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Abstract

Low-powered radios, interference patterns, and multihop
connections make most wireless networks inherently unreliable.
While MAC protocols provide high reliability for unicast via
mechanisms such as ARQ, higher-layer network protocols often
require broadcast transmissions as well. Prior work on
broadcast improvements has focused on efficiency and
generally not related reliability to general routing protocols.
Existing broadcast protocols often require multi-hop topology
information. Instead, we present a very simple protocol,
requiring only local information, and highlight the
performance impact of our protocol on routing with a
secondary evaluation of energy efficiency. We develop our
protocol as a service between the MAC and network layer,
taking information from both. Our approach is based on two
principles: First, we exploit network density to achieve rear-
perfect end-to-end reliability by requiring moderate (50-70%)
reliability when nodes have many neighbors. Second we
identify areas of sparse comnectivity where important links
bridge clusters of dense nodes, and guarantee connectivity over
those links. Routing performance depends on wireless
propagation, so we develop a new error model that considers
both correlated and independent loss in broadcast traffic based
on testbed experiments. We demonstrate, through controlled
simulations using this model, and through complete testbed
experiments, that this hybrid approach is necessary to provide
near-perfect accuracy with good efficiency. Ina real testbed
we show 99.8% accuracy with 48% less overhead than through
repeated flooding. The contributions of this paper are the
introduction of our protocol Reliable Broadcast Propagation,
definition of metrics that balance efficiency and reliability, and
introduction of a more accurate model for broadcast error.

1 Introduction

Numerous studies have documented a wide variance
in reliable packet delivery for energy-constrained
wireless environments [40, 38, 41, 31]. This physical-
layer problem can be ameliorated for unicast packets via
MAC layer mechanisms such as CTS/RTS/ACK, ARQ,
and FEC [16, 39]. Unfortunately, control traffic overhead
has prevented such techniques from being effective for
PHY layer broadcasting.

There is a wide range of prior work looking at
improving broadcast reliability and efficiency. Reliable
broadcast schemes based on TDMA [6] and self-pruning
[3], employed in high powered wireless networks do not
adapt well to low power networks where dynamic
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connectivity and poorly convergent global knowledge
are the norm. Approaches like application layer jitter,
MAC layer random slot selection [36], and PHY layer
capture [35] can help to lower the probability of
unrecoverable broadcast collisions, but they don’t
guarantee broadcast propagation. Finally, very few
proposed improvements for broadcasting have been
tested outside of simulation. Real-world topologies rarely
have uniform density. Node density in wireless networks
is particularly important for broadcasting because it
correlates to the number of disjoint paths between node
pairs, which has a major impact on the probability of
eventual packet delivery [26]. So, from a MAC and PHY
layer perspective, reliable broadcasting can be difficult in
some environments. Perhaps because of these challenges,
widely available protocols, such as 802.11, do not
provide general support for reliable broadcast.

Nonetheless, broadcasting is an integral part of
popular protocols for data dissemination in wireless
networks. When AODV [24] has no route to a
destination node, it broadcasts Route Request messages.
Similarly, ODMRP [17] broadcasts a Join Query to
initially find target nodes. Tiny DB floods an SRT build
request in order to construct attribute-based Semantic
Routing Trees [20]. IDSQ floods an m-hop
neighborhood in order to initially locate a moving target
[41]. Flooding-limitation protocols like SPIN [15] and
BARD [32] degrade to flooding when there is no overlap
of in-network history and the current query. This paper
aims to mitigate the reliance of higher-layer protocols on
the reliability of broadcasting by providing reliable
broadcast as a system service.

In this work we examine reliable broadcast in the
context of multi-hop routing and resource discovery. The
challenge of reliability is greater in low power networks,
and complexities of interference are poorly understood
and modeled in simulation. We therefore base the results
of our work on testbed experiments from an available 20-
node sensor network, augmented by simulations to
systematically explore the design space. In wireless
sensor networks, broadcast reliability is directly affected
by radio interference, hop counts, hidden nodes,
congestion, node density, and transient interference
patterns [40, 34]. The limited radio power of typical
sensor network motes necessitates multrhop routes from
data sources to data sinks [38].



Reliability for broadcasting can be thought of as the
probability that a broadcast “wave” will reach the most
distant “tier” of nodes away from the source of the

broadcast [37]. Broadcasting in wireless is most often
achieve via flooding, which is the retransmission of a
packet exactly once by each node in the network [23]. In
this paper we present a new protocol that enhances the
reliability of flood-based broadcasting in wireless
networks. The goal of our protocol is to ensure that a
near perfect percentage of broadcastsreach all tiers.

A general category of task that can be impacted by
unreliable broadcast is “resource discovery.” For routing
protocols, like DSR [14] and AODV [24] this is simply
target location. Resource discovery for applications is
generally concerned with the location of nodes that are
generating data of interest to an application sink. The
reliability of resource discovery could be defined as the
ratio of discovered nodes matching a query to the actual
number of relevant data sources in the network. Wireless
sensor network data dissemination protocols often
combine resource discovery with attribute-based routing
[10]. With attribute-based routing, unreliable broadcast
can simultaneously affect both application and routing.
For a certain class of application, reliable resource
discovery is essential. Such applications exhibit a rapid
decay in efficacy when even a single exploratory epoch
fails to find targeted resources. Examples include
interactive applications where a user is waiting for a
query response [27], real-time applications like target-
tracking [13, 41], and signal processing applications
whose accuracy depends on a critical mass of data [18].

In this paper we present a new protocol for reliable
broadcasting. Our protocol is distributed in the sense that
every node makes its own decisions about retransmission
without any global or hard state. Nodes examine traffic
in their local neighborhood to gauge the degree of
broadcast propagation. Decisions to retransmit a
broadcast are parameterized by local node density. In our
protocol, lower density equates to a higher likelihood of
retransmission for imperfect propagation. Naturally,
chain reactions that result in excessive flooding must be
squelched. Timeliness is a natural side effect of our
protocol because, with it, a single flood has a higher
probability of achieving a sought for response. The same
probability may be achieved via multiple less reliable
floods, but timeliness will suffer and, as we will show,
the effective overhead will be worse. Details of the
protocol are presented in Sections 3 and 4. The basic
methodology of our investigation is to use testbed
experiments and simulations to validate a protocol based
on analysis. The goal of our experiments is to unearth the
cost of our scheme relative to the reliability that it
provides.

The contribution of this paper, then, is threefold.
First, it presents a new protocol, Reliable Broadcast

Propagation (RBP), as the preferred technique for
wireless network applications that rely on broadcasting
for timely and accurate system response. Second, it
defines a new broadcast metric that balances efficiency
with reliability . Third, it introduces a new simulation
error model for more accurate modeling of packet
reception that is especially important for experiments
related to broadcasting.

2 Related Work

Related work for this paper can be roughly divided
into five categories: wirednetwork broadcast reliability,
reliable broadcast schemes for MANETS, wireless MAC
layer reliability, transport layers for sensor networks,
and, to a limited extent, resource discovery algorithms.

Broadcast reliability for wired networks is
concerned with upper-layer tasks such as the
dissemination of routing information, real-time
multicasting, and database replication. Protocols, like
OSPF [21] and PGM [30], rely on the maintenance of
unicast trees for the delivery of ACKs or NACKs to
trigger retransmissions. Database replication techniques
rely on eventual data convergence over time via repeated
or multiple random transmissions [5]. Because point-to-
point networks can not exploit the ubiquitous nature of
wireless broadcasting, there seems to be little that can be
learned from these techniques applicable to wireless
networks. Nonetheless, work in reliable OSPF has
demonstrated that broadcast reliability is directly
affected by the number of shared edges that exist among
alternate paths between node pairs [26]. Because
wireless broadcasting can be modeled schematically as a
set of discreet connections [34], shared-edge analysis is
an effective tool for predicting the probability of
eventual delivery of a broadcast packet to all nodes in a
wireless network. Most wireless broadcast analysis is
predicated on an assumption uniform density. We
demonstrate in Section 5 that local density, in the context
of shared-edge analysis, can have a profound affect on
the probability that all nodes in a wireless network
receive a broadcast.

Broadcasting schemes for MANETs fall into four
general categories: simple flooding, area-based methods,
neighborhood-knowledge-based methods, and
probabilistic schemes [36]. Ho et al. make several
important points about the appropriateness of flooding
for MANETs [12]. Flooding is topology-independent,
and the redundancy of flooding makes it inherently
reliable. Also, traditional broadcasting techniques that
rely on the maintenance of hard state converge too
slowly for dynamic environments. Area-based and
neighborhood-based methods are aimed at efficient
broadcasting without loss of reliability. They require
knowledge of the absolute locations of nodes or the hop
counts to nodes. Area and neighborhood schemes strive



to eliminate redundancy from flooding. Nodes which
can’t increase the scope of a broadcast prune themselves
from the set of nodes that retransmits a broadcast. Our
approach is more concerned with high reliability rather
than average reliability at low cost. Gossip-based ad-hoc
routing is a probabilistic scheme which includes a
heuristic to prevent premature gossip death [8]. The
heuristic is sensitive to network density in thata decision
to not forward a broadcast (due to failed probability) can
be overruled when an insufficient number of neighbors
have been overheard to transmit the same broadcast. The
interesting aspect of many of these schemes for
MANETs is the concept of making distributed decisions
based on the snooping of local neighborhood traffic. The
protocol that we present in the next two sections is
somewhat similar to a one-hop self-pruning scheme [19]
combined with the heuristic employed in Gossip.

Commonly used wireless MAC layers, like 802.11
[16] and S-MAC [39] do nothing to ensure the reliability
of PHY broadcasting other than random slot selection
when a busy channel goes idle. Tang and Gerla have
proposed the addition of broadcast ACKs to 802.11 [33].
Numerous TDMA schemes have been proposed that
provide contention-free reliable broadcast [2]. Because
TDMA schemes usually require cluster heads with
intimate knowledge of the nodes they support, they are
not typically used in low-power networks. TRAMA is a
novel adaptation of TDMA to sensor networks in which
nodes use a schedule exchange protocol and adaptive
election to converge on slot assignments [22]. Node
schedules are piggy-backed on data packets. Z-Mac is a
sensor net MAC that uses a TDMA schedule when
contention is high and CSMA for low contention [29]. It
requires knowledge of two-hop neighbors, and schedule
exchanges. It appears that TRAMA and Z-MAC have
only been simulated; studies with real-world error
conditions remain to be done.

The goal for our protocol was to achieve network-
wide reliability, so we also examined ideas from
transport layer protocols for low-powered wireless
networks. ESRT is a sensor network protocol that
attempts to increase the reporting rate of a source until a
requisite sampling rate is achieved at the sink (while
avoiding congestion) [1]. RMST is aimed at the
fragmentation and reassembly of binary objects that are
larger than the network mtu [31]. ETX uses forward and
backward reliabilities to select good end-to-end paths in
a sensor network [4]. A common denominator of these
protocols is that they are all concerned with unicast
transmissions and require end-to-end book keeping.
Since every node is an endpoint in a broadcast, transport
layer mechanisms are not practical for our investigation.
Nonetheless, our scheme may indirectly enhance
transport and routing protocols that rely on lower-layer

broadcasts to provide the information on which they base
their decisions.

Although we decided to use resource discovery as
the upper layer protocol for our investigation, it is not the
primary concern of this paper. We mentioned, in Section
1, that AODV, ODMRP, TinyDB, Diffusion, IDSQ, and
BARD all rely on broadcasting under certain
circumstances. Even so, not all resource discovery
schemes for wireless networks use broadcasting. For
example, DCS/GHT [28] uses an underlying geographic
routing layer to move data with common attributes to
specific nodes by hashing attribute names into
geographic coordinates.

3 Reliable Broadcast Algorithm

We had several goals in mind when addressing the
problem of reliable broadcasting in wireless networks.
We wanted an algorithm that would provide near perfect
reliability in a timely manner. Unlike prior work, we
avoided multihop topology/schedule exchanges. We
decided that our algorithm must adapt quickly to
changing network conditions without extensive control
overhead. Although reliability and efficiency are
covariant, we wanted to balance cost and benefit. Finally,
we wanted to verify our algorithm with real-world
experiments. We therefore designed for non-uniform
densities, optimizing for both density and direction.

The algorithm that we evolved is very simple in that
it only requires a node to know the identity of its one-hop
neighbors (i.e. neighbors with whom a node has direct
bi-directional communication). Accumulating a list of
one-hop neighbors is a trivial task given that such
neighbors are in direct communication with a node inside
a relatively short window of time. Many MAC and
routing protocols already accumulate this information. In
contrast to the neighborhood-knowledge schemes alluded
to in the last section, we are not trying to make a single
broadcast more efficient. Rather, we wish to make a
single broadcast more reliable, thereby reducing the
frequency with which an upper-layer protocol needs to
invoke broadcasting. If an unreliable broadcast
propagates with P(S) = .90, then an application that
required .99 reliability would need to broadcast twice to
ensure success. Our goal is to make a single reliable
broadcast more efficient than the equivalent number of
unreliable broadcasts required to achieve the same level
of reliability.

With our algorithm, the first time a node hears a
broadcast it retransmits the packet unconditionally, as in
a normal flood. As additional neighbors transmit the
same packet, the node listens ands keeps track of which
neighbors have propagated the broadcast. Armed with
one-hop neighbor knowledge, a node can ascertain the
percentage of its neighbors that are guaranteed to have
seen a packet. We call a transmission by a neighbor an



implicit ACK., a term that typically refers to inbound
traffic that indirectly acks outbound traffic [25]. When
the number of implicit acks seen by a node falls below a
predetermined threshold, a node will again retransmit the

Figure 1: A sample topology with varying density and
appropriate thresholds.

broadcast packet. In order to avoid the undesirable
regeneration of an entire broadcast, nodes hearing a
broadcast more than once from the same node will send
an explicit unicast ACK to that node (and not retransmit
that packet). If the number of neighbors that haven’t
acked a packet is less than the number of neighbors that
have, the packet is unicast to the unacked neighbors. This
results in the least overhead for the retransmission.

A key optimization in our algorithm is that both
retransmission thresholds and the number of retries are
adjusted for neighborhood density. Higher density
neighborhoods have lower thresholds with fewer retries.
If, for example, there are three or less neighbors, a node
will make up to three attempts to propagate the message
to all neighbors. For four to six neighbors the threshold is
66% and the number of retries is two. When there is a
dense local neighborhood (i.e. eight or more neighbors),
“successful” propagation occurs when half of the
neighborhood acks and only one retry is attempted if the
threshold is not met. The analysis in Section 5 and
feedback from early test runs was used in selecting
appropriate thresholds. Figure 1 demonstrates the general
idea of variable thresholding.

We also introduced a  “directional sensitivity”
optimization into our algorithm. This was in response to
a special case of non-uniform density that our testbed
experiments revealed to us. When an upstream dense
section meets a downstream sparse section, there can be
a node at the edge of the dense section that has a large
neighbor count, but is the sole provider of traffic to the
first downstream node in the sparse section. This
situation is depicted in Figure 2. The black node is the
sole provider of traffic to the grey node, but it resides in
a dense neighborhood. When the grey node fails to hear
a broadcast from the black node, retries will rarely
happen with our basic algorithm because there is a high
probability that at least 50% of the black node’s
neighbors will have acked the broadcast. The black node
is incapable of recognizing its special relationship with

the gray node, but the gray node can easily do so because
all of its upstream traffic will come from the black node.

Figure 2:Special Relationship between Black and Gray Node

With our directional sensitivity optimization, nodes
keep a histogram of which neighbor was the first to
transmit a previously unheard broadcast. For the black
node in Figure 16 there would be a uniform distribution
in such a histogram. The introduction of jitter for
message forwarding in dissemination protocols
guarantees that no single neighbor dominates. The gray
node, however, sees most upstream traffic (for a time)
from a single node. Our solution includes a moving
window of time in which a directional histogram is
maintained. If a single neighbor has a majority of the
histogram, the node sends that upstream neighbor a
control message indicating that it has a special
relationship to this node. Any node that gets such a
message will do up to 4 retries when that downstream
node does not ack. This behavior is independent of the
normal rules for retries based on density. It is possible
for a node to have multiple “important links.“ The
combined algorithm is shown in Figure 3.

rbp_snoop_send (pkt) {
if (broadcast)
set rbp_timeout
pass through to MAC

}

rbp_snoop_rec (pkt) {
if ( (overheard broadcast by neighbor)OR (explicit ACK) )
mark neighbor ACKed
pass through to Routing

}

rbp_timeout {

if ( (percentACKed < thresiold (neighborCount) AND
(retryCnt<maxRetry (neighborCount) )
rebroadcast = TRUE

else if ( (any important links)AND (retryCount <4) )
rebroadcast = TRUE

else
rebroadcast = FALSE

if (rebroadcast) {
forward copy of beast to MAC
retryCnt ++
reset rbp_timeout




Figure 3: Pseudo-code for RBP Algorithm
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Figure 4: Diffusion Filter Architecture with RBP as a
Selectable Service between the MAC and Routing Layers

4 RBP Implementation

Our primary objectives during implementation were
modularity, encapsulation, and layering. We considered
modification of existing MAC and routing layer
protocols undesirable. Our goal was to provide reliable
broadcast as a selectable service. Because of the general
applicability of our algorithm, we wanted an
implementation that could easily be added to existing
protocol stacks. Our solution was to create a pass-
through module that snoops on network traffic between
the network and MAC layers.

Whenever the RBP module sees a previously unseen
broadcast packet, it instantiates an object in a map
indexed by a unique ID. RBP starts a short timer and
keeps track of the implicit (and explicit) ACKs in the
associated object. When the timer expires, the algorithm
as described in the last section is used to decide whether
or not to retransmist the message (beyond the initial
flood). RBP keeps a duplicate of the original broadcast
packet for retransmission. A cleanup timer periodically
removes obsolete entries from the map. Explicit ACKs
and directional sensitivity messages were implemented
as a unique control messages in diffusion.

We felt that the most general opensource
framework for developing and deploying sensor network
software, available at the time, was EmStar [7]. EmStar
provides a handy Data Link Interface that specifies a
standard API for stackable sensor network modules.
Numerous services have been ported to EmStar so that it
is possible to deploy arbitrary combinations of PHY,
MAC, and Data Dissemination layers.

Our choice for a data dissemination / routing layer
was One-Phase-Pull Diffusion [9]. One-Phase-Pull
employs a single flood for resource discovery that is
repeated at randomly selected intervals in order to cope

with changing network conditions. Sinks flood an
“interest” packet that describes a desired attribute set,

and sources with matching attributes then establish a
unicast path back to the sink. Diffusion provides a
convenient filter facility for the in-network monitoring
and/or modification of data as it moves through a
network [11]. The filter mechanism allows for the
selectable modification of semantics between the routing
layer and layers above or below. We encapsulated RPB
in a loadable filter module in order to accomplish our
dual requirements of layering and modularity. We could
have alternately placed RBP into an independent EmStar
module, but we had greater familiarity with the filter
mechanism. Our RBP module intervenes between the
MAC and routing layer (see Figure 4), and will be made
available in released diffusion as the RBP filter, named
for the algorithm.

An important requirement of our algorithm was the
knowledge by each node of its one-hop neighbors. This
information is conveniently available in EmStar by
including certain modules (linkstats, neighbord, and
blacklist ) in the EmStar “stack” of network modules.
These modules are routinely included when running
diffusion over EmStar, in order to support the informed
selection of end-to-end unicast routes.

5 Analysis

Previous work has accomplished detailed analysis of
flooding reliability in wireless networks [34, 37].
Viswanath and Obraczka define flooding reliability as
the total number of nodes reached by a broadcast divided
by the total node count for the neighborhood [34].

ok

In this equation PsN is the expected number of neighbors
that will successfully receive a transmission from a
source node, PpN is the expected number of nodes that
will receive at least one secondary transmission, £ is the
expected increase in area coverage (around 41%), and /
is the hop count of the flooding wave. In formula (1),
increasing density will increase the expected number of
nodes that successfully receive a broadcast packet. Most
analysis of wireless flooding is simplified by an
assumption of uniform density. Because our protocol is
density sensitive, a more interesting analysis for our
purposes deals with variable density. Rather than use
formula 1 and related formulas, we instead do a “shared
edge vs. disjoint path” analysis [26] that allows us to
examine the problems posed by variable density.
Topologies with high density near the source of a
broadcast and lower density away from the source will
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have misleadingly good reliability numbers using
formula (1) and associated formulas.
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Figure 5: Broadcast Propagation Between Node 1 and Node 2
in a Uniform Density Topology with Three Common
Neighbors

We begin our analysis with a uniform density
topology and then demonstrate the effect of introducing
variable density. Consider figure 5 in which node 1 (the
source) has 10 neighbors, three of which are common to
two-hop neighbor, node 2. With flooding, each of the
common nodes will retransmit the broadcast packet, so
there are three possible disjoint paths from the source to
node 2 during the first retransmission. As the broadcast
wave expands, the number of neighbors that initially
transmit to a node, which has never seen the broadcast, is
a fixed value (under uniform density). The probability
that a node will receive the first wave of a broadcast is
easily calculated:

PTn 3P Tnxi »1X1RP S © )

P[Tn] is the probability that nodes at Tier n will receive
the broadcast wave, P(S) is the simple probability that a
transmission succeeds, and C is the number of common
neighbors. We now use formula 2 to calculate the
probability that a broadcast wave propagates to the nodes
between the dotted lines in figure 6 .

Source

Tier 4

l l Tier 5

Figure 6: Broadcast Propagation Graph Divided by Time
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Figure 7: Topology with a Wave Front Bottleneck

If we assume that P(S) is 90%, we get the entries in
Table 1 in the row labeled “Mesh” for the probabilities
that the broadcast wave will reach each successive tier:

Topology | Tier1 Tier2 Tier3 Tier4 Tier5
Mesh .90 .899 .898 .897 .896
Bottleneck | .90 .899 .898 .808 .806

Table 1

It should be obvious that, with uniform density, the
probability of a successful broadcast is primarily
controlled by the success or failure of the initial
transmission from the source. The likelihood of all three
common nodes independently failing to receive a
broadcast can be modeled as a bernoulli trial, and is
extremely unlikely. For example, if the combined
probability of transmit and receive failures results in a
per-link success rate of 90%, the likelihood of all three
common nodes failing is .001.

Suppose we now introduce a bottleneck in our
topology such that there is a non-uniform density and
poorly connected portions of the network. This situation
is depicted in Figure 7 where there is a single node
connecting two denser portions of the network. This
could occur for a number of reasons such as: node
placement, dying nodes, or interference patterns. All
paths leading from the source to the destination now
share a link. A shared link has a significant impact on
end-to-end broadcast reliability as shown in the Table 1
row labeled “Bottleneck.” Note that Tier 4 now has a
probability of 80.8%, and the probability that the
broadcast actually reaches the destination would is
reduced by 9%. When multiple disjoint paths meet at a
shared edge, the effect on end-to-end broadcast
propagation is similar to that caused by the initial
broadcast from the source. A broadcast protocol that
bolsters reliability only for initial transmissions from a
source will not work in sparse topologies. Because
shared edges are more common in areas of low density,



sensitivity to density is a key enabler of our algorithm, as
will be shown in the experiment results that follow.

6 RBP Initial Simulation Results

Having conceived of an algorithm that adapts to
poorly connected topologies like that of Figure 7, we
wanted to quickly evaluate the feasibility of our scheme.
We therefore ran a series of preliminary simulation
experiments based on our analysis.

6.1 Methodology

The simulation environment we employed was
EmSim [7], which is available with EmStar. It allows for
actual network code to run unaltered while providing
simulated radios, channels, and error models. For a MAC
layer protocol we used the generic MAC delivered with
EmSim. It provides multiple access with collision
avoidance. The EmSim MAC does not do retries for
broadcasting, as is typical in most wireless protocols.
Software loaded above the MAC layer in each
experiment included the diffusion filter core, the one-
phase-pull routing filter, the RBP filter (when using
reliable broadcast), and simple source and sink apps. We
configured One-phase-pull (OPP) [9] to initiate a
resource discovery broadcast every 60 seconds. The
broadcast send rate was not accelerated to yield more
samples per unit of time because we did not want
broadcasts to overlap one another. Our current work
doesn’t take into account loss due to congestion induced
by overlapping broadcasts. We consider congestion and
its relation to send rate an orthogonal topic at this point
in time. With One-phase-pull diffusion, once a broadcast
reaches a node with sensor data matching the attributes
in the broadcast packet, the node becomes a data source
and commences to send data back to the sink which
initiated the broadcast. We programmed sources to not
transmit actual sensor data, because such transmissions
are unicast and don’t concern us in this paper. Every data
point on a graph represents the average of 10 runs, and
95% confidence intervals are shown. Each run was one-
hour long allowing for 60 broadcasts. We collected per-
node statistics by instrumenting our code to log relevant
events and byte counts. We processed our logs via scripts
to produce statistical results

6.2 Simulation Error Model

Because our protocol is intended to handle a
reliability problem endemic to low power wireless
networks, we wanted an error model for our simulations
that approximates what happens in the real world. The
EmSim error model uses transmission power, distance,
and a normal distribution of receive failures to calculate
the probability of packet loss between a pair of nodes.
This calculation is done independently for each
combination of transmitter and potential receiver (i.e.

every other node in the simulation). We noted that the
error model did not have any correlated receiver loss.
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Figure 8: Observed Distribution of Node Failures for Eight
Real-World Neighbors

We wondered, therefore, to what degree real-world
packet losses were spatially correlated. To that end we
profiled simple loss between a realworld transmitter and
a set of receivers. We placed eight Stargate nodes in a
circular pattern around a ninth node which transmitted a
68-byte packet once per second for an hour. Nodes were
approximately 12 feet from the transmitter and transmit
power was set to -4 dBm. Packets were numbered so that
we could monitor how many receivers got each
transmission. The histogram in Figure 8 shows the
distribution of how many receivers failed individual
transmissions (as a percentage of 3600 attempts). There
are several interesting aspects to this bimodal
distribution. First, the pair-wise independence of receive
errors is evident on the left side of the histogram which
decays exponentially. Second, the non-trivial peak on the
right shows that correlated transmission failures are
present even when there are no line-of-sight obstacles.

Influenced by this finding, we added a normally
distributed correlated failure probability to the EmSim
packet loss model. When a packet is failed by our
addition, it is failed for every receiver in the simulation.
If the packet “succeeds” our modification, it is subjected
to the normal pair-wise calculations. The bimodal
distribution shown in Figure 9 is the measured result of
our combined error model. We feel this is a reasonable
approximation of the histogram in Figure 8.
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Figure 9: Error Model Employed in Simulations
6.3 Metrics

We express experimental results in terms of:
reliability, bytes-per-flood, and a reliability cost metric
(RCM).

As we noted in the Analysis Section, when
reliability is defined as the percentage of nodes that
receive a broadcast, topologies with high density near
the source of a broadcast and lower density elsewhere
may have misleadingly good numbers. We instead define
reliability as the percentage of broadcasts that traverse
the network diameter (reaching the outermost “tier’)
divided by the total number of broadcasts initiated in an
experiment. In our initial measurements, using either
definition of reliability did not significantly affect the
reliability of RBP. Simple flooding, however, often had
significantly lower network-diameter reliability than
node-percentage reliability.

Percentage of Transmits

In all of our experiments we define an “event” as the
initiation of a broadcast by a sink node. Bytes-per-flood
is the sum total of byte transmissions in a network
triggered by a single event. Without RBP, it equates to
the number of bytes contained in the broadcast packet
times the number of nodes that transmitted it. The
number of nodes may be less than the total node count if
the flood fails to reach all nodes. RBP adds the cost of
retransmissions and explicit ACKS.

Bytes-per-flood, by itself, is a poor metric to use for
comparing protocols because it doesn’t take reliability
into account. If several floods are required to guarantee a
certain level of reliability, then the true cost of reliability
is the combined cost of the floods. We needed a metric
that reflects the true cost of achieving a reliable
broadcast. To that end we created the Reliability Cost
Metric (RCM). To calculate the RCM we first solve for
the number of floods required to achieve near-perfect
reliability (.99), given the propagation reliability.

99 11x ps © (3)

We then multiply the number of floods required to
achieve near-perfect reliability by the bytes-per-flood

and normalize by the cost of a “perfect” flood. A perfect
flood achieves 100% reliability with each node
transmitting the broadcast packet exactly once.

RCM 1 F * BytesPerFlood | Nodes* PktSize 4

As an example of RCM, suppose there are 20 nodes, an
80 byte broadcast packet, propagation reliability of 85%
(F'is 2.4), and a measured bytes-per-flood of 1200; RCM
will be 1.8. Although fractional broadcasts are not
possible in the real world, we allow continuous values of
F. RCM is a metric for fine-grained normalized
comparison. We don’t want broadcasts with RCMs of
1.1 and 1.9 to both quantize to 2.0..
@ O—0O—0
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Figure 10: Three topologies used in Simulation Experiment

6.3 Effect of topology on broadcast propagation

For these initial simulation experiments, we had two
goals in mind: basic proof of concept, and controlled
exploration of the effect of density in terms of disjoint
paths and shared edges. We created three different
topologies with a varying degree of shared edges. The
three topologies are shown in Figure 8: inline, mesh, and
bottleneck. The inline topology consists entirely of
shared edges, the mesh topology has no shared edges,
and the bottleneck topology introduces a single shared
edge halfway between source and sink nodes.

Our hypothesis was that simple flooding
performance relative to RBP would deteriorate with an
increase in the number of shared edges. We expected that
broadcasts without RBP over the inline topology would
display the exponential decay in reliability predicted by
formula 2 (in the Analysis Section). The mesh topology
should demonstrate the inherent reliability of
broadcasting in uniform topologies with multiple
neighbors, so the difference between RBP and flooding
should be the least. Between these two extremes, the
bottleneck topology should demonstrate how a single
shared edge can negatively affect reliability.



Another important research question was ‘how does
RBP compare to a protocol that guarantees reliability
regardless of density.” In other words, if a version of
RBP treated all densities in a uniform fashion, could we
achieve the same normalized cost (RCM) as our density
sensitive algorithm? In order to answer that question we
created the Total Reliability Protocol (TRP), a version of
RBP that does up to the maximum number of retries
whenever less than .99 of neighbors have implicitly or
explicitly acked a flood. With our error model it is trivial
to prove that TRP should easily achieve near perfect
reliability over the three topologies in Figure 10.
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Figure 11 Reliability, Bytes-per-flood, and Reliable Broadcast
Cost (RCM) for FLD, TRP, and RBP over Three Simulation
Topologies

Figure 11 plots our three metrics for each protocol over
the three simulation topologies. Simple flooding is
designated as FLD; our algorithm and the total reliability
protocol are marked with their acronyms.

The reliability results, summarized in Figure 11A, are
in line with our expectations. Reliability in a purely in
line topology, without RBP, decays exponentially with
hop count (.88"). Pure flooding (FLD) reliability was
62% for the in-line topology, and both RBP and TRP had
perfect results (1.0). The mesh topology run with FLD
had a relatively good reliability of 88% (in line with our
analysis), and again RBP and TRP were perfect. The
bottleneck topology resulted in a non-RBP reliability of
72%, which is only slightly worse than the result
predicted by formula 2 of the Analysis Section (77%).

As shown in Figure 11B, the transmission cost for a
single flood is always higher for RBP and significantly
higher for TRP. This is due to retransmission and control
byte costs, which are much higher for TRP as it tries to
achieve guaranteed reliability regardless of density.
Notice that when multiple disjoint paths provide inherent
reliability the difference in bytes per flood between RBP
and OPP is less (as a percentage). Also, considering the
graphs in 11A&B, RBP is providing the same reliability
as TRP at a much lower cost.

The most important metric in our estimation is
RCM. Looking only at graphs 11A and 11B, it is
difficult to gauge the relative cost of providing reliability
with each protocol. The normalized cost (RCM) shown
in figure 13 demonstrates the significantly lower cost of
achieving high reliability with RBP than simple flooding.
For example, in the bottleneck topology the exponent in
our RCM formula for FLD is 3.5. In other words it
would take 3.5 floods (unquantized) to achieve 99%
reliability. This number of floods multiplied by the



bytes-per-flood and normalized by a perfect flood results
in an RCM of 3.8 which is 3.1 times worse than RBP. A
very interesting result in figure 13 is how the cost of TRP
changes relative to RBP in different topologies. The in-
line topology RCM is nearly identical for both TRP and
RBP. This is because RBP “degrades” into TRP in low
density networks. Every neighbor is a “special” neighbor
for RBP in the in-line topology. The Mesh topology
provides the greatest density, and the greatest difference
in RCM between TRP and RBP, with TRP 76% worse.
TRP is unnecessarily attempting to achieve perfect
reliability in dense neighborhoods. The bottleneck
topology is between the in-line and mesh topologies with
TRP 54% worse than RBP.

This experiment had the primary result that we had
predicted. The cost of doing multiple unreliable floods in
order to guarantee reliability is actually higher than a
single reliable flood using RPB, and RBP is cheaper than
a protocol which does not exploit the inherent reliability
of dense neighborhoods. With these results in hand, we
felt that we now needed to apply our protocol to a real-
world environment with a less predicable problem space.
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Figure 12: Testbed Topology at USC/ISI
7 RBP Testbed Results

Having validated some basic assumptions about our
algorithm in simulation, we wanted to quickly move the
protocol onto a testbed and debug it in the realworld.
Many papers do extensive simulations prior to realworld
testing. Our experience with wireless protocols suggests
that significant alterations of a protocol are oftenneeded
once it is deployed in a real-world environment. We
decided to do our more complex simulations after
debugging the protocol on our testbed.

The testbed that we used consisted of 20 Stayton and
Stargate nodes. These are small form factor systems
running Linux over a 32-bit Intel processor, with 64M of
SDRAM, and 32M of flash memory. They are fitted with
a multi- channel radio capable of 38.4 Kbaud. Radio
range can be modified to enable multi-hop experiments.
The actual layout of our testbed is shown in Figure 12.
Nodes are placed in private offices and labs separated by
walls. Connectedness was nonuniform with pockets of
good connectivity separated by areas of low density.
Power was intentionally set low to enable multi-hop.

Our traffic model for the testbed was the same one
used in simulation. A broadcast was initiated by the sink

10

node once per minute, and each test run lasted an hour.
Each data point represents the average of 10 test runs.

7.1 Five In-line Nodes

In our first testbed experiment we enabled 5 nodes
from the testbed such that each node had one and only
one upstream and downstream neighbor. We thereby
created one of the topologies that we presented in both
the Analysis and Simple Simulation Sections. This
allowed us to do a limited comparison of our simulation
model to the real world and also gauge the average error
rate on single links in the testbed Looking at the left side
of figure 15 we see that FLD over four hops had an
average end-to-end loss rate of 66%. This is very close
to loss rate we saw in simulation for 5 in-line nodes
(62%). The average per-link reliability for the four
testbed links was 8§9%.

If we compare the RCMs for 5 in-line testbed nodes
in Figure 17 to the RCMs for in-line simulation in Figure
13, we see that FLD numbers are very close (3.55 vs.
3.82). We concluded that we had a good correspondence
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Figure 13: Single-Flood reliability, Bytes Per Flood, and
Reliable Broadcast Cost (RCM) for two topologies in the
USC/ISI testbed.

between simulation and testbed for a simple topology.
Note that TRP is not represented in our testbed graphs,
due to time constraints on testbed utilization. Having
validated a reasonable degree of congruence between
environments, we felt that we could complete this work
in the future.

7.2 Full Testbed Experiment

The primary experiment that we performed on the
testbed was to place a source and sink node at opposite
ends of the testbed, ensuring that the maximum possible
network diameter would be traveled by each broadcast.
Initial results from this experiment were quite
disappointing. RBP was only slightly more reliable for a
single flood than simple flooding, and the RCM was
worse for RBP because the higher per flood cost did not
yield significantly better reliability. Log analysis
revealed a flaw in our initial algorithm, which required
the directional sensitivity optimization outlined in
section 3. “Important links” have the same affect on a
topology that a shared edge has. The problem with
important links is that they are not recognized by the
sending side of the link. Important links originate in
dense neighborhoods and terminate in sparse ones. This
situation requires that recognition of the importance of
the link be made in the sparse neighborhood and relayed
back to the dense neighborhood.

The result of adding directional sensitivity to our
protocol is reflected in the excellent results shown in
Figure 13 A,B,&C. Single flood reliability averaged
99.8% for RBP vs. 68.2% for simple FLD. Although the
bytes-per-flood is 2.7 times higher for RBP, the RCM
cost for RBP is 48% less than FLD. Our experience with
testbed led to two conclusions. First, testbed experiments
can bring to the surface problems that may not be

thought of a priori. Second, directional sensitivity can be
as important as density sensitivity in order for RBP to
achieve reliability at a reasonable cost.

8 RBP Further Simulation Results

Having shown the need for density and directional
sensitivity, we now turn to a systematic exploration of
the design space. Simulation allows for the exploration
of a multi-dimensional problem space in a manner that is
impractical with an actual testbed.

8.1 Methodology

For these experiments we used random node
placements. Every data point presented in this section
represents an average over ten randomly generated
topologies. For random node placement we employed an
existing topology-generator program [9] capable of
creating EmSim topologies of programmable size and
node count. The generator has useful options such as
approximate corner placements of sources and/or sinks in
order to maximize the distance (hop count) between data
producers and consumers. The generator tests topologies
for connectedness given the radio range. If sources and
sinks cannot communicate with each other, the generator
scraps the topology and generates another. In order to
increase the number of tiers traversed by a broadcast we
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Figure 14: Single-flood Reliability Reliable Bytes Per Flood
Broadcast Cost (RCM) with Varying Densityas an
Independent Variable

employed a 90 by 30 meter area and placed the source
and sink nodes at diagonally opposite ends. Average
local neighborhood size was calculated as (NT*R2)/A,
where N is the total node count, R is the maximum radio
transmission range (12.5 meters), and A is the total
simulation area. The packet error rate was achieved by
the error model that we evolved in section 6.1 (see figure
9). Our goal in these experiments was to explore the role
of density and packet-loss rates on protocol performance.
8.1 Density Effects on Overhead

Because density plays a major role in our analysis,
we felt that an obvious investigation was to make density
the independent variable in an experiment. We therefore
used simulation to vary node density (average
neighborhood size) while holding the packet error rate
constant. The primary method our algorithm uses to
achieve efficiency is by adapting to local density. TRP is
really just RBP without density sensitivity, and initial
simulations seemed to indicate that RBP achieved the
same reliability at much lower cost. Sensitivity to density
allows us to economize in dense neighborhoods where
the existence of multiple disjoint paths can facilitate the
propagation of a broadcast. So a key question is ‘does
increasing density eventually obviate the need for a
protocol in order to achieve reliable broadcasting at a
low normalized cost.’

Our expectation for this experiment was that
increasing density would increase the reliability of
simple flooding (FLD) and thus minimize the difference
in RCM between RBP and FLD. We also expected TRP
to deliver the same reliability as RBP, but at a much
higher price. Results for single-flood reliability appear in
Figure 14A. As average density increased from 4 to 12
neighbors, the positive shift in reliability for flooding is
quite dramatic. Reliability increased from 43% with 4
neighbors to 87% with 12 neighbors.

Looking at Figure 14B, the difference in bytes-per-
flood between RBP and FLD remains relatively constant,
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but TRP increases non-linearly. Because RBP and TRP
achieve nearly identical reliability at vastly difference
cost, the RCM graph for this experment (Figure 14C)
yields one of our most interesting results. With 10
neighbors or more, the RCM cost is higher with TRP
than flooding. In other words, with high density,
multiple floods to achieve 99% percent reliabiliity is
cheaper than a single TRP flood. Because the reliability
is converging in Figure 14A, we expect that guaranteed
high density lessens the need for RBP.

8.2 How does Error Rate affect the
Performance of RBP vs. non-RBP?

We saw that high density reduces the performance and
advantage of RBP. Will decreasing the error rate have a
similar affect? Complicating this research question was
the fact that our error model has two components:
correlated errors and pair-wise errors. We decided to
vary each of these components independently, while
holding the other constant. Density was also held
constant at 6 neighbors. Our expectation was that
reducing correlated errors would, like increasing density,
result in a reduced performance advantage of RBP over
flooding. We did not, however, expect the same results
from varying the pair-wise error rate. Our error-model
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Figure 15: Single-flood Reliability and Reliable Broadcast
Cost when Varying Correlated Loss

analysis (6.1) made the point that the likelihood of
multiple pair-wise errors decays exponentially. The pair-
wise error rate would need to get unrealistically high
before a high percentage of disjoint paths between
broadcast tiers failed to forward a flood.

The result of varying the correlated loss is shown in
Figure 15. The results are in line with our expectations.
Similar to increasing density, decreasing the correlated
error rate causes convergence between RBP and simple
flooding in terms of both reliability and normalized cost
(RCM). With correlated loss set to zero, the single flood
reliability of FLD is 97% and RBP is 99.8%. At the other
extreme, with correlated loss at .15 the single flood
reliability of OPP is 46% and RBP is 99%. The RCM
numbers, shown in Figure 22 follow suit. In effect, if
there are no correlated errors (an unrealistic expectation
in wireless networks) and uniform moderate density then
simple flooding is reliable.

Varying the pair-wise errors was accomplished by
shifting the center of the normal distribution for receiver
noise in .05 increments while holding transmit errors
constant at the value used in our standard error model.
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Figure 16: Single-Flood Reliability & Reliable Broadcast Cost
(RCM) when Varying Receiver Loss

The receiver noise distribution, when centered on zero,
gives the loss rates shown in the left side of the bimodal
error model of Figure 9 in Section 6.1.

The results of this experiment, shown in Figure 16,
show much less impact on simple FLD than when
varying transmit failure rates. This is in line with our
analysis and the distribution of our error model.
Although one, two, or three single link failures are far
more likely in our error model than a correlated error, the
likelihood of a large percentage of neighbors failing
during pair-wise calculations is very small.

Broadcasting is tolerant of individual link failures
when network density provides multiple disjoint paths
for the continued propagation of the broadcast wave.
Pair-wise errors have a much larger influence in sparse
neighborhoods. When a node has a single upstream or
downstream neighbor, the effect of pair-wise errors is the
exactly same as for correlated errors. Because RBP does
up to 4 retries in sparse neighborhoods, it handles pair-
wise errors in low density in the same manner as it
handles transmit errors.

9 Future Work

The primary issue not addressed in this paper issue
is that of mobility. We believe that mobility may affect
our protocol in two specific ways. First, mobility
increases the variability of topology over time; therefore,
the identification of one-hop neighbors must occur at a
rate that adapts to this variability or updates must occur
“as needed.” We feel that our algorithm will adapt more
easily to this problem than schemes which require large
amounts of converged information in order to be
effective. Second, the identification of special one-hop
neighbors, outlined in Section 7 must utilize a small
window of samples that is updated frequently. Other
future work may include the encapsulation of our
algorithm in wrappers other than a diffusion filter.
Numerous standard frameworks exist for the easy
stacking of network modules. Because our algorithm is
not specific to sensor networks or directed diffusion, it
should be easily ported to other protocol stacks.

10 Conclusions

In this paper we have explored how broadcast
reliability interacts with routing protocols in wireless
networks. While there is a great deal of prior work in the
area of reliable broadcasting, most of it focuses on
efficient flooding, in simulated topologies, often with
multi-hop topological information. We instead focus on
end-to-end reliability of higher-layer protocols and the
study of topologies with variable density as we found in



our testbed. In addition, we develop a very simple
mechanism using only local density information,
sometimes augmented by indications from immediate
neighbors of important links. We show that this
combination is both effective at obtaining near-perfect
reliability, and much more efficient than either repeated
flooding or guaranteed transmissions. We also derived a
cost metric for broadcasting that takes into account
reliability. Most importantly, we demonstrated that the
cost of achieving 99% reliability for broadcast
propagation in a real testbed is on average 48% lower
with RBP than simply increasing the flood rate. To
evaluate our algorithm we developed a new wireless
transmission error model, based on controlled
experiments, that considers both pairwise and correlated
packet loss. Our key conclusions are shown by
experiments in a 20-node wireless testbed. To fully
explore the parameter space we augment these results
with simulations.

11 References

[1] O. B. Akan, and I. F. Akyildiz. EventTo-Sink Reliability. In
Proceedings of ACM Mobi:Hoc 2003, pages 177-188, June 2003

[2] I. Cidon and M. Sidi. Distributed Assignment Algorithms for
Multihop Packet Radio Networks. I[EEE Transactions on Computing
38:1353-1361 Oct.1989.

[3] F. Dai, and J. Wu. Performance Analysis of Broadcasting Protocols
in Ad Hoc Networks Based on SelfPruning. IEEE Transactions on
Parallel and Distributed Systems, 15(11):10271040, November 2004
[4] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High
Throughput Path Metric for MulttHop Wireless Routing. In
Proceedings of the 9" ACM MobiCom. San Diego, CA, Sept 2003.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for
Replicated Database Maintenance. In Proc. ACM Symposium on
Principles of DistributedComputing pages 1-12, 1987.

[6] A. Ephremides and T.V. Truong. Scheduling Broadcasts in
Multihop Radio Networks. I[EEE Transactions on Communications
38(4):456-60, April 1990.

[7] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. Em*: a Software Environment for Developing and Deploying
Wireless Sensor Networks. In Proceedings of the 2004 USINEX
Technical Conference 2004

[8] Z. Haas, J. Halpern, L. Li. GossipBased Ad Hoc Routing. In
Proceedings of the IEEE Infocom Pages 1707-1716. New York, NY,
June 2002.

[9] John Heidemann, Fabio Silva, and Deborah Estrin. Matching Data
Dissemination  Algorithms to  Application Requirements. In
Proceedings of the ACM SenSys Conference, pp. 218229. Los
Angeles, California, USA, ACM. November, 2003.

[10] John Heidemann, Fabio Silva, Charlemek Intanagonwiwat,
Ramesh Govindan, Deborah Estrin, and Deepak Ganesan. Building
efficient wireless sensor networks with low level naming. In
Proceedings of the Symposium on Operating System Principlespages
146-159, Chateau Lake Louise, Banff, Alberta, Canada October 2001.
[11] John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and
Padma Haldar. Diffusion Filters as a Flexible Architecture for Event
Notification in Wireless Sensor Networks. USC/ISITechnical Report
2002-556

[12] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath. Flooding for
Reliable Multicast in Multthop and Ad-hoc Networks. In Proceedings
of the Intl. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), pages 6471, 1999.

14

[13] Q. Huang, C. Lu, and G. Roman, Spatiotemporal Multicast in
Sensor Networks. In Proceedings of the ACM SenSys Conference, pp.
218-229. Los Angeles, California, USA, ACM. November, 2003.

[14] D. Johnson, and D. Maltz. Dynanic Source Routing in Ad Hoc
Wireless Networks. in Mobile Computing, pages 153181. Kluwer
Academic, 1996.

[15]J. Kulik, W Rabiner, and H. Balakrishnan. Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks. In
Proceedings of the5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 174185, Seattle,
Washington, USA 1999

[16] LAN MAN Standards Committee of the IEEE Computer Society,
Wireless LAN medium access control (MAC) and physical layer
(PHY) specification. IEEE Std. 802.11, IEEE 1997

[17] S.-J. Lee, W. Su, and M. Gerla. Ondemand multicast routing
protocol in multihop wireless mobile networks.A CM/Kluwer MONET,
7(6):441-453, Dec. 2002.

[18] D. Li, K. Wong, Y.H. Hu, and A. Sayeed. Detection, Clasification
and Tracking of Targets in Distributed Sensor Networks. IEEE Signal
Processing Magazine, vol. 19, no. 2, March 2002.

[19] H. Lim, and C. Kim. Multicast Tree Construction and Flooding in
Wireless Ad Hoc Networks. In Proceedings of the Internatimal
Workshop on Modeling, Analysis, and Simulation of Wireless and
Mobile Systems (MSWIM), 2000.

[20] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The Design
of an Acquisitional Query Processor for Sensor Networks. In
Proceedings of the ACM SIGMOD, 2003.

[21]J. Moy. OSPF Version 2, RFC2328, July 1997

[22]V. R. Obraczka, J. GarciaLuna-Aceves. Energy-Efficient,
Collision-Free Medium Access Control for Wireless Sensor Networks.
In Proc. First International Conference on Embedded Networked
Sensor System (SenSys 01),, pages 181-192. Los Angeles, 2003.

[23] K. Obraczka & K. Viswanath, Flooding for Reliable Multicast in
Mutlti-Hop Ad Hoc Networks, PARSEC Workshop‘99

[24] C. E. Perkins and E. M. Royer. Ad hoc ordemand distance vector
routing. In Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA) pages 90-100, New
Orleans, LA, Feb. 1999.

[25] Larry Peterson and Bruce Davie. Computer Networks A Systems
Approach, Morgan Kaufman Inc., 2003. ISBN }55860-832-X.

[26] J.Pu, E.Manning, G.Shoja, Routing Reliability Analysis of
Partially Disjoint Paths In Proceedings of PACRIM 01, Victoria, 2001.
[27] Abhishek Rajgarhia, Fred Stann, and John Heidemann. Privacy
Sensitive Monitoring With a Mix of IR Sensors and Cameras. In
Proceedings of the Second International Workshop on Sensor and
Actor Network Protocols and Applications pages 21-29, Boston,
August 2004

[28] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L.
Yin, and F. Yu. DataCentric Storage in Sensornets wih GHT, A
Geographic Hash Table. In Mobile Networks and Applications
(MONET), pages 427-442 Kluwer, 2003.

[29] I. Rhee, A. Warrier, M. Aia, and J. Min, “ZMAC: a Hybrid MAC
for Wireless Sensor Networks,” Technical Report, Department of
Computer Science, North Carolina State University, April 2005.
http://www.csc.ncsu.edu/faculty/rhee/export/zmac

[30] Tony Speakman, Dino Farinacci, Steven Lin, Alex Tweedly, Nidhi
Bhaskar, Richard Edmonstone, Rajitha Sumanasekera, and Lorenzo
Vicisano. PGM Reliable Transport Protocol.  Internet-Draft
(describing protocols used by Cisco and Whitebarn)Feb 2001.

[31] Fred Stann and John Heidemann. RMST: Reliable Data Transport
in Sensor Networks. In Proceedings of the First IEEE Intl. Workshop
on Sensor Network Protocols and Applications pages 102-112,
Alaska, May 2003.

[32] Fred Stann, and John Heidemann. BARD: BayesiarAssisted
Resource Discovery In Sensor Networks. In Proceedings of the 24th
IEEE INFOCOM Conference. Miami, Florida, USA. March, 2005.

[33] K. Tang, and M. Gerla. MAC Layer Broadcast Support in 802.11
Networks. In Proceedings of IEEE MILCOM 2001, pages 544-548 Oct.
2001




[34] Kumar Viswanath, and Katia Obraczka. Modeling the
Performance of Floodng in MultiHop Ad Hoc Networks, Symposium
on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS'04)

[35] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Cutler.
Exploiting the Capture Effect for Collision Detection and Recovery.
The Second IEEE Workshop on Embedded Networked Sensors
(EmNetS-1I). Sydney, Australia. May 30-31, 2005.

[36] B. Williams, and T. Camp. Comparason of Broadcasting
Techniques for Mobile Ad Hoc Networks. In Proceedings of
MOBIHOC 02, Lausanne, Switzerland,2002.

[37] B. Williams, D Mehta, T. Camp, and W. Navidi. Predictive
Modeling of Network Wide Broadcasting Protocols for Mobile Ad Hoc
Networks. Technical Report MCS-03-05, The Colorado School of
Mines, April 2003.

[38] A. Woo, T. Tong, and D. Culler. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks. InProc.
First International Conference on Embedded Networked Sensor System
(SenSys 01),, pages 14-27. Los Angeles, 2003.

[39] Wei Ye, John Heidemann, and Deborah Estrin. An Erergy-
efficient Mac Protocol for Wireless Sensor Networks. InProc. IEEE
Infocom, pages 1567-1576. New York, 2002.

[40] J. Zhao, and R. Govindan. Understanding Packet Delivery
Performance in Dense Wireless Sensor Networks. In Proc. First
International Confaence on Embedded Networked Sensor System
(SenSys 01),, pages 1-13. Los Angeles, 2003.

[41] F. Zhao, J. Shin, and J. Reich. InformationDriven Dynamic
Sensor Collaboration for Tracking Applications. In IEEE Signal
Processing Magazine 19(2):61-72, March 2002

15



