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ABSTRACT
Covid-19 has radically changed our lives, with many govern-
ments and businesses mandating work-from-home (WFH)
and remote education. However, whether or not work-from-
home policy being taken is not always known publicly, and
even when enacted, compliance can vary. These uncertain-
ties suggest a need to measure WFH and confirm actual
policy implementation. We show new algorithms that de-
tect WFH from changes in Internet address use during the
day. We show that change-sensitive networks reflect mo-
bile computer use, detecting WFH from changes in network
intensity, the diurnal and weekly patterns of IP address re-
sponse. Our algorithms provide new analysis of existing,
continuous, global scans of most of the responsive IPv4 In-
ternet (about 5.1M /24 blocks). Reuse of existing data allows
us to study the emergence of Covid-19, revealing global re-
actions. We demonstrate our algorithms in networks with
known ground truth, evaluate the data reconstruction and
design choices with studies of real-world data, and validate
our approach by testing random samples against news re-
ports. In addition to Covid-related WFH, we also find other
government-mandated curfews. Our results show the first
use of network intensity to infer-real world behavior and
policies.
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1 INTRODUCTION
In 2020, the Covid-19 pandemic has completely changed our
lives. Reports show that millions of people suddenly stay at
home, because they are studying, working there (WFH ), or
are unemployed [6].
However, reactions to Covid-19 are not always certain,

as they may vary by locations and are not publicly stated.
Public reports of Covid-19 responses (such as WFH) are not
always timely—policies are not always reported publicly, and
their implementation may be uneven. Even when a business
or government establishes a policy (WFH, curfew, or lock-
down), people may embrace or reject that policy, so actual
participation may diverge [32]. For these reasons, we would
like to study WFH practice. We want to confirm WFH hap-
pens where it’s intended and verify when it happens where
it’s not publicly stated.
The Internet has proven increasingly important in sup-

porting society as we manage Covid-19 and WFH [54]. Early
in the pandemic, streaming media providers reduced video
quality to manage increased use [13]. Facebook reported a
sharp 20% increase in traffic in late March after widespread
WFH [11]. Researchers saw a similar 15–20% increase in
traffic at IXPs in mid-March [33]. Changes depend on the
perspective of the observer: mobile (cellular) networks show
a 25% drop in traffic and a decrease in user mobility as people
stay at home [57]. While the Internet changes vary, these
changes show potential to observe compliance with WFH
orders, given careful inference from network observations.
In this paper, we show that changes in Internet address

use correlate with WFH. Many people use mobile devices
(laptops, tablets, smartphones) at home and office, and these
devices acquire IP addresses when they are using the Internet.
Often these addresses are dynamically allocated with DHCP.
While many networks today allocate from private address
space [68], many public IPv4 networks reflect changes in
human activity [14, 60, 63, 67, 95].
The first contribution of our work is to define a new al-

gorithm that identifies changes in diurnal network usage of
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each public, /24 IPv4 block, a signal that correlates withWFH
(§2). We examine the active state of /24 blocks by counting
the number of active IPv4 addresses—those that reply to an
ICMP echo request. We identify change-sensitive network
blocks, where the number of active IPv4 addresses reflects
the number of individuals actively using the network in that
location, with noticeable diurnal changes.We then determine
long-term trends in the usage of change-sensitive blocks and
detect changes in these trends that correlate with WFH.

To our knowledge we are the first to analyze network ad-
dresses, as a whole, to reveal the behavior of human popula-
tions. Prior work has used addresses as samples of space [75],
or to spread load [66], or reduce traffic [55, 66]. Other work
showed they reflect human trends [26, 67, 78] and ISP poli-
cies [14, 60, 64, 95]. Like all approaches using active probing
of public IP addresses, our approach cannot see behind Net-
work Address Translation (NAT) or firewalls, but we track
WFH in 168k to 420k blocks (§3.3) globally (§3.4), and use
our method to discover events (§4), showing values in even
incomplete coverage, particularly for regions where WFH
activity is uncertain.

Our approach respects individual privacy.We track changes
aggregated by /24 address block; we do not know the iden-
tities of individuals, Our internal and sharing policies limit
data about specific addresses and prohibit de-identification.
Our work is classified as non-human-subjects research by
our university’s IRB (USC #UP-20-00909); see Appendix A
for details.

Our algorithms apply new analysis to ongoing, active mea-
surements of the Internet [66]. Reusing existing data is neces-
sary to study the unanticipated onset of Covid-19. Reuse also
reduces the cost of ongoing probes covering each of 5 million
/24 IPv4 networks multiple times an hour. Re-analysis of ex-
isting data requires care, since the measurement is optimized
for other purposes, and its varying rate affects accuracy for
some blocks. We propose additional measurements to im-
prove future reconstruction in §2.7.

The second contribution of ourwork is to validate our algo-
rithms against real-world data. Known cases of Covid-related
WFH with ground truth (Figure 1) motivate our design. We
systematically evaluate design decisions in our algorithms
(§3). Finally, we validate the detection of inferred WFH with
random sample blocks (§3.5) and locations (§3.6). We show
that network changes near known confirmed Covid-WFH
dates are usually captured by the algorithms (precision 93%),
and two randomly selected locations both show network
changes near their WFH dates.
Our final contribution is to use our algorithms to study

168k to 420k change-sensitive blocks worldwide for the first
six month of 2020 (§4). We show global data and evaluate
known, real-world events like Wuhan in January 2020. We
then demonstrate the potential of our approach to discover

changes, find WFH in the Philippines in March 2020, and
non-Covid-related Internet shutdowns in India in Feb. 2020.

Data from our work is available at no cost [1], and we plan
to release our analysis software with our paper publication.

This paperwas first released as a technical report in Feb. 2021.
In May 2022 we updated all sections of the paper, includ-
ing many additions: a summary of external probing, whit a
clearer evaluation of data sources and alternatives in §2.1;
description of geographic aggregation and limitations in §2.5;
a new approach to adding additional observations in §2.7; a
summary of how we share results in §2.8; major revisions to
validation in §3, including more datasets and improved and
corrected statistical analysis; explicit evaluation of recon-
struction (§3.2); evaluation of target sensitivity and change
over time (§3.3); validation by both random blocks (§3.5) and
random locations (§3.6); new data on overall trends (§4.1)
and updated case studies (§4); explicit related work (§5); and
supporting detail to much of the validation and results in
appendicies.

2 METHODOLOGY
We detect changes in IP address use and infer WFH with the
following steps: (1) Probe IP addresses for activity, (2) Recon-
struct active addresses, (3) Identify change-sensitive blocks,
(4) De-trend address usage, and (5) Detect changes in usage.
In addition, we combine data from multiple observes and
plan for additional probing improve reconstruction.

We illustrate our approach with an example block shown
in Figure 1. This block is at USC, so we know the start of
WFH is on 2020-03-15, and the address changes we observe
correspond to people at work. We provide other example
in Appendix C, and we verify their behavior with manual
examination of more than 2200 blocks.

2.1 Probing IP Addresses For Activity
Our approach observes active probing of the IPv4 address
space. Many active IP addresses are probed, reporting results
as positive or non-replies. Addresses must be probedmultiple
times per day to show diurnal changes in responses.

Data Sources: In principle, any frequent public scan of
the IP space can serve as input. We re-analyze data from
Trinocular [66] for three reasons. First, it provides continu-
ous data since Nov. 2013, allowing us to study the months
before and after Covid-19 swept the globe. Second, it covers
nearly all of the responsive Internet, with more than 5M IPv4
/24 blocks (achieving 96% is possible with active methods [7]).
Finally, its 1 to 16 probes per 11 minutes are frequent enough
that we can usually identify diurnal behavior. However, re-
purposing it to our ends requires reconstruction (§2.2) and
integration (§2.6). We show additional probing is sometimes
helpful (§2.7).
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We explored multiple alternative data sources. USC In-
ternet surveys [47] provide more frequent coverage (about
256×more), with data for all IP addresses in many /24 blocks
every 11 minutes, but they are spatially and temporally in-
complete, covering only 4k blocks, with data only 4 weeks
of every quarter. We use survey data for validation in §3.2.
ZMap [29] has quick, complete scans of IPv4, but it preserves
only positive replies. Our algorithms require timing of both
positive and negative replies, and reconstruction of ZMap is
impossible because it does not preserve probe order (or initial
seed). Censys scans [28] emphasize daily services and certifi-
cates on hosts, not reachability many times per day, and bulk
data is not currently available. CAIDA’s Archipelago [15]
covers all routed /24 blocks, but it far too slow to track di-
urnal trends. Its 3 teams of 17-18 probers cover all routed
blocks every 2-3 days, about 1/256th the rate of Trinocular.
Thus while these systems are tuned for their goals, none can
be adapted to support diurnal analysis of most of IPv4 or of
2020, although they may be extended for future use.
Another option is to deploy new, dedicated probing. We

propose additional probing in §2.7 to improve coverage for
some blocks. However, to see what happened when Covid-19
first spread in 2020 requires the use of data taken at that time.
In addition, reuse avoids the small but non-zero cost that
active probing places on the world’s networks. Reuse also
avoids duplication of existing opt-out mechanisms and abuse
handling, a noticeable operational cost of sustained probing.

Specific datasets:We list specific datasets covering Oc-
tober 2019 through June 2020 in an appendix (Table 4). This
data is available at no cost to researchers. We consider data
from six locations (coded c: Colorado; e: Washington, DC;
g: Greece; j: Tokyo; and n: Netherlands; w: Los Angeles).
These sites provide very diverse perspectives, since each has
different upstream ISPs and they are on three continents.

Prior work describes Trinocular collection in detail [7, 66],
to summarize: each site probes about 5M /24 IPv4 address
blocks with ICMP echo request messages. Every 11 minutes
each site probes from 1 to 16 targets in each block, drawing
them from a list with a pseudorandom order that is fixed
for each quarter. Targets are limited to addresses that have
ever responded to a complete scan sometime in the last three
years, written as 𝐸 (𝑏). Probe rates are low enough that rate
limiting is unlikely [45]. Although we consider data from
all locations, we discard sites c and g in 2020 because of
hardware problems. We merge data across sites as described
next in §2.2.

IPv6: Our detection depends on seeing diurnal changes in
address usage. Such changes exist in IPv6 and are prominent
in Google’s IPv6 reports [40]. However, the size and design of
IPv6 addressing prevent exhaustive probing [38, 39] and no
IPv6 data is available to us today. IPv6 address measurement

is an active area of research [10, 35, 37, 62] and we hope to
explore it in future research.

2.2 Reconstructing Active Addresses
Our data source scans the visible Internet incrementally in
rounds, so our first step is to reconstruct the state of the
Internet from these incremental results.

Each Trinocular round occurs every 11minutes and probes
1 to 16 addresses. We ingest results from each round and
count which addresses are active. When all ever-active ad-
dresses (𝐸 (𝑏)) have been observed, we have a complete recon-
struction of the block. We report this value and then update
incrementally each subsequent round.
Accumulating state over multiple rounds leverages the

fixed probing order. We assume addresses do not change
state until they are re-scanned. This assumption holds if we
scan faster than addresses change. If we scan 15 addresses
per round and have 256 addresses to cover, then 17 rounds
guarantee a complete picture. Combining data from six ob-
serves (described below §2.6) will yield a full scan in only 3
rounds (33 minutes) However, in the worst case, we observe
only one address per round, so 6 observers complete a scan
in 8 hours. The size of a complete block (𝐸 (𝑏)) varies by
history (updated each quarter), and the probe rate per round
varies over the day based on responses (updated dynami-
cally), so upper and lower bounds are atypical. In §3.1, we
examine scan times in practice, and in §3.2 we consider how
accumulation affects accuracy.
We update our response estimate incrementally, as each

additional round provides more data. For example, an ad-
dress reporting negative in the previous round that then
receives a positive response increments the number of active
addresses of the block. Thus, we generate new estimates of
the number of active addresses every 11 minutes, but each
estimate reflects observations from multiple prior rounds.

Figure 1a shows counts of active addresses for our example
block. While 88 addresses in the last 3 years (|𝐸 (𝑏) |, the top
red line), but only 8 to 18 are active during these threemonths
(the lower blue line).

2.3 Identifying Change-Sensitive Blocks
To detect WFH, we must have blocks where address changes
reflect people’s daily schedules. We call such blocks change-
sensitive, and identify them by two characteristics: first, they
show a regular, diurnal pattern; second, the swing (high and
low count) over 24 hours must be large enough to detect its
disappearance with confidence.

Our example block (Figure 1a) is a known change-sensitive
block. The active addresses over time (the blue line) usually
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Figure 1: A block (128.9.144.0/24) illustrating address
usage changes due to confirmed WFH.

shows groups of five bumps, corresponding to the work-
week, followed by two days of flat behavior over theweekend.
We also see known holidays on 2020-01-20 and -02-17.

Diurnal blocks:We identify diurnal blocks by taking the
FFT of the active-address time series and looking for en-
ergy in frequencies corresponding to 24 hours, or harmonics
of that frequency. This approach follows prior work [67],
which shows that IP addresses often reflect diurnal behavior,
particularly in Asia, South America, and Eastern Europe.
The sudden absence of the diurnal pattern indicates a

network change consistent withWFH. The block of Figure 1a
is diurnal from 2020-01-01 to 2020-03-15 and becomes flat
after 2020-03-15, corresponding to the start of WFH.

Persistent daily swing: We look for blocks that have
a “wide” daily swing in addresses, as described below. We
define the daily swing as the range of addresses (maximum
seen minus minimum) over midnight-to-midnight UTC.

A wide swing is a change of more than 𝑠 addresses per day.
We currently use a threshold 𝑠 = 5, based on the evaluation
of the data. Too large a threshold will reduce the number
of accepted blocks, but too small makes the algorithm vul-
nerable to noise such as individual computer restarts. We
select 5 as the minimum value that tolerates uncorrelated
outages caused by a few computers (for example, due to
maintenance). Figure 2 shows that around 90% of blocks that
have daily swings exhibit a swing greater than 5.
Finally, the swing must be persistent and reflects a work

week. Changes need not occur every day, since many blocks
(like Figure 1a) show use primarily during the work-week
and not on weekends and holidays. We require blocks to
have a wide daily swing for at least 4 of 7 consecutive days
for at least one week in the observation period. We use a
7-day window since work activity usually follows weeks, and
a 4 day minimum to tolerate 3-day weekends (for example,
the week of 2020-01-20 in Figure 1a).

Coverage: We detect WFH in change-sensitive blocks as
the sudden disappearance of diurnal changes. We must there-
fore identify a pre-Covid baseline of change-sensitive blocks.
In §3.3 we show that Jan. 2020 provides a good baseline. In
§3.3 we also show that between 168k and 420k blocks meet
these two requirements, depending on how much and how
long we collect data. We ignore non-change-sensitive blocks
since their operation (perhaps firewalls or NAT) hides WFH
changes, as we discuss in §2.5.

2.4 De-trending Address Usage
Although the diurnal changes in our example (Figure 1) can
be seen visually, in many blocks daily fluctuations make it
difficult to detect changes in use. We expect WFH will either
remove the diurnal swing, as occurs in Figure 1a after 2020-
03-15, or decrease overall use (and possibly also the size of
the swing), as fewer people come into work. These signals
are properties of the general baseline of active addresses and
are obscured by daily changes and day-to-day variation, so
we need to extract this trend from noise.

We track the underlying baseline by applying a standard
seasonality model to the data. Seasonality models decompose
the signal into a baseline convoluted with a daily and pos-
sibly weekly signal. We considered two models: the “naive”
seasonality model [76] and Seasonal-Trend decomposition
using LOESS (STL) [20, 76]. Although both are similar, we
adopted the STL for our work after comparing the two and
finding it more robust to outliers.
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Figure 1b shows the decomposition from our sample block
(Figure 1a) into trend, seasonal, and residual components.
The seasonal component (middle) models daily and weekly
changes, while the trend (top) captures the long-term mean
value, and residual (bottom) shows any remaining error.

2.5 Detecting Changes in Usage
Finally, we detect changes in the trend. We apply a standard
change-point detection algorithm, CUSUM [27, 46]. CUSUM
looks for changes in the baseline, flags when the upward or
downward trend begins and the time of largest change.

Before applying CUSUM, we normalize the STL trend to its
𝑧-score by subtracting the mean and dividing by standard de-
viation. This normalization allows us to use the same CUSUM
parameters for every block (threshold: 1, drift: 0.001).
Figure 1c continues our example block showing CUSUM

detection. The bottom graph shows the cumulative increase
and decreases (in dark purple and light yellow). The upper
graph shows the normalized trend with start and end of
the detected change as arrows on 2020-03-08 and -18. The
point of change is 2020-03-15, which we confirm as to when
WFH began. This change is detected from the fall in normal-
ized trend, reflecting the drop in address activity due to the
absence of diurnal address usage (Figure 1a).

Geographic Aggregation: We geolocate all blocks (us-
ing Maxmind GeoLite [59]). We count blocks showing a
decreasing trend (the purple line in Figure 1c) in each 2 × 2◦

geographic region. This downward trend reflects a decrease
in aggregate use of those networks, and our definition of
change-sensitive reflects the work-week, so a large number
of blocks showing a downward trend suggests increased
WFH. Possible future work is to use bumps per week to
distinguish work from home networks.

Limitations and Other Sources of Change: CUSUM
can automatically find behaviors often indicating WFH in
change-sensitive blocks. In §3.5 we validate this claim, and

§4 shows events we discovered with geographic aggregation.
But WFH can happen for reasons other than Covid, and
network changes for reasons other than WFH (like §4.3).

Network outages are an additional possible source of down-
ward changes in usage. An outagewill be a downward change,
followed by an upward change when the network recovers.
Since outages are usually short (minutes or a few hours)
relative to Covid-WFH (weeks or months), we treat closely
timed down and upward changes as outages.
Our approach is limited to detecting WFH in change-

sensitive blocks. We cannot see changes that occur behind
firewalls or NAT. Our results will be less successful in coun-
tries where most individuals are behind always-on NAT de-
vices, such as the U.S. and western Europe. In other countries,
ISPs place wired customers behind CG-NAT, sometimes with
multiple layers (we have seen this in Iran).We study locations
of change-sensitive blocks in §3.4, but given the complexities
of NAT in multiple prior studies [42, 56, 72], detailed quan-
tification of its relationship with WFH detection is future
work.

Carrier-Grade NAT (CG-NAT) is widely used for mobile
phones, and also by many wired ISPs [72]. Like home-based
NAT, CG-NAT may hide diurnal trends, but CG-NAT assign-
ment strategies such as paired pooling may directly expose
diurnal trends by assign individuals temporary public IP
addresses when they are actively using the Internet. The
relationship between mobile phones and WFH is further
complicated by opportunistic use of wifi instead of the cellu-
lar network when at home [57]. Our work helps to motivate
future exploration of how CG-NAT and mobile networks
interact with public IP address use.

The success of our approach depends on seeing some users
in many locations, and it does not require seeing all users
everywhere. We show that our approach provides broad cov-
erage, we see 168k to 420k change-sensitive blocks (Table 2)
in many countries (see §3.4). Although most U.S. home users
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are behind always-on routers with NAT and we therefore
cannot detect increase in home use, we see WFH in U.S. uni-
versities (§C.3). Our widespread but incomplete coverage
suggests that our results are best used to estimate trends in
WFH and not absolute counts of individual choice.

2.6 Using Multiple Observers
We estimate network usage in §2.2 with observations from
a single observer. However, we have data available from
multiple observers in different geographic locations (§2.1).
Each observer probes the same targets in the same order, but
they start independently and run unsynchronized, so they
are almost always out of phase with each other.
We can strengthen our results by combining data from

multiple observers, either to accumulate observations rapidly,
or to validate the results of one against the others.

To provide more complete data, we can combine multiple
results from all observers to update block status more rapidly.
As described in §2.2, blocks update at different rates, in some
cases failing to track diurnal changes. Combining multiple
observers reduces time to scan the full block as we will show
in §3.1, improving reconstruction accuracy (§3.2).

Alternatively, separate observers can be treated as equiva-
lent but independent, allowing us to test their results against
each other and detect bias specific to any vantage point.
(Locations sometimes see different replies [47, 92].)

We follow the first approach, combining results from mul-
tiple observers, since the additional information improves
reconstruction of the true signal (see §3.2), increases our
coverage (§4), and reduces worst-case scan time for a full
block. Combining data reduces per-site bias, but we found
that trusting all sites equally results in false results when
one site has observation problems. We check data health,
and site-specific problems prompt us to discard data from
two observers (c and g). We confirmed that these sites had
hardware or network problems.
Our example in Figure 1 has a two-hour scan time with

data from one observer. Figure 4 compares ground truth
(purple, with survey data probing all addresses every 11
minutes) with a 4-observer reconstruction for two blocks
(yellow).

2.7 Adding Additional Observations
Reusing existing data (§2.2) means some reconstructed blocks
are under-observed. Beyond combining all observers (§2.6),
we next describe deploying an additional observer designed
specifically to cover previously under-observed blocks. Addi-
tional observations require two decisions: which blocks need
additional observations, and how make those observations.
Blocks that need additional observations are those with

many addresses which always respond, as our existing data

source (Trinocular) stops probing on the first positive re-
sponse for the block, as mentioned in §2.2. We identify such
blocks by the block refresh rate (§3.1), as estimated from each
block’s historical response rate and the number of addresses
that will be scanned (𝐸 (𝑏) from §2.2).

Additional observations are taken by a designed observer,
given a list of blocks that would be under-observed. This
prober runs the standard Trinocular algorithm, but extends
each round with up to four extra probes per round, even
after a positive response. We adjust the number of additional
probes based on the current observation rate to meet our
goal. We then combine these additional observations with
other observers as in §2.6. Together, aggregated observations
will scan the worst-case block (256 addresses, all always
responding) in 352 minutes, and these four complete scans
per day allow detection diurnal behavior for all blocks.

In §3.2.4 we show that this strategy identifies blocks that
otherwise would have insufficient reconstruction. We are
currently testing implementation of additional probing; re-
grettably, it cannot be applied retroactively to our 2020 data.

2.8 Sharing the Results
Our WFH detection results are available on our website [82],
with Google-maps-style pan and zoom, as well as custom
visualizations of time series and ISPs that change [83]. Our
WFH detection data is available to researchers at no cost [1].

3 VALIDATING DESIGN CHOICES
We next evaluate the algorithm design using our datasets.
We begin with design decisions: Do we track block states
quickly enough to see diurnal changes? How accurate is the
reconstruction? How many blocks do we see, and where are
they?We then evaluate end-to-end results: do detections and
discoveries match reports of real-world WFH?

3.1 Block Refresh Rate
We examine how quicklywe complete scans of each /24 block,
a full block scan (FBS). Prior work has suggested sparsely
occupied blocks are fully scanned in about two hours in the
worst case [7], but that analysis covered only the subset of all
blocks that were intermittently responsive. Our new analysis
here examines change-sensitive blocks, a different subset.
Prior work explored the bound of FBS time as part of de-

veloping a new algorithm to address false outages in sparse
blocks, those with low response rates [7]. This analysis
showed 3.1 hours (17 rounds) as an upper bound for scan-
ning sparse blocks, based on 15 probes per round (a chosen
design limit), over 11 minutes, and 256 addresses to cover in
the block. A more general worst case will consider blocks
where all 256 addresses always respond, so only one address
is probed per round and a full scan requires 256 rounds (1.8
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days). Such blocks are not change-sensitive, but this rare
worst-case suggests we need to look at block scanning dura-
tion empirically.
We evaluate time to scan all ever-responsive addresses

(𝐸 (𝑏)) in each block across all change-sensitive blocks in
2020q1. Figure 3 shows cumulative distributions for four
cases: a single observer, then combined data from two, three,
and four observers, from bottom to the top respectively. We
see that about 65% of change-sensitive blocks can be fully
scanned in 6 hours or less (the left vertical dashed line), when
data is combined from four observers. By contrast, 6 hours
provides about 48% of blocks with one. Given 12 hours, 4
observers cover 78% of blocks, compared to 61% with one.
This result shows that multiple observers are important to
see most diurnal changes (§2.6), and those additional obser-
vations are required to handle the tail of challenging blocks
(§2.7).

3.2 Reconstruction Quality
Change sensitivity requires block reconstruction that is suffi-
cient to detect diurnal changes and swing. To evaluate when
and why reconstruction is sufficient, we next compare our
reconstruction to ground truth from complete data. Our esti-
mates of block refresh rates (§3.1) suggest bounds onwhat we
can measure (a refresh rate of 24 hours is below the Nyquist
rate and so cannot track diurnal changes), but observation
and the underlying changes are both non-linear and so it
provides a pessimistic bound.

We compare reconstruction against ground truth: Internet
address surveys (2020it89-w in Table 4) scan all addresses
in a block every 11 minutes for two weeks. Surveys cover
about 2% of the responsive blocks in the IPv4 Internet; we
find 32,437 blocks overlap between surveys and our data.
Figure 4 shows two representative blocks (from the 5,440
overlap) to illustrate how block refresh rate and sampling
rate affect reconstruction quality.

3.2.1 Quantifying Reconstruction Success. We first measure
the success rate of block reconstruction across all blocks with
ground truth. Table 1 compares block counts for our algo-
rithms (change detection) and its components (diurnal and
wide swing). First, two weeks of full survey data (2020it89-w)
define ground truth (probing all addresses every 11 minutes).
We intersect the data with four reconstruction options: one
observer for a quarter (2020q1-w), four observers for a quar-
ter (2020q1-ejnw), four observers for a month (2020m1-ejnw),
and four observers for two weeks (2020it89-match-ejnw).
The last dataset shares the same starting time and duration
as the survey data. We expect more observers to provide
better quality reconstruction.
Overall, of the 5,440 change-sensitive blocks in ground

truth, the 4-site, 2-week reconstruction discovers 3,794, 70%

Dataset:
2020it89

-w
2020q1
-w

2020q1
-ejnw

2020m1
-ejnw

2020it89
-match-
ejnw

duration (weeks) 2 12 12 4 2
completeness (sites) full 1 site . . . 4 sites . . .

(*intersected with it89-w)
responsive 32,437

not diurnal 25,170 30,137 29,493 29,049 27,674
diurnal 7,257 2,300 2,944 3,388 4,763
narrow swing 15,104 12,597 11,112 11,112 11,112
wide swing 17,333 19,840 21,325 21,325 21,325
not change-sensit. 26,997 30,630 30,434 29,890 28,643
change-sensitive 5,440 1,807 2,003 2,547 3,794

Table 1: The number of each type of /24 blocks de-
tected by Trinocular reconstruction and Internet ad-
dress surveys.

of truth. Below, in §3.2.2, we show that the main reason it
misses blocks is that they do not appear to be diurnal in the
reconstruction. We then show that using a shorter duration
and more sites helps to get better reconstruction.

First, we see that a shorter observation detectsmore change-
sensitive blocks: comparing 2020m1-ejnw to 2020q1-ejnw
(the third and fourth columns, one month against three
months), shows one month detects 2,547 change-sensitive
blocks while three months reduces that to 2,003. While re-
ducing duration to 2 weeks, 2020it89-match-ejnw finds the
most change-sensitive blocks, confirming the observation.
In the first quarter of 2020, we speculate that these changes
may be due to Covid-WFH.
Second, we see that combining data from four sites im-

proves detection of change-sensitive blocks, confirming that
decision (§2.6). Comparing 2020m1-ejnw or 2020q1-ejnw (the
third and fourth columns) to 2020q1-w (the second column):
four sites provide roughly four times more observations,
allowing better reconstruction of address usage over the
day and therefore more frequent detection of diurnal blocks
(2,547 or 2,003 instead of only 1,807).

3.2.2 Causes of Imperfect Reconstruction. To understand
why shorter duration and combining multiple sites help,
we next look at the two components of change sensitivity:
checks for diurnal behavior and consistent swing. The mid-
dle rows of Table 1 show how many blocks pass each of
these checks in blocks that are present in the ground truth
(2020it89-w) and our four reconstruction options.

Duration of observation strongly affects diurnal detection:
2020m1-ejnw finds 3,388 diurnal blocks (47% of ground truth),
but reconstructions using all three months detect 2,944 or
2,300 (4 and 1 site, finding 41% and 32% of ground truth).With
the same duration that the survey data has, 2020it89-match-
ejnw finds 4,763 diurnal blocks, This decrease supports our
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claim that diurnal behavior changed for some blocks through-
out 2020q1. Data with a longer duration reduces detection
of diurnalness for blocks that are diurnal over short period
but not over longer period.
However, reconstruction seems to increase the amount

of swing: it finds 19.8k to 21.3k blocks with a wide swing
compared to 17.3k in the ground truth (a 14% to 23% overes-
timate).
These differences between reconstruction and ground

truth are because reconstruction is based on less data than
ground truth. Trinocular optimizations that minimize prob-
ing for outage detection effectively apply a non-linear, low-
pass filter over active addresses.

3.2.3 Reconstruction case studies. Wenext examine two sam-
ple blocks in detail—reconstruction in the first is excellent,
while the second diverges from the ground truth. These
blocks help understand the factors that affect the recon-
struction quality. Figure 4 shows two blocks, comparing
the survey’s ground truth (the dark blue line) against our
reconstruction (the light orange line).

The block in the top graph has an accurate reconstruction—
the Pearson’s correlation coefficient is 0.89 and the block is
fully scanned in 3300 s (just under an hour). The quality
of the shape matches well, with the orange reconstruction
showing the same daily peaks matching working hours, the
same sharp changes at the start of each day, and the same
flat behavior between workdays. The main difference is the
maximum number of detected addresses in reconstruction is
about 9% lower than truth. This shortfall is because Trinoc-
ular stops probing after a success, so the discovery of new
addresses is slow. However, the reconstruction preserves
change sensitivity.
The block in the lower figure shows a greater challenge

for reconstruction. This block is heavily used (120 to 160
active addresses), and it sees a large daily shift, with consis-
tent changes every day of the week. With so many active
addresses, a full scan requires around 8 hours and the re-
construction (orange) lags the truth (blue). Here the limited
input to the reconstruction “spreads out” some of the true
behavior of the block, flattening the peaks and raising the
valleys. The correlation coefficient is 0.40.

Both blocks show imperfect reconstruction, but recon-
struction is sufficient for change-sensitivity and these blocks
are used in WFH detection. These examples show the oppor-
tunity of additional probing and the reasons blocks can be
misclassified in Table 1.

3.2.4 Additional probing to improve reconstruction quality.
Reconstructionmakes results defective from insufficient data,
so additional probing (§2.7) is designed to fill this gap. We
next show that we can identify under-probed blocks (the
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Figure 5: A heatmap of block counts, as a function of
experimentally observed full block scan time (𝑥-axis)
and scanning size (|𝐸 (𝑏) |,𝑦-axis). Dataset: 2020q1-ejnw
and it89w.

tail of the distribution in Figure 3) with targeted additional
probing.

Figure 5a illustrates the absolute count of known change-
sensitive blocks that are not classified as change-sensitive in
reconstruction. It illustrates blocks in a heatmap binned by
full-block scanning time (𝑥-axis) and the number of scanned
addresses (𝑦-axis). This data shows that problems occur in
full blocks with long-scan-time (above and right of the ori-
gin). Figure 5b shows the vast majority of blocks are near
the origin, confirming failures occur in the tail, consistent
within Figure 3.

From these two figures, we derive our sliding-scale of
additional probes: 4 probes if scan time exceeds 24 hours,
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3 if over 18, 2 if over 12, and 1 if over 6. For each round,
additional probes do not stop even if encountering positive
reply.
With these additions, all blocks complete scanning in 6

hours or less. This data supports our claim that additional
probing (§2.7) can augment basic Trinocular to provide good
reconstruction for all responsive blocks.

3.3 How Many Change-Sensitive Blocks?
Since our algorithms detect WFH only in change-sensitive
blocks, we next ask: How many change-sensitive blocks are
there? Does that number change over time? We also revisit
the effect of observation duration on the number of change-
sensitive blocks.

Decrease over time: The left three columns of Table 2
show three-quarters of data from 2019q4 to 2020q2. Each
quarter uses a 12-week observation. We see the number of
change-sensitive blocks decreases somewhat over this period:
from 370k to 327k to 275k. We expect some of the decrease
from 2020q1 to 2020q2 may reflect Covid-19 WFH as people
move from universities and workplaces with more public IP
addresses to homes where always-on modems shield their
workday status.

Churn: There is a fairly large rate of churn (turnover)
in change-sensitive blocks. We see that in comparing the
first six months of 2020 (2020h1-w) with each three-month
quarter (2020q1-w and 2020q2-w). The number of change-
sensitive blocks for 2020h1-w is the intersection of the two
quarters, and with 169k blocks, it is only 53% or 61% of each
quarter. This drop is likely because when blocks are not
consistently diurnal for the entire observation period we
classify them as non-diurnal. We see a similar drop to 199k
when merging 2019q4 and 2020q1, consistent with duration
as the primary factor.
Another possible reason for churn in the set of change-

sensitive blocks in 2020 is the Covid-induced changes in
network usage. We show some examples in §3.2.1.

Input targets: A complicating factor in this analysis is
that the underlying target list changes over time: in each
quarter, the target list is updated to reflect currently respon-
sive blocks, and in 2020q1 the target list was expanded from
4.0M blocks to 5.2M to take advantage of algorithm changes
that correctly handle sparse blocks [7] (compare the number
of responsive blocks in 2019q4-w and 2020q1-w). This expan-
sion only modestly increases the number of change-sensitive
blocks (it adds 11,547 or 3.6% to 2020q1-w, and 16,852 or 3.8%
to 2020m1-ejnw) because only a few of the newly added
blocks are diurnal.

Measurement Duration: We previously observed that
longer periods decrease the number of diurnal blocks. We
see that effect again here, comparing 2020m1-w to 2020q1-w

to 2020h1-w. As discussed in §3.2.1, to factor out this change,
we detect change-sensitive blocks based on 2020m1-ejnw
and apply that to all of 2020h1-ejnw for our data in §4. (The
longer duration in 2020h1-ejnw would reduce the number of
change-sensitive blocks by 42%, in part because of the very
changes in address use we are working to detect.)

Implications: In spite of dynamics, we see 168k to 420k
change-sensitive blocks, as shown in Table 2.
Any real-world system like the Internet will evolve over

time, and the above factors of change of use, churn, and
new allocations all contribute to such non-stationarity. Non-
stationarity is common inmeasurement and can be addressed
by regular retraining, as is already done for input targets.
Our data shows coverage is sufficiently stable for the six-
month period we analyze here; we are exploring integration
of retraining in ongoing work.

3.4 Where are Change-Sensitive Blocks?
Prior analysis of diurnal blocks has shown their frequency
varies by country [67]. Countries have different amounts of
IPv4 address space, and they also adopt different telecommu-
nications and cultural policies about keeping devices “always-
on”. Change-sensitive blocks occur when devices are directly
attached to the public Internet, so we do not see change-
sensitive blocks in ISPs where devices use private address
space behind an always-on router on the public IPv4 Internet.
IP address assignment and use have been a topic of consider-
able study [14, 60, 63, 64, 67, 71, 72, 95], Fully exploring the
relationship between policy and change-sensitive blocks is
future work, but we next summarize what we see.

Figure 6 shows the locations of all change-sensitive blocks
we see in the 2020m1-ejnw dataset. This graph counts blocks
in each 2 × 2◦ latitude/longitude grid, showing the number
of blocks as the area of a red circle in each grid cell.
We see that the best coverage is in East Asia (China, Ko-

rea, and Japan), with moderate coverage in Brazil and North
Africa, and sparse coverage in the United States, Europe, and
India. Coverage reflects the intersection of where IPv4 ad-
dresses are allocated and where users of those addresses turn
off devices at night. Sparse results from the U.S. and Europe
reflect widespread use of always-on home routers. (Although
such routers use many public IPv4 addresses, their 24x7 op-
eration means they are not diurnal and so do not show when
they are actually in use.) If these users turn off their devices
at night, that change is hidden behind those routers and
NAT. The diurnal blocks in the U.S. and Europe that we see
often correspond to universities where users occupy public
IP addresses during the work-week (like Figure 1). Heavier
presence in Asia is likely to reflect local ISP policies, with
most users using dynamically assigned, public IPs. Future
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Dataset: 2019q4-w 2020q1-w 2020q2-w 2020h1-w 2020m1-w 2020h1-ejnw 2020m1-ejnw
duration (weeks) 12 24 4 24 4
completeness (sites) 1 4
allocated blocks 14,483,456

not routed 3,388,236 3,361,864 3,333,669 3,333,669 3,361,864 3,333,669 3,361,864
routed blocks 11,095,220 11,121,592 11,149,787 11,149,787 11,121,592 11,149,787 11,121,592

not responsive 7,049,754 5,922,911 5,925,238 6,024,576 5,922,911 6,024,576 5,922,911
responsive 4,045,466 5,198,681 5,224,549 5,125,211 5,198,681 5,125,211 5,198,681
not diurnal 3,631,272 4,799,382 4,849,579 4,877,967 4,796,117 4,889,070 4,652,108
diurnal 414,194 399,299 374,970 247,244 402,564 236,141 546,573
narrow swing 1,375,566 2,170,901 1,700,045 2,269,473 2,977,067 1,825,465 1,656,565
wide swing 2,669,900 3,027,780 3,524,504 2,855,738 2,221,614 3,299,746 3,542,116
not change-sensitive 3,675,118 4,880,856 4,948,888 4,956,244 4,888,659 4,937,024 4,778,003
change-sensitive 370,348 317,825 275,661 168,967 310,022 188,187 420,678

Table 2: Blocks before and after filtering (in /24s). Change-sensitive is interpreted as /24 blocks that are diurnal and
withwide swing. Allocated addresses from IPv4Address Space Registry [51]; Routing data fromRouteviews [2–4].

1

1k

2k

3k

4k

5k

6k

7k

8k

9k+

size (blocks)

out (%)

ocean (no networks)

land (no networks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

https://ant.isi.edu/diurnal/

Copyright (C) 2021 by University of Southern California

Figure 6: Number of change-sensitive blocks (circle area) by geolocation (in a 2 × 2◦ grid). Dataset: 2020m1.

work could further explore correlations of change-sensitivity
with network types.

3.5 Validation by Sampled Blocks
We next validate the correctness of our algorithms by ex-
amining a random sample of blocks, looking for events in
that block, then looking for ground truth about that event in
public news sources.

Defining correctness:We claim that changes in change-
sensitive blocks can indicate WFH, but defining “correct” can
be challenging.WFHmay occur for reasons other than Covid
(see §4.3 for example). WFH is not the only cause of network
changes; networks also suffer outages and shift users due
to maintenance. Networks might not show changes even
though a region begins WFH—networks with NATs and fire-
walls will not show diurnal behavior and so cannot change
during WFH. Finally, our temporal precision is limited. We
detect changes daily, and must account for weekends, so
detection may lag up to 4 days.

Our goal is that our algorithms are useful, as case studies in
§4 show. To support that our algorithms should be trusted, we

quantify correctness in two ways. In this section we evaluate
random blocks, confirming they show CUSUM changes on
dates that match confirmed WFH reports. We define block-
level correctness as a WFH detection within four days of a
public WFH report. This correctness is not as strong as 1:1
mapping of events with WFH, but it suggests correlation.

In §3.6 we examine random locations to see when groups
of block-level changes correspond toWFH reports. We define
location-level discoverability as a noticeable number of block-
level changes that correspond with a public WFH report.

Together these metrics suggest utility.
Methodology: Validation begins by selecting 50 random

blocks from all blocks that are change-sensitive in 2020q1
(the first three months of 2020) (see Table 3). This selection
is unbiased and large enough to evaluate statistically. (Our
case studies that examine locations (§4) are also helpful, but
will under-represent blocks in urban areas.)

We then geolocate each block to match it to ground truth
news reports. All blocks in our sample are geolocatable. We
see the blocks are global, in 18 different countries or regions,
following the distribution seen in Figure 6, with 22 in China,
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dataset: 2020q1-ejnw
change-sensitive blocks 420,678

random selection 50
geolocatable 50
no WFH in quarter 6
WFH in quarter 44
CUSUM near (±4d) WFH date 14
manual confirmation (TP) 13
apparent outage (FP) 1

no CUSUM near WFH date 30
visual-detection near WFH (FN) 5
CUSUM 5d from WFH 1
CUSUM not related to WFH 9
no CUSUM detections 15

Table 3: Validation of sampled blocks.

5 in Russia, 4 in Malaysia, 3 in India, 2 in Brazil and Hong
Kong SAR (China), and remaining 12 are single blocks in
single countries.
We then look at change events per block and search for

public news reports about Covid-19 lockdown dates. We
use global Covid-19 lockdown dates from multiple media
sources [18, 21, 23, 36, 43, 53, 58, 61, 65, 69, 81, 84–86, 89, 93].
Russian and Singapore lockdowns are not in this quarter
(they are March 30 and April 7, but we cannot consider
March 30 because of overlap with transients at the change of
quarter) so we discard those 6 blocks, leaving 44 with news
reports.

Correctness: For correctness, our algorithms detect changes
in 14 of these 44 blocks. In 13 of those 14 we confirm a
CUSUM-detected change in the raw data within 4 days of the
reported Covid-19 lockdown date (true positives), showing
precision is 93%—the detections that we see are usually covid
related. We manually examined raw data for each of those
blocks. The 14th block shows a change on 2020-03-21, during
WFH—but the raw data suggests a network outage, not WFH.
One of the remaining 13 shows a tiny visual change that are
better detected by our algorithms detect changes, showing
the importance of automatic, quantitative evaluation for ac-
curacy. The other 12 all show WFH changes analogous to
our example (Figure 1).

Completeness:While we do not claim a 1:1 association
of detected changes and WFH events, we suggest weak com-
pleteness: do we detect all blocks that have changes? To
determine all blocks with changes (positives), we manually
examine the 30 blocks without change in the WFH period
for visual changes that are missed in CUSUM detection. We
find 5 blocks (of 30) are missed by our algorithms but could
have been found; these represent false negatives that we
could find by tuning detection parameters. (The sixth block

in China just misses our 4-day window, making it a true neg-
ative.) With 13 true positive detections in 18 positive events,
that implies recall is 72% based on weak completeness.

Finally, 9 blocks show CUSUM detections at dates distant
from WFH reports. Manual confirmation in raw data con-
firms these are real changes. Theymay beWFH that we could
not document; some other event in the region; or network
maintenance actions, like moving users to new IP addresses,
that appear to be WFH. We expect regional events to affect
many people, so we can examine look for downward trends
in other blocks in the same location, as we study in §3.6. Lack
of other blocks with the same trend suggests network main-
tenance. We examined the locations of these 9 blocks and
only two had many other blocks triggering on the same day,
suggesting that two downtrend events which could not docu-
ment as Covid-related, and seven events which are consistent
with small-scale network changes. This analysis suggests
that correlated changes in one location are better predictors
than results of individual blocks.

3.6 Validation by Location
Examination of blocks suggests block-level precision is good,
and our experiences (§4) suggest it can discover events. We
next validate the ability of our algorithms to assist discovery,
examining the data behind two random locations selected
from all grid cells with change-sensitive blocks.

The United Arab Emirates: We randomly select grid
cell (24N, 54E) in The United Arab Emirates, and 25 of its
230 change-sensitive blocks. This country started a Covid-
cleaning campaign on 2020-03-22 and then began a night
curfew on 2020-03-26 [22].
As before, we validate all blocks by comparing detection

dates to news reports and examining raw data. Of the 25
blocks, 11 blocks have CUSUM-detected changes near the
lockdown date. We confirm that all 11 blocks suggest Covid-
related changes (true positives), showing precision is 100%.
CUSUM changes peak on 2020-03-24 with 21.3% of blocks
changing, ten times more than any other day in 2020h1. Four
blocks show changes at other dates, but this huge peak fo-
cuses on the true WFH period. The other four blocks show
changes in raw data but are not detected by CUSUM, sug-
gesting 73% recall at this location.

Slovenia: The second grid cell we randomly select is (46N,
14E) in Slovenia. We examine 25 of the 936 change-sensitive
blocks in the region. Slovenia closed all educational institu-
tions on 2020-03-16, with additional suspensions later [80].

Of the 25 randomly selected blocks, we find 7 blocks show
changes near 2020-03-16 and confirm them to be Covid-
related (true positives), showing precision is 100%. As with
UAE, the peak of changes (here on 2020-03-16) is larger
than other peaks, supporting filtering the 6 blocks that show
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Figure 7: WFH changes for 2020h1 by continent.

changes on other dates as non-correlated. Two blocks show
changes in the raw data but are not detected by CUSUM,
suggesting 77% recall here.

Discussion: These two examples suggest that our ap-
proach finds outages at locations due to Covid, with detec-
tions at enough blocks to filter out non-correlated sources
of network change.

4 RESULTS: REAL WORLD EVENTS
Finally, we use our approach to confirm and discover real-
world WFH reactions to Covid-19. We show overall statistics
and then examine China as known example of curfew.
More interesting are events we discovered through our

system. We then turn to events in India and the Philippines
that we discovered from our data. India shows a confirmed
non-Covid curfew. For space, additional examples are in
Appendix F.

4.1 Overall Trends
In this paper we examine all data for 2020h1. Figure 7 shows
the global count of downward trends in WFH changes for
each continent over six months. We geolocate blocks using
Maxmind and assign each grid to a continent. By continent,
data is heavily aggregated; we find data exploration is easier
in a 2 × 2 deg grid in our interactive website [82].

Although aggregated, we see several trends. First, the large
percentage of changes in Asia around 2020-01-20 (at (i)) cor-
responds to initial control measures taken in China. Most
of the rest of the world show large changes around 2020-
03-20 (at (ii) and (iii)). Low percentages in Oceania (dashed
line, middle graph) show the success of their limits on in-
ternational travel to control spread in this period. The large
percentage in Africa (at (ii)) reflects the over-representation

of Morocco in our data (see Figure 6) and their lockdown be-
ginning 2020-03-20 [48]. These trends show the opportunity
for global analysis; we next examine specific localities.

4.2 China on 2020-01-27
We first show the detection of network changes correspond-
ing to Covid-related events. According to media reports,
Wuhan went into lockdown on 2020-01-23 [65].

Figure 8a shows downward network changes for all of
China (in a 2×2◦ grid) on 2020-01-27.We see large downward
trends in several cities, including Wuhan.

For Wuhan’s (30N, 114E) grid cell, Figure 8b illustrates the
number of downward detections we observe for all blocks
over six months. We see a peak in the first quarter around
2020-01-27, showing about 1.5% or 53 of 3,589 change-sensitive
blocks reduce usage that day.

We also see changes elsewhere in China at the same time.
We see small peaks in Shanghai (the light blue circle (30N,
120E) on the east coast of China, 4.3% or 1,280 of 30,127
change-sensitive blocks) and Beijing (another light-blue cir-
cle at (38N, 116E), with 3% or 549 of 18,689 blocks). Although
a small percentage, both are large absolute changes.

Our data confirms we detect changes when Wuhan began
WFH, consistent with widespread media reports [65]. The
apparent WFH in Shanghai and Beijing surprised us, with
no international reports, but we found Chinese-language
news about a level-1 health alert and school postponement
in these cities [19]. This example shows the potential of
measurements to discover under-reported events.
In addition to the January peak matching a known WFH

event, Figure 8b shows large peaks in April and June. As
with Beijing and Shanghai in January, we cannot find media
reports of Covid-related WFH in these months. These events
may be unpublicized or voluntary WFH, or possibly non-
Covid events (described next).

4.3 India on 2020-02-28
In our second case study, we examine India in February and
March 2020. In browsing our data, we noticed hot-spots of
network changes starting on 2020-02-26 for several days. We
noticed that the east of New Delhi, where fewer networks
made for a larger relative change. As we refined our data
processing, these changes were smaller than Covid-related
lockdowns on 2020-03-23, but the 2020-02-28 events provide
evidence for network changes that are not Covid-related.
Figure 9a shows our 2x2 degree grid of changes on 2020-

02-28, with a noticeable drop (50 blocks, 2.4% of 1983) in
usage. The largest drop (154 blocks, 7.7%) in this location
occurs on 2020-03-22.
The larger drop in March corresponds to the first Covid-

related curfew in India, the Janata curfew on 2020-03-22 [53]
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(a) 2x2◦ grid dotmap for 2020-01-27.
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Figure 8: China
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(a) A 2 × 2◦ grid dotmap on 2020-02-28.
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Figure 9: India
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(a) 2x2◦ grid dotmap for 2020-03-17.

20
20

-01
-01

20
20

-01
-16

20
20

-01
-31

20
20

-02
-15

20
20

-03
-01

20
20

-03
-16

20
20

-03
-31

20
20

-04
-15

20
20

-04
-30

20
20

-05
-15

20
20

-05
-30

20
20

-06
-14

20
20

-06
-29

date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fra
ct

io
n 

bl
oc

ks
 sh

ow
in

g 
do

wn
 (r

ed
) o

r u
p 

(b
lu

e) up trend
down trend

(b) Changes for (14N, 120E: Manila)
2020h1.

Figure 10: The Philippines

and a nationwide lockdown on 2020-03-24. The February
drop is correlated with riots over several days (-02-23 to -
29) protesting changes in immigration law [88]. We have
no evidence of curfews, but there were calls for curfews
and both police and army intervention, suggesting people
chose to stay home. These examples of Covid-relatedWFH in
March, and non-Covid-WFH in February suggest that WFH
can havemultiple causes, but their outcome on the Internet is
similar. §F.1 describes a second example of non-Covid-WFH
in Thailand.

4.4 The Philippines on 2020-03-17
Our third case study examines the Philippines in March. This
event is a true-positive, but unlike Wuhan, we discovered this
event from our data, then confirmed it with news reports.

Figure 10a shows a geographic map of downward changes
on 2020-03-17. We see a large, medium-blue circle in Manila
(at 14N, 120E) showing a large change on this date. The
timeline Figure 10b confirms that 10.5% (90 of 854) change-
sensitive blocks show changes on 2020-03-17, the largest of
2020h1. This date is shortly after Manila’s lockdown begin-
ning on 2020-03-15 and extended to the island of Luzon on
the 17th [87].

5 RELATEDWORK
Given the impact of Covid-19 on our lives, and Internet’s
role in WFH, several studies consider their interaction.

Covid and Network Traffic: Several groups have re-
ported about how the Internet responded to changes during
Covid-19. Ukani et al. studied the network usage of university
students at the application level [90]. Facebook reported large
traffic increases following lockdown [12]. Another study
evaluated traffic changes from multiple networks, including
an ISP, IXP, and educational network [34]. Researchers exam-
ined the Italian internet during Covid-19, finding increased
variability in latency [17]. ICANN examined the impact of a
nationwide lockdown in France on DNS, showing increases
in overall DNS traffic [5]. Telefónica analyzed how the cellu-
lar network usage and performance shifted in UK [57]. Toorn
et al. investigated how rDNS entries change due to work-
from-home measures [91]. Unlike above works, we use the
Internet to understand the real world and Covid-triggered
WFH.

Closest to our work is the use of Google Trends to re-
late public interest in Covid with observed cases [31]. We
too study Covid-related changes using the Internet, but we
consider WFH as inferred from IP address usage.

Active InternetMeasurement: Several prior groups have
studied the Internet with active probing of some or all of
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the Internet, often to study address use or outages. USC be-
gan whole-Internet censuses in 2006 to evaluate address us-
age [47]. ZMap [30] and Massscan [41] emphasize scanning
speed. Other systems have leveraged active probing to detect
outages: Thunderping probes addresses in areas undergoing
weather events to look for outages [75]. Trinocular pings
millions of networks, inferring outages from Bayesian infer-
ence [66]. Chocolatine employs SARIMA models to forecast
Internet Background Radiation (IBR) time series to detect out-
ages [44]. It uses data from the UCSDNetwork Telescope [16].
Richter et al. infer network disruptions from drops in traffic
as seen by a major CDN [70]. Disco monitors the bursts of
TCP disconnects to detect outages [79]. Dainotti et al. use
BGP updates and IBR to study the Internet outages caused
by censorship at the country level [24]. Hubble combines ac-
tive probing with passive BGP monitoring to detect Internet
failures. It also identifies network entities that might be the
cause [55]. Our work builds on these prior systems for active
scanning and reuses data from Trinocular, but with the new
algorithms and the new application of detecting WFH.

Diurnal networks and trends: Finally, diurnal behav-
iors are common in many time series, including networking.
Because seasonal patterns exist in many different types of
time series, there are several well-established mathematical
methods to estimate and extract seasonal trends from the un-
derlying data [25, 50]. It is well known that network traffic is
diurnal, but recent work showed that IP address usage often
shows diurnal patterns [67]. We use diurnal addresses usage
to detect human activity, and established tools to extract
underlying trends (§2.4).

6 CONCLUSIONS
This paper has shown that we can use observations of the
Internet address responsiveness to detectWFH during Covid-
19. Our algorithms allow us to reconstruct diurnal trends
from existing data collected to detect Internet outages, possi-
bly augmented by additional probing, then detect changes in
daily IP address use. We validate the algorithms through the
study of their components, evaluation of randomly selected
blocks, and end-to-end verification of observed changes and
news events in multiple locations. These algorithms repre-
sent a first demonstration of the potential to infer a class of
large-scale human events (work-from-home) from analysis
of aggregate address responsiveness, an important example
of using the Internet to understand our world.
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A RESEARCH ETHICS
In developing a new measurement technique, we must con-
sider potential new risks it creates for individuals and for
organizations. Our overall goal is to identify human behavior.
Our general way to minimize risk is to focus on aggregate
behavior and avoid identification of individuals through a
combination of technical and policy methods.
Risks: The primary risk to individuals is that data may

expose the behavior of specific users—work schedules of in-
dividuals may be sensitive. We avoid this risk by separating
what we learn about IP addresses from knowledge of spe-
cific individuals. We do not have any knowledge of which
individuals use which IP addresses, so our data does not, by
itself, pose any risk to individuals.

Of course, other datasets associate IP addresses with indi-
viduals. ISPs and organizationsmay track user-to-IPmapping
for accounting and accountability. Combining such mapping
data with our data might pose a risk. We minimize this risk
by aggregating data by /24 prefix early in our processing
pipeline, and handling pre-aggregated data with largely auto-
mated procedures. Our analysis require specific IP addresses
only through the reconstruction phase (§2.2).
Beyond individuals, WFH behavior may be sensitive to

organizations [52]. For example, increased deliveries corre-
lates with longer work and may indicate unusual events [74].
In some countries and regions, Covid response has become
politicized, and there WFH or its absence may be supporting
or resisting government rules. While protecting privacy of
individuals is important, the reputation of organizations or
regions must be balanced with the public’s need to under-
stand the choices people make.
Benefits: The benefits of our work are to provide a new

method of identifying WFH on a global scale by reanalyz-
ing existing data. The Covid pandemic is an ongoing global
health crisis resulting in millions of deaths with broad social
and economic impacts over the last two years. We believe
that our analysis can provide a new perspective on actual
human behavior, thereby contributing to discussions about
public health response. Although measurements of the In-
ternet have their own limitations, we see it as providing
a valuable complement to traditional tools to understand
public health, such a as surveys, institutional reporting, and
wastewater monitoring.
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In our view these benefits outweigh the risks.
Data collection: Most of our analysis is new evaluation

of the existing dataset listed in Appendix B. We are now
exploring new data collection (§2.7). Although some risk is
created by new information available through our analysis,
the underlying data and therefore the potential of such risk
is not new.
Data distribution: We are committed to providing the re-

sults of our data to the research community and no charge.
However, to ensure that researchers do not create additional
privacy risks, we distribute data under terms-of-use that
forbids de-anonymization and redistribution.
IRB review: Our work was reviewed by our university’s

Institutional Review Board and because it does not identify
individuals, it was classified as non-human-subjects research
(USC #UP-20-00909).

B DATASETS USED IN THIS PAPER
Table 4 provides a full list of datasets used this this paper.

C CASE STUDY OF SPECIFIC BLOCKS
We use Figure 1 as a running example in §2 to show our
methodology. It was one of many that we examined when
developing our approach. We next review additional blocks
to provide more representatives of changes that we observed.

C.1 Detections in Two Additional Blocks
We first show a diurnal block that appears to have a Covid-
related change. In Figure 12a we see active addresses change
from 0 to 20 over each 24 hours, a trend that occurs all days
of the week, including weekends. The diurnal behavior dis-
appears on 2020-03-20, suggesting a Covid-related lockdown.
This block is in the U.A.E., so this event roughly matches
news reports (see §3.6).
A different block is shown in Figure 12b. This block is

change-sensitive, with a small but detectable diurnal swing.
This block shows a small decrease in trend in the last few days
of March, but not enough to trigger detection. It also shows a
large change in mid-February, with active address dropping
from around 100 to 0. We believe this event corresponds
to a network outage or ISP-based reassignment of users
to another address block. The pair of a downward trend
followed up an upward detection shown in the bottom bar
is typical of this kind of event. This example is consistent
with the pair of downward and upward trends that occur
over many blocks in Beijing on 2002-04-15 and -18, shown
in Figure 8b.

C.2 A Pre-Covid VPN
We next consider a /24 block (128.125.52.0/24) that is part of
USC’s VPN (Figure 13). We initially determined it was VPN

based on reverse DNS addresses, and then later confirmed
this use with USC network operators.

Figure 13a shows the number of active addresses over time.
We see that after 10 weeks of steady use, the address use
drops off significantly, just as WFH begins. This outcome
seems backwards from what one would expect —VPN use
should go up with WFH. USC network operators explained
that they shifted the campus VPN to a newer, larger address
space because of an anticipated increase in use. Thus use
of address space went down because use shifted to another
block.
Figure 13b confirms that the usage change is found with

change-point detection. This block is classified as change-
sensitive block.We observe the number of active IP addresses
has a significant drop around 2020-03-15 based on Figure 13a
and the upper bar chart of Figure 13b. The change point
detected around 2020-03-15 reflects ground truth that WFH
begins at USC.

Our detection algorithms finds this block, although it can-
not (by itself) show that these users havemoved to a different
address block.

C.3 Other University Blocks
Figure 11 shows three additional blocks from U.S. universi-
ties, the first two of which are change sensitive and show
showWFH in March 2020. Figure 11c is change sensitive but
does not show WFH.
Many of the change-sensitive blocks in the U.S. are at

universities. We expand on an additional case in §F.3.

D A RECONSTRUCTION CHALLENGE
We explore address reconstruction in §2.2, extending it with
multiple observers (§2.6) and additional observations (§2.7).
We showed two examples of 4-way reconstruction com-

pared to ground truth in Figure 4. We next present a /24
block where ground truth is change sensitive, but the recon-
struction fails to preserve this status. In Figure 14 the 4-way
reconstruction (the orange line) loses daily changes and is
not identified as diurnal, but the ground truth (blue line)
is. This block has many active addresses (𝐸 (𝑏) is 254) and
most are in use (the mean is around 220 active addresses),
placing this bock at the upper-right corner of Figure 14. Al-
though Trinocular’s stop-on-success rule leaves this block
undersampled, additional probing will help.

E VALIDATING DISCOVERABILITY:
ADDITIONAL DETAILS

Here we provide graphs documenting our random samples
used in validating discoverability in §3.6.
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abbr. dataset name start duration
2019q4-w internet_outage_adaptive_a38w-20191001 2019-10-01 12 weeks
2020q1-w internet_outage_adaptive_a39w-20200101 2020-01-01 12 weeks
2020q2-w internet_outage_adaptive_a40w-20200401 2020-04-01 12 weeks
2020q1-j internet_outage_adaptive_a39j-20200101 2020-01-01 12 weeks
2020q2-j internet_outage_adaptive_a40j-20200401 2020-04-01 12 weeks
2020q1-n internet_outage_adaptive_a39n-20200101 2020-01-01 12 weeks
2020q2-n internet_outage_adaptive_a40n-20200401 2020-04-01 12 weeks
2020q1-e internet_outage_adaptive_a39e-20200101 2020-01-01 12 weeks
2020q2-e internet_outage_adaptive_a40e-20200401 2020-04-01 12 weeks
2020it89-w internet_address_survey_reprobing_it89w-20200219 2020-02-19 2 weeks

Table 4: We use Internet outage datasets collected by Trinocular from four vantage points. Letter indicates VP’s
location: e: ISI-East, near Washington, DC; j: Japan, Keio University, near Tokyo; n: Netherlands, near Utrecht; w:
ISI-West, Los Angeles;
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(b) Anon. university B with WFH.
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(c) Anon. university C (no change).

Figure 11: Sample blocks from three anonymized U.S. universities.

Figure 15a shows the large change near the curfew date,
with 16.5% or 38 of change-sensitive blocks showing a de-
crease in use on 2020-03-24. This example fromUAE confirms
our ability to discover Covid-related changes.

Again, the Covid-related changes stand out from noise in
Figure 15b, with 6.1% or 57 of blocks showing a decrease in
use on 2020-03-15 and 3.8% of blocks on 2020-03-16. This
example from Slovenia confirms our approach as well.

F CASE STUDY: MORE DISCOVERED
EVENTS

We examined three real-world events in §4, but we looked
at several more. We look at two events in Thailand and
Morocco.

F.1 Thailand on 2020-02-22
We next examine an event in Thailand. Like India (§4.3) we
discovered this event by browsing our website, and when
we looked for root causes we found civil unrest. Figure 16a
shows the grid with the large number of networks (12N,
100E), many of which change on 2020-02-22 (14.3% or 144

of 1,003 blocks). Several other nearby grid cells have many
fewer blocks, but have 50% or more of them showing changes
(the smaller but dark red circles).

This date corresponds with student protests about the
dissolution of an opposition party [8, 77]. Covid-19-related
lockdowns did not begin until March and April, 2020 [94].
News reports confirm government-imposed curfews due
to protests in October 2020 [9]. This combination suggests
protest-related disruptions keeping students at home, an
event that is not Covid-related, but something we count as a
true positive
This case study confirms that we detect changes in net-

work usage that happen as a result of lockdowns, but that
there are causes of lockdown other than Covid-19. In fact, Fig-
ure 16b shows this event was the largest downward change
for this grid cell in 2020h1.

F.2 Morocco on 2020-03-24
Finally, we examine Morocco. We see a large peak of changes
in March corresponding with announcement of a Covid-19
emergency in the country.
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(a) The anon. block with only dirunal behavior.

(b) The anon. block with a non Covid-related change.

Figure 12: Two representative change-sensitive
blocks.
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Figure 13: AVPNblock (128.125.52.0/24) and detection.
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(a) The fraction of blocks that decrease (light red)
or increase (dark blue) usage at 24N,54E in The
United Arab Emirates for 2020q1 and q2.
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Figure 15: The line-chart of block counts, as a func-
tion of date (𝑥-axis) and the fraction of blocks showing
changes (𝑦-axis).
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Bangkok

(a) 2x2◦ grid dotmap for 2020-02-22.
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(b) Changes for (12N, 100E: Bangkok), 2020h1.

Figure 16: Thailand

Figure 17a shows our 2x2 degree grid of changes on 2020-
03-24. We observe that a grid cell consisting of 13,989 change-
sensitive blocks in Morocco (at 32N,6W) is triggered by a
large change — about 10.5% or 1,472 change-sensitive blocks
showing downward trends, as confirmed in Figure 17b show-
ing a series of downward trends detected starting from 2020-
03-19 to 2020-03-27.
These changes are related to activities in Morocco.: A

state of medical emergency responded to Covid-19 was de-
clared on 2020-03-19 to take effect on 2020-03-20 at 6 pm
local time [49].

F.3 Indiana on 2020-03-15
To understand applicability of our approach in North Amer-
ica we explored WFH events in the United States through
our website [82]. We observed a moderately large event in
Indiana, appearing as a large, light-blue circle in Figure 18.

Ourwebsite supports examination of the underlying blocks.
we can see that 36 blocks in Indiana University (AS87 and
AS27198) were detected as WFH on 2020-03-15. This data
corresponds with the beginning of spring break (Friday, 2020-
03-13) followed by remote learning beginning on 2020-03-
19 [73].
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2020-03-24

Morocco

(a) A 2 × 2◦ grid dotmap on 2020-03-23.
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(b) Block changes over time for the Morocco grid
cell.

Figure 17: Fraction of block changes in Morocco with
Covid-related events on 2020-03-24.

Figure 18: An event discovered through our interactive
website. Source: [83], Figure 8.

This example shows the use of our algorithms and website
to discover an event unknown to us. It also shows the role
of universities for having change-sensitive networks. Uni-
versities often have large IPv4 allocations (as Autonomous
System 87, IU was an early adopter) and so are able to use
public IP addresses for dynamic use.
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