-
sisting of 3 shepherds and assumed that all shepherds
are within range. To simulate a resource update, we
changed the “sensor type” value on each mote thus caus-
ing the registration protocol to propagate the update, as
discussed in Section 4.2.1.

Our latency measurements consisted of two parts: the
first part measured the time required for the registra-
tion protocol to update the resource value on the local
shepherd. The second part measured theadditional time
required for the resource caching service to update all
the shepherds in the network with the new data obtained
from the registration protocol. The second measurement
was complete when all three shepherds had converged on
the same value.

Table 4 shows the mean, 95% quartile and maximum
latency of an update, in seconds, for both the registra-
tion protocol and the resource caching service. Since the
registration protocol operates on the mote network, it in-
curs a higher latency than the resource caching service
which utilizes the 802.11 network. In particular, regis-
tration protocol latency is dependent on the mote’s path
length to the sink—with each hop adding approximately
100 milliseconds of propagation delay—as well as the
quality of the path. A low-quality or broken path can
result in a DataRel retransmission or even a CentRoute
path repair thus having an negative effect on latency. The
resource caching service does not suffer from those is-
sues although we expect its latency performance to de-
grade as we increase the hop diameter of the microserver
network, based on experiments presented in [10].

Based on our results, the mean time required for an up-
date originating from a mote to reach all the shepherds is
0.73 seconds, while the maximum is7.31 seconds. In
the future, we plan to do more extensive latency mea-
surements on our Resource Discovery service, in order
to establish a more accurate upper bound as well as com-
pare our design choices with the alternatives presented in
Section 4.2.

5.4 A complete application: Habitat Moni-
toring

Our final set of experiments involved implementing a
simple multi-sinkhabitat monitoringapplication using
Mote Herding and comparing its performance with a
similar application. In our application, motes periodi-
cally send data back to a single or multiple microservers
using DataRel on top of CentRoute. We measured the
application’s performance with data delivery ratio, total
number of transmissions and packet latency as a func-
tion of the number ofsinksin the network and compared
it with the ESS application, which uses mDTN on top of
Multihop. Both applications were tested using our exper-

Figure 11: The experimental testbed used in our experiments.
Nodes with darkened boxes were the shepherds/sinks.

Num. Delivery Total transm. Latency
of Ratio (%) (packets) (sec)

sinks MH ESS MH ESS MH ESS
1 (16) 100 84.24 1501.5 3089.4 2.75 12.27

2 (3,33) 100 90.30 710.28 2493.7 0.98 1.72
3 (all) 100 94.06 588.77 2423.9 0.24 0.63

Table 5:Delivery ratio, total number of transmissions and la-
tency results for the Mote Herding (MH) and ESS versions of a
habitat monitoring application as a function of the total number
of sinks in the system.

imental testbed.
Table 5 depicts the results of our experiments. The

Mote Herding application outperformed the ESS appli-
cation in terms of delivery ratio, total number of trans-
missions and latency. We note that increasing the number
of sinks has a positive effect on the performance of both
applications, especially in terms of reducing the num-
ber of transmissions and packet latency. A larger num-
ber of sinks reduces the effective mote network diameter,
thereby leading to shorter paths.

Based on our encouraging initial testbed results, in the
future we plan to deploy our Mote Herding-enabled habi-
tat monitoring application in the field and compare its
performance to that of real-world applications.

6 Conclusions

In this paper we presented Mote Herding, a new system
architecture that targets large scale heterogeneous sen-
sor networks, comprised of 8-bit motes as well as 32-bit
microserver nodes. Mote Herding is based on two key
abstractions: theflockwhich is a collection of motes con-
nected to a single microserver called the shepherd and the
herd which is comprised of the collection of flocks and
their shepherds. Based on those abstractions, Mote Herd-
ing introduces two classes of services. Flock services are

13

services that run on a single flock and its shepherd. Herd
services operate on the entire network but are located
solely on the microserver network and interface to the
mote network via corresponding flock services. A foun-
dation service is used as a building block for all other
services in its class.

Using the Mote Herding abstractions we implemented
several services, including centralized intra-flock rout-
ing, a mote data reliability flock service and a resource
discovery herd service based on three subservices. We
evaluated the performance of our services using simu-
lations and emulations of both sample scenarios and a
habitat monitoring application and compared them with
other protocols and services. Our results show that our
centralized mote routing service, CentRoute, is able to
maintain better than 99% connectivity at high network
densities with 60% less overhead than two other routing
protocols. Our data reliability service was able to main-
tain 100% reliability in up to 30% link failure rates. Fi-
nally, our emulated habitat monitoring application based
on Mote Herding was able to consistently outperform a
similar habitat monitoring application in terms of data
delivery, transmission overhead and latency.

References

[1] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz. A comparison of mechanisms for improving
TCP performance over wireless links. volume 5, pages
756–769, 1997.

[2] M. Batalin, G. S. Sukhatme, Y. Yu, M. H. Rahimi, G. Pot-
tie, W. Kaiser, and D. Estrin. Call and response: Experi-
ments in sampling the environment. InACM SenSys 2004.

[3] K. Birman and R. Cooper. The isis project: Real experi-
ence with a fault tolerant programming system.Operating
Systems Review, pages 103–107, Apr. 1991.

[4] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and
J. Zhao. Habitat monitoring: Application driver for wire-
less communications technology. InSIGCOMM Wksp. on
Comm. in Latin America and the Carribean, Costa Rica,
Apr. 2001.

[5] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin. Sta-
tistical model of lossy links in wireless sensor networks.
In IPSN 2005.

[6] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless rout-
ing. In Mobicom 2003. ACM, 2003.

[7] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz. An architecture for a secure service dis-
covery service. InMobile Computing and Networking,
pages 24–35, 1999.

[8] K. Fall. A delay tolerant network architecture for chal-
lenged internets. InProceedings of SIGCOMM 2003.

[9] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ra-
manathan, and D. Estrin. Emstar: a software environment

for developing and deploying wireless sensor networks.
In USENIX Tech. Conf. 2004.

[10] L. Girod, M. Lukac, A. Parker, T. Stathopoulos, J. Tseng,
H. Wang, D. Estrin, R. Guy, and E. Kohler. A reliable
multicast mechanism for sensor network applications. in
CENS Technical Report 48.

[11] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson,
D. Estrin, E. Osterweil, and T. Schoellhammer. Tools for
deployment and simulation of heterogeneous sensor net-
works. InProceedings of SenSys 2004, November 2004.

[12] R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chin-
talapudi, O. Gnawali, R. Gummadi, S. Rangwala, and
T. Stathopoulos. Tenet: an architecture for tiered embed-
ded networks. InCENS Technical Report No. 53.

[13] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless
sensor networks with low-level naming. InSOSP. ACM,
2001.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InASPLOS-IX, 2000.

[15] W. Hu, V. N. Tran, N. Bulusu, C. tung Chou, S. Jha, and
A. Taylor. The design and evaluation of a hybrid sensor
network for cane-toad monitoring. InIPSN 2005.

[16] Intel. Intel stargate, http://platformx.sourceforge.net.

[17] D. B. Johnson and D. A. Maltz. Dynamic source routing
in ad hoc wireless networks. In Imielinski and Korth, ed-
itors,Mobile Computing, volume 353. Kluwer Academic
Publishers, 1996.

[18] F. Stann and J. Heidemann. RMST: Reliable Data Trans-
port in Sensor Networks. InProc. of the First Intl. Wkshp
on Sensor Net Protocols and Appl.IEEE, 2003.

[19] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,
and D. Culler. An analysis of a large scale habitat moni-
toring application. InSenSys 2004.

[20] C. Wan and A. Campbell. PSFQ: A Reliable Transport
Protocol For Wireless Sensor Networks. InWSNA 2002.

[21] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor networks.
In MobiSYS ’04, pages 99–110. ACM Press, 2004.

[22] A. Woo, T. Tong, and D. Culler. Taming the underly-
ing challenges of reliable multihop routing in sensor net-
works. InSensys 2003.

[23] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless sen-
sor network for structural monitoring. InACM SenSys
2004.

[24] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan,
Y. Liu, and S. Singh. Exploiting heterogeneity in sensor
networks. InIEEE Infocom 2005.

[25] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. InSensys
2003.

[26] Extensible sensing system: An advanced network de-
sign for microclimate sensing.http://www.cens.
ucla.edu.

14

