Ad Hoc Networks 151 (2023) 103259

Contents lists available at ScienceDirect &=
Ad Hoc
[Networks
Ad Hoc Networks
journal homepage: www.elsevier.com/locate/adhoc

Defending Root DNS Servers against DDoS Using Layered Defenses

(Extended)

ASM Rizvi*, Jelena Mirkovic, John Heidemann, Wesley Hardaker, Robert Story

University of Southern California/Information Sciences Institute, United States of America

ARTICLE INFO ABSTRACT

Keywords: Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate

DDoS clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical

DII‘IS infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific

Filtering

filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to
protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP
traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered
DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized
for different attack types, with different levels of selectivity. We further propose a method that automatically
and continuously evaluates and selects the best combination of filters throughout the attack. We show that this
layered defense approach provides exceptional protection against all attack types using traces of ten real attacks
from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly
reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We
show our system can successfully mitigate resource exhaustion using replay of a real-world attack. We can
handle millions of filtering rules without noticeable operational overhead.

1. Introduction sufficient, such as volumetric attacks using junk traffic. Others, such
as exploit-based attacks, remain pernicious, but automated patching

Distributed-Denial-of-Service (DDoS) attacks remain a serious prob- and safer coding practices offer promise. Most challenging are at-
lem [1-4], in spite of decades of research and commercial efforts tacks using legitimate-seeming application traffic, since a flash-crowd
to curb them. Ongoing Covid-19 pandemic and increased reliance of attack from millions of compromised hosts (also known as layer-7 or
our society on network services, have further increased opportunities application-layer attacks) can resemble a legitimate flash crowd, when
for DDoS attacks. According to the security company F5 Labs, be- many legitimate clients access popular content. At DNS root servers,
tween January 2020 and March 2021, DDoS attacks have increased flash crowd attacks would generate excessive DNS queries. Because

by 55% [5]. While some large-volume DDoS attacks make front page
news (for example, the 1.35Tb/s [6] attack on Github in Feb. 2018, or
2021 17.2M requests per second attack, detected by CloudFlare [7]),
many more attacks occur daily and disrupt operations of thousands of
targets [8,9].

This paper focuses on protecting the Domain Name System (DNS)
root servers against DDoS attacks. The root-DNS service is a high-
profile, critical service, and it has been subject to repeated DDoS attacks
in the past [10-14]. In addition, because the DNS root “bootstraps”
DNS, it is served on specific IP addresses that cannot be easily modified,
thus precluding use of many traditional DDoS defenses that redirect

legitimate clients also generate DNS queries, it is challenging to filter
out attack traffic. We focus on mitigation of flash-crowd attacks on DNS
root servers.

In flash-crowd attacks, attack traffic often appears identical in con-
tent to legitimate traffic. Approaches to handle flash-crowd attacks
thus focus on withstanding the attack using cloud-based services [16-
19]. Other approaches aim to separate legitimate from attack clients,
e.g., via CAPTCHAs [20], or by using models of typical client behav-
ior [21,22]. These defenses work poorly for DNS root servers. First,
the DNS root operates at small number of fixed IP addresses that
traffic to clouds to distribute load [15]. cannot be easily changed. This restriction precludes use of traditional

There are many types of DDoS attacks. Some attacks are concep- defenses that redirect traffic to clouds [15]. Second, DNS traffic to

tually easy to mitigate with firewalls, assuming upstream capacity is roots is generated by recursive resolvers. Since there is neither direct

* Corresponding author.
E-mail address: asmrizvi@usc.edu (ASM Rizvi).

https://doi.org/10.1016/j.adhoc.2023.103259
Received 13 May 2023; Accepted 19 July 2023
Available online 4 August 2023

1570-8705/© 2023 Elsevier B.V. All rights reserved.

https://www.elsevier.com/locate/adhoc
http://www.elsevier.com/locate/adhoc
mailto:asmrizvi@usc.edu
https://doi.org/10.1016/j.adhoc.2023.103259
https://doi.org/10.1016/j.adhoc.2023.103259

ASM Rizvi et al.

interaction with a human nor a web-based user interface, CAPTCHAs
cannot be interposed. Third, aggressive client identification requires
modeling a typical legitimate client. Building a typical client model at
roots is challenging, because client request rates vary by five orders
of magnitude, from a few queries per day to thousands of queries per
second. A model that spans all types of clients can be too permissive,
while a model that captures a majority of clients may drop legitimate
traffic from large senders. Since most DNS traffic is currently UDP-
based, spoofing also is a challenge and spoofers can masquerade as
legitimate clients.

In this paper we propose a multi-layer approach to DNS root server
defense against DDoS attacks, called DDiDD — DDoS Defense in Depth
for DNS. Our first contribution is to propose an automated approach to
select the best combination of filters for a given attack. Selecting from a
library of possible filters is important, since different filters are effective
against different attacks, and each filter has a different false positive
rate, and different operational cost, which precludes its continuous use.
DDiDD selects the best combination of filters quickly (within 3s) and
continuously re-evaluates filtering effectiveness. When attack traffic
changes (e.g., in case of polymorphic attacks), DDiDD quickly detects
decrease in the filtering effectiveness and re-selects a new, better
combination, thereby adjusting to dynamic attacks.

Our second contribution is to propose a novel wild client filter for
DNS. We provide the first open description and evaluation of a filter
that models per-client behavior for DNS clients. Client modeling is
widely used to protect web servers [23] where a single model for a
“typical” web client suffices. DNS shows a huge range of rates (over 5
orders of magnitude) across clients, so any model that captures this
entire range will be too permissive. Instead, we model each client
separately during pre-attack periods, and identify as attackers the
clients that become more aggressive during attacks. In deployment we
combine this filter with anti-spoofing filters to establish trust in client
identities.

Our final contribution is to perform evaluation of each candidate
filter, including our wild resolver filter and six other filters proposed
in prior work [24-27]. While prior work quantified performance of
some individual filters for general DDoS attacks [25-27], and other
work qualitatively described commercial deployments (such as Aka-
mai’s [24]), we are the first to evaluate each filter quantitatively against
real DDoS attacks on a DNS root. We are also the first to propose
and evaluate a dynamic multi-filter system for protection of DNS roots
against DDoS. Our evaluation uses real-world attacks and normal traffic
taken over 6 years from B-root, as well as an adversarial, polymorphic
attack we have synthesized. Our evaluation confirms that no single
filter outperforms the others, but together they provide a stable defense
against different attack types converging in 3s or less, with low collat-
eral damage (at most 2%). Our analysis provides evidence for the DNS
operators about the importance of having an automated system, and it
provides insights about individual filter performance against different
types of attacks.

We focus our work on the DNS root server system to meet its unique
challenges, but our results also apply to other self-hosted, authoritative
DNS servers.

We release the DDoS datasets and our DDIDD tool that we use in
this paper [28,29].

An earlier version of this work was previously published at a con-
ference [30]. This journal version extends that work with additional
background (Section 2), new description of how we detect DDoS by
monitoring resources for exhaustion (Section 4.2.1), additional valida-
tion of filter parameters (Section 4.3), and evaluation of attacks on
resource consumption (Section 5.4).

Ad Hoc Networks 151 (2023) 103259

N 2015
101 | o Y 2016 -~
= 2017
102 | 2018 B
u . 2019
8103 \§§§\\\ |
104 h N
10-5 L ; ; 1 : \‘\. .
10—6]]]]] . ‘\A

10" 102 108 10* 105 10
queries per hour

Fig. 1. Complementary cumulative distribution function of the number of requests per
hour sent to B-root on five random dates between 2015 and 2019.

2. Background: DNS and DDoS

Domain Name System (DNS) is part of the critical Internet infras-
tructure. It maps between resource names and IP addresses, using a
hierarchical database distributed across authoritative DNS nameservers
(authoritatives for short). The DNS root is on top of the hierarchy,
followed by top-level domain (TLD) servers and subdomain servers.
Each authoritative nameserver is responsible for maintaining mapping
of some portion of the DNS namespace, and for replying to queries
about that portion to any DNS client.

Users usually do not directly query the DNS, but instead use recursive
resolvers (“recursives” for short) that resolve names on their behalf.
There are many recursives, and each serves some local users by proxy-
ing for them the translation of DNS names to IP addresses, and caching
any new data learned from the authoritative servers. Users’ computers
are clients of recursives, and recursives are clients of the authoritatives.

Each DNS name consists of multiple components, separated by pe-
riods, such as www.example. com. The rightmost segment denotes a
top-level domain or TLD, such as.com or .us. When a recursive resolver
looks up a name, it parses each component, querying authoritative
nameservers, if it does not have a resolution for that given suffix in
its cache. Components and their resolutions are cached for durations
specified by their owner, and can be overridden by the recursive’s
configuration.

2.1. DNS root traffic

Because recursives cache responses from DNS root, and there are
only a few thousand TLDs that can be cached for 24 h or more, one ex-
pects that recursives query the authoritatives for the root infrequently.
The actual traffic from resolvers, however, defies this expectation by a
large margin. Fig. 1 illustrates the complementary cumulative distribu-
tion function (ccdf) of the number of queries to B-root per hour at a
random hour in each of the years 2015, 2016, 2017, 2018 and 2019.
There is a wide range of rates across 5 degrees of magnitude. While
majority of resolvers exhibit the behavior we expect — 95% send fewer
than 62 queries per hour and 99% send fewer than 1,500 queries per
hour - a small number of resolvers sends excessive numbers of queries,
up to 100,000 queries per hour!

Why are roots receiving so much more traffic than one would ex-
pect? There are several possible explanations. First, roots receive many
queries (36%-39% in our dataset) that do not have a valid TLD [31-
33]. Chrome browsers make such random DNS queries to detect DNS
hijacking [34]. Roots will return a no-such-domain (NXDomain) reply
to these queries, but such replies are not cached by resolvers. Second,
some recursives may not cache properly and so reissue queries that
could be cached. Finally, some resolvers query the roots directly,
perhaps to monitor it. More research is needed to establish root causes
of this excessive traffic.

ASM Rizvi et al.

Root servers operate as a service to the Internet and are committed
to serving the root DNS zone as defined by IANA to all queriers (for
example, see [35]). Due to this policy, root server operators prioritize
responding to all queries, with the exception of obvious attacks and
operational threats.

2.2. The DNS root and DDoS

Historically there have been several large attacks on DNS root
servers. In 2002 [36], a large volumetric attack hit all 13 DNS root
servers for an hour, with nine of 13 root servers largely inaccessible. In
2007 [37], a volumetric attack hit six DNS root servers, and lasted 3h
and 5h. Two servers were noticeably affected. In November/December
2015 [13], most of the root name servers were hit by two volumetric
attacks containing millions of spoofed queries per second. While some
root servers were lightly hit, others saw severe traffic loss of 95%
or more. Analysis showed the attacks inflicted collateral damage to
services collocated with root servers [13]. Although caching of root
contents at recursives reduces the end-user impact of these attacks [38,
39], DNS outages at CDNs have impacted prominent user-facing ser-
vices [8]. Effective DDoS defense for the DNS root is thus necessary.
We use data from eight attacks in the years following 2015.

While DDoS attacks have been studied for decades, DDoS on DNS
root servers pose some unique challenges. Unlike web traffic, most DNS
queries use UDP and UDP support is required, so DNS is vulnerable to
IP spoofing, making filtering by source IP address ineffective. Second,
root severs see a huge diversity of query rates—legitimate traffic spans
five orders of magnitude, complicating traffic modeling and filtering big
senders. Third, root DNS uses a small number of fixed IP addresses, so
shifting traffic to other anycast rings is not feasible. Finally, the DNS
root has a very high commitment to serving all queries, so collateral
damage is a large concern; good queries should be answered.

3. Related work

DDoS attacks have been a problem for more than two decades,
and many research and commercial defenses have been proposed. This
section reviews only those solutions that are closely related to our
approaches and to protecting DNS servers against DDoS.

3.1. Flash-crowd DDoS defenses

CAPTCHAs [40,41] are a popular defense against flash-crowd at-
tacks. They can be used together with other indicators of human user
presence, to differentiate between humans and bots. However, DNS
queries come from recursives, not directly from human users, so there
is no opportunity for a CAPTCHAs intervention. FRADE [23] is a flash-
crowd DDoS defense, which builds models of how human users interact
with a Web server, including query rates and query content, and uses
them to detect bot-generated traffic. FRADE models a typical client’s
behavior. While this works for Web servers, which are browsed by
humans, request rates and contents of DNS recursives vary widely.
FRADE thus cannot protect DNS servers against DDoS.

Creating an allow-list of known-good clients is suggested in several
studies and RFCs [42-46] for general protection from unwanted traffic.
However, the approaches to create a list of known-good recursives for
DNS roots have not been described nor evaluated. We evaluate this idea
in this paper under the name “unknown recursive filter”, in conjunction
with hop-count filtering [26], and show that it works well to filter out
spoofed attack traffic, but cannot handle attacks that do not use IP
spoofing.

Many companies provide DDoS solutions, which may combine
signature-based filtering, rate limiting, and traffic distribution using
cloud resources and anycast. Such solutions are offered by Akamai [24,
471, Verizon [48], and Cloudflare [49,50], for example. Since these
solutions are proprietary, we cannot compare against them directly. In

Ad Hoc Networks 151 (2023) 103259

addition, they often collect traffic with DNS-based redirection or route
announcement (friendly hijacking). Neither of these redirections are
possible for root DNS service, which must operate at a fixed IP address,
and cannot easily be re-routed.

3.2. Spoofed traffic filtering

Several filters to remove spoofed traffic have been proposed: hop-
count filtering [25-27], route traceback [51], route-based filtering
[52], path identifier [53], unknown client filtering [43,44], and client
legitimacy based on network, transport and application layer informa-
tion [54]. Of these approaches, only hop-count filtering and unknown
client filtering can be deployed on or close to the target, and thus show
promise for protection of DNS root servers. In hop-count filtering, the
filter learns which IP TTL values are used in packets from a given source
IP address, and uses this to filter out spoofed packets. The original
approach [25] advocates for storing one expected hop-count per source.
Mukaddam et al. show that recording a list of possible hop-counts
improves the precision of TTL filters [27]. These studies are performed
on 10-20 years old traceroute measurements, and they assume reliable
inference of TTL filters from established TCP connections. Both Internet
topology and application dynamics have since evolved, and DNS traffic
is predominantly UDP. Our paper fills this gap, by evaluating hop-count
filtering against DDoS with real attack and legitimate traffic, spanning
six years and ten attack events.

3.3. DDoS on DNS

BIND pioneered Response Rate Limiting (RRL) to avoid excessive
replies [55] and conserve outgoing network capacity during a vol-
umetric query DDoS. RRL addresses a few misbehaving clients and
outgoing amplification attacks, but it does not address well-distributed,
volumetric attacks from large botnets.

Akamai uses sophisticated scoring and priority queuing to protect
their authoritative DNS servers from floods [24,47]. Akamai scores
queries with the source’s expected rate, if the resolver participated in
prior attacks, the source’s NXDomain fraction, query similarity from
that source, and an evaluation of TTL consistency. While two of these
scoring approaches are similar to our unknown resolver and wild re-
solver filters, there are three major differences. First, Akamai provides
no quantitative data about how various scoring approaches perform
against real attack events. We contribute a careful quantitative evalua-
tion of how well different filters work against playback of real attacks.
Second, we propose a specific mechanism to select filter combinations,
and reevaluate them when necessary. Akamai’s approach uses all fil-
ters at once to calculate each query score, and Schomp et al. [24]
do not describe how the filters interact. Finally, key parts of Aka-
mai’s scoring system run inline with processing, requiring high-speed
packet handling. Our approach operates in parallel with packet pro-
cessing, evaluating resolvers to identify potential attackers (or known-
good resolvers), simplifying deployment, particularly for lower-end
hardware.

Prior work has studied real DDoS events, inferring operator re-
sponses using anycast, and suggesting possible anycast options in DNS
roots [13]. Recent work has taken this idea further, suggesting that
a network playbook can pre-evaluate routing options to shift traffic
across anycast sites [19]. Our work complements this line of research,
by studying how filters can reduce load at each anycast site.

Finally, several groups have suggested fully distributing the root to
all recursives [56-58]. Such wide replication would greatly reduce the
threat of DDoS on the root, but not on other DNS authoritative servers.
As a result, on-site defense is still necessary to mitigate DDoS attacks
on DNS.

ASM Rizvi et al.
4. DDiDD Design

Our goal is to design an automated system, which continuously eval-
uates suitability of multiple filters to handle an ongoing DDoS attack on
a DNS root server. Our system needs to quickly select the best filter or
the combination of filters, reasoning about the projected impact on the
attack, the collateral damage from the filter on legitimate recursives’
traffic and the operational cost. The system should also be able to adjust
its selection as attack changes. Finally, individual filters need to be
configured to achieve optimal performance—high effectiveness against
attacks they are designed to handle and low collateral damage.

DNS root may also experience a legitimate flash crowd, e.g., when
many clients access some popular online content. Due to caching,
queries for existing TLDs should not create flash crowd effect, but
queries for non-existing TLDs may, since their replies are not cached.
DDiDD will only activate when excessive queries overwhelm server
resources. Unless the server can quickly draft more resources (e.g.,
through anycast) some queries have to be dropped. Without DDiDD,
random legitimate queries would be dropped. DDiDD (Section 5) mostly
drops queries from sources causing the legitimate flash crowd.

4.1. Threat model

We assume that an attacker’s goal is to exhaust some key resource
at a target by sending legitimate-like requests to the server. Current au-
thoritative servers (including root) do not store state between requests,
so the attacker can target CPU resources, incoming bandwidth or
outgoing bandwidth. In all cases, the attacker generates more requests
than the server can process per second. The attacker may spoof these
requests, or they may compromise new or rent existing bots and send
non-spoofed requests.

A spoofing attacker may spoof at random, or they may choose
specific IP addresses to spoof. In some cases, the attacker may choose
to spoof addresses of existing, legitimate recursives.

A non-spoofing attacker compromises or rents bots to use in the
attack. Drafting new bots carries non-negligible cost for the attacker.

The features of attack requests depend on the resource that the attack
targets. If the targeted resource is CPU, the attacker may generate many
requests per second. If the target is incoming bandwidth, the attacker
may generate large requests to quickly consume the bandwidth. In both
of these cases, the content of the requests is not important, just their
rate and size. Finally, if the target is outgoing bandwidth, the attacker
may generate requests that maximize the size of replies, using the ANY
query type.

Some attacks are polymorphic—they change their features during the
attack event. Any attack features may change: how spoofing is done,
which sources generate attacks, and the content of attack requests.

A naive attacker does not have knowledge about DDiDD and is
focused only on overwhelming the target server. A sophisticated attacker
may obtain information about types and parameters of the filters that
our defense uses, and they may try to adjust their attack to bypass the
defense, or to trick the defense into filtering a legitimate recursive’s
traffic.

DDiDD works well both against naive and against sophisticated
attackers, and against spoofing and non-spoofing attackers, due to its
layered defense approach, and multiple filters, as we show in our
evaluation.

4.2. DDiDD Operation

To avoid any operational impact on a DNS root server, DDiDD
consumes packet captures, operating offline to get required parameters,
independently of the actual DNS server software. DDiDD’s analysis de-
tects an attack, selects a filter or a combination of filters, then deploys
filters via iptables and ipset rules on the server. We consider six
filters, described in Section 4.3, and implement four that perform well

Ad Hoc Networks 151 (2023) 103259

with DNS root traffic: frequent query filter, unknown recursive, wild
recursive and hop-count filter. iptables work well when number of
rules is small (up to 2% delay increase for 5 rules) and matching is
needed on query content. We use iptables to implement the frequent
query filter, for 1-5 frequent query names. ipset uses an indexed data
structure and provides efficient matching of thousands or even millions
of rules, without added delay. We use it when blocking attack sources,
identified by unknown recursive, wild recursive and hop-count filters.
iptables/ipset or their equivalents are available on all modern
operating systems, thus DDiDD is highly deployable by any interested
DNS root server. If a root is anycast over multiple points-of-presence
(PoPs), DDiDD should be deployed at each PoP independently. No
synchronization or information exchange is required across instances
deployed at different PoPs.

DDiDD automatically selects filters to meet two goals. First, we pre-
fer filters that will remove most attack traffic with low or zero collateral
damage to legitimate queries. Second, we aim to select filters quickly,
because most DDoS attacks are short [59]. We then revise our selection
if attack changes, or if we learn that another filter combination works
better. This decision process is fully automated. Further, DDiDD is
flexible and modular, allowing addition of new filters in the future.

4.2.1. Attack detection

DDoS attacks cause problems because they exhaust some resource at
the target. As an example, in 2015 DDoS attacks on the root DNS some
operators could reply to all queries, but some failed to receive queries
or could not respond to them typically because of bandwidth limita-
tions [13,60]. DDiDD detects possible attacks by monitoring the status
of critical resources and recognizing when a resource is overloaded.
We use collectd to periodically collect status information from several
resources (CPU, memory, inbound and outbound network capacity). We
identify possible attacks when any resource exceeds a fraction of its
maximum capacity, which we denote as critical load. Our system detects
attacks considering different resources:

Ingress network bandwidth: Volumetric attacks like UDP flood-
ing can saturate the ingress network bandwidth [61]. The memcached
attack did not even send DNS queries, but exhausted channel capac-
ity [6]. If a root server has a capacity of I Gb/s, then attack traffic
of rate I, (where I, > I) will result in user loss of approximately
I4 —1)/1, legitimate queries.

Physical memory: Several types of attacks target server memory,
forcing kernels to buffer IP fragments [62,63], or TCP connections from
a TCP-SYN flood attack [64]. Today’s operating systems are generally
hardened to these attacks and drop partially-complete information
when resources are limited.

CPU usage: CPU usage increases in proportion to query rates,
and while non-DNS traffic may be filtered at a firewall, DNS queries
require some application-level processing. Query processing can incur
an asymmetric cost; they are cheap for zombies to generate but much
more expensive for servers to detect and discard or handle.

Egress network bandwidth: It is typical in DNS deployments that
the responses are larger than the corresponding query size [63,65].
This amplification attack can result in exhaustion of the egress network
bandwidth before the ingress network is exhausted. Moreover, if the
source IP address is spoofed, the reply can more easily exhaust the
target victim. According to Arbor Network, DNS based amplification
is the most common form of DDoS attack [2].

The wide adoption of DNSSEC also enables a way to get a larger DNS
response, and DNSSEC might be used to make potential attacks [66]. If
the server has E Gb/s egress capacity, then any outgoing traffic which
is greater than E Gbps, can overwhelm the egress network bandwidth.

We detect attack termination by monitoring the amount of traffic
blocked by the deployed filters. We declare the attack over when the
traffic blocked by DDiDD decreases significantly, and the load on the
server stays low as well, for an extended period of time. More details
are given in [67].

ASM Rizvi et al.

Table 1
Filter parameters.
Parameter Meaning rec. values
Lo num. queries for learning 10 K
fro freq. change threshold 0.3
Lyr-Lyc. Lyr learn. period 2 h (20 m for WR)
Uyr-Ugc,Upr use period 2h
Wiy oevy Wy observ. windows 20021 ..., 28
twr deviance threshold 0.5

4.2.2. Filter priming and selection

All filters (e.g., frequent query filter, unknown recursive, wild recur-
sive filter, hop-count filter) require information that must be learned
continuously, in absence of attacks. DDiDD continuously learns these
parameters from packet collection and uses them when the corre-
sponding filter is deployed. Some filters (e.g., frequent query name)
also require a short learning phase during an attack. DDiDD triggers
a short learning phase for these filters when the attack is detected,
and repeats it regularly to update filter parameters. After the detection,
DDiDD uses the incoming traffic to select the filter parameters (for
example, finding the frequent query name to filter). For some filters
like unknown resolver filter, DDiDD uses known legitimate traffic (we
provide more details when we describe the filters).

During attack, each filter and some filter combinations are contin-
uously evaluated for potential deployment. We emulate the effect of
each filter or their combination on a sample of captured packets. We
estimate the success of each filter based on acceptable query load at
the server, calculated as the server’s average query load times a small
multiplicative factor f,-c. Because root servers operate well below
their capacity, this approach guarantees that query rates below the
acceptable load will also not exhaust the server’s CPU or bandwidth
resources, and will not trigger attack detection.

We also estimate collateral damage when the filter is parameterized
using peace-time (non-attack) traffic. The collateral damage depends
on the legitimate traffic’s blend and we have verified that it does not
change sharply over time. Thus, we can calculate it once and use this
estimate for a long time (e.g., months). Based on the estimated effec-
tiveness of the given filter or their combination, and their projected
collateral damage, new filters may be selected for deployment and
existing filters may be retired.

4.3. DDiDD Filters

In DDiDD we have implemented the following filters: (FQ) frequent
query name filter, (UR) unknown recursive filter, (HC) hop-count filter
and (WR) wild recursive filter. In addition to these, we have also
considered (RC) response-code filter and (AR) aggressive recursive
filter. Since these two filters do not perform well on root server traffic,
we do not include them in DDiDD, but we evaluate them on our dataset
and summarize results in this section. We show our recommended filter
parameters in Table 1. For each filter, we measure the performance and
operational cost.

4.3.1. Frequent query name filter (FQ)

In our datasets many attacks have queries that follow a given
pattern, e.g., have a common suffix. Thus, in practice it is useful to
develop filters that remove frequent queries during attack periods.

Approach: We use a simple algorithm to identify frequent query
names. We continuously observe Ly, queries of incoming traffic and
learn frequency of top-level domains, subdomains and full queries.
Under attack, we repeat the calculation and look for segments (TLDs,
subdomains or full queries) whose frequency has increased more than
a threshold fr,. These segments are candidates for frequent query
names. Segment frequency prior to the attack serves to estimate collat-
eral damage. We evaluated a range of values for Ly, and ffp. Shorter

Ad Hoc Networks 151 (2023) 103259

Interarrival time (s)
105 104 103 102 101 100 101 102 103

T T

0.8

0.6

0.4

0.2

CDF of number of sources

0 n Ll n Ll n Ll n . n Ll n Ll n Ll n n
10° 104 103 102 101! 100 10! 102 103
Query rate (queries/second)

F

=

g. 2. CDF of source query rates, showing a wide range of rates. Data: 2015-11-29.

Ly than 10,000 reduced mitigation delay, but increased chances of
mis-identification of frequent queries. Similarly, lower fr, than 0.3
lead to some collateral damage. These values should be calibrated for
each server.

Operational cost: We can filter frequent query names directly using
iptables, or we can identify sources that send frequent queries
and block them using ipset. We denote these two implementation
approaches as FQ, and FQ,. The FQ, (iptables) implementation
imposes added processing delay, which greatly increases once we go
past five filtering rules, but it minimizes collateral damage. The FQ,
(ipset) implementation adds no measurable delay, but it may create
collateral damage if spoofing is present, and thus must be deployed
together with anti-spoofing filters (UR and HC).

4.3.2. Unknown recursive filter (UR)

An allow-list with IP addresses of recursives present prior to the
attack can be an effective measure against random-spoofing attacks
or those that rent bots. This filter passes traffic from recursives on
allow-list to the server, and drops all other traffic.

Approach: An allow-list is built by processing incoming traffic to
the DNS root server over period Ly prior to an attack event. The list
is then ready to be used for some time Uy, and after that it can be
replaced by new list.

DDiDD builds allow-lists proactively at all times, observing traffic
over period L;i. We experimented with L, ranging from 10 min
(capture around 90% of traffic sources) to 6 h (capture 99% of traffic
sources). We also tested values of Uy, ; of up to 1 day, and the allow-lists
were very stable. We selected 2h for Ly, and 1 day for Uy .

Operational cost: An allow-list can be implemented efficiently using
ipset, which adds no processing delay.

The unknown resolver has a number of parameters that we study in
Section 4.4.

4.3.3. Hop count filter (HC)

A hop-count filter builds the TTL-table, containing source IP ad-
dresses, along with one or more TTL values seen in the incoming traffic
from each given source. This kind of filter can be effective for attacks
that spoof IP addresses of existing recursives. The filter drops traffic
from sources that exist in the TTL-table, but whose TTL value does not
match the values in the table. All other traffic is forwarded.

Approach: We build the TTL-table by processing incoming traffic to
the DNS root server over period L. The list is then ready to be used
for some time Uy, and after that it can be replaced by new list.

One could use hop counts [25,27] or TTL values for filtering. TTL
values are better choice, since they have larger value space, which

ASM Rizvi et al.

filters: array of all possible filters
candidates: array of filters that can be deployed

function deploy_single()

1

Ad Hoc Networks 151 (2023) 103259

function deploy_combo()

:current_fp = 1, best = null 1: tofilter = CL - AL; deployed.clear()

deployed: array of currently deployed filters 2: for C in candidates: 2: for Tin ur, hef, fg, wild:
AL: acceptable load 3: |if C.fp < current_fp: 3: for Cin candidates:
CL: current load 4: best =C 4: if C.type not T:
5 current_fp = C.fp 5: |continue
function select_filters() function select_candidates() ©6: if pest is not null: 6: if|C is effective:
1: select_candidates() 1: for F in filters: 7: |deployed.clear() 7. deployed.append(C)
2: deployed=deploy_single) 2: if F can reduce load to AL: 8: (deployed.append(best) 8 tofilter -= Cfiltered
3: if pot deployed: 3: |candidates.append|(F) 9: return true 9: if tofilter <= 0
4 Eeploy_comboo 10: return false 10: return
Fig. 3. Pseudocode for filter selection.
improves filter effectiveness. DDiDD builds its TTL-list by using each 1 w w
Response 0

packet in the incoming traffic to the server during the learning period.
Such traffic could be spoofed. Prior approaches [25,27,68] rely on
established TCP connections or they probe sources to reliably learn
TTL-table values. These approaches do not work for DNS root servers,
which serve mostly UDP traffic and whose policy forbids generation
of unsolicited traffic. Hop-count filter parameter values have similar
properties to known-recursive parameter values.

Operational cost: We implement this filter efficiently by adding a new
ipset module to match on an IP address and TTL value (or range).

4.3.4. Wild recursive filter (WR)

While query rate of different DNS recursives towards a DNS root
server varies widely, individual recursives’ behaviors are mostly con-
sistent over short time periods (e.g., several hours). We leverage this
observation to build models of each individual recursive’s behavior.
The model for a given recursive, along with the recursive’s IP address
is stored in the rate-table. During an attack, we identify those recur-
sives that send more aggressively than their rate-table predicts as wild
recursives. Wild recursive filter drops traffic from wild recursives, and
it forwards all other traffic.

Approach: A wild-recursive filter learns the rate of a DNS recursive’s
interaction with the DNS root server over multiple time windows,
Wy, Wy, Ws, ..., Wy, during learning period Ly, g. For each window, the
filter learns the mean and standard deviation of the number of queries
observed and stores them in the rate-table. The rate-table can be used
for some time Uy, z, and after that it can be replaced by a new table.

When the attack is detected, the filter measures the current query
rates over the same windows. It then calculates the difference between
the current rate r,,, in the window w; and the rate expected by the
model: mean,, + 3 X std,,. We then calculate a smoothed, normalized

—mean,,,, —3x*std,,
srdw/_ :
Those recursives whose deviance score exceeds threshold ty,; will be

identified as wild recursives.

We experimented with values for Ly, between 10 min and 6 h.
While performance was relatively stable, lower values led to lower
collateral damage, since they captured recent traffic trends. We ex-
perimented with uniformly distributed and exponentially distributed
(powers of two) window sizes. Exponentially distributed windows led
to lower mitigation delay, because they capture both aggressive and
stealthy attackers. We also experimented with 1-9 windows. Higher
number of windows had slightly higher collateral damage, but they
significantly improved filter effectiveness, because they enabled us to
identify sporadic attackers. Learned models become quickly outdated
so we set Uy, g = Ly g. We experimented with values for the threshold
tygr from 0.1 to 16. Values higher than 0.5 minimized collateral
damage.

Tew:
cw;

deviance score d, at time 7 as: d, = (d,_;x0.5)+0.5x Y,

Operational cost: This filter is implemented by processing the traffic
incoming to the DNS server offline. When the attack starts, the filter
identifies wild recursives and inserts corresponding ipset rules to
block their traffic.

Response 3 .

0.8 -

Response ratio

(a) Recode ratio changed during November 30, 2015 and Decembe
events

T T
Response 0
08 Response 3

Response ratio

0
AN S I U R SR N
N g & & I P
N N N N e
O M SN '19D O
ay

(b) Rcode ratio changed during attack event of March 6, 2017

Fig. 4. Rcode trend during normal and attack traffic in root A.

4.3.5. Response code filter (RC)

For some DNS servers, queries with missing names are rare. For
example, at Akamai only a small fraction of legitimate queries result in
NXDomain [24] replies, while attackers often query for random query
names.

We therefore considered a filter based on response codes that dis-
cards NXDomain responses (Response code 3 as shown on 2017-03-06
in Fig. 4(b)). Unfortunately, more than 60% of root DNS traffic involves
non-existing TLDs as shown in the seven days of 2015 and 2017 (Fig. 4).
We also find that sometimes the attack query names have an “NoError”
response in the replies (Response code 0 in Fig. 4(a)), and we cannot
filter out “NoError” replies. Thus for root DNS traffic, a response code
filter will have large collateral damage, and we do not currently include
it in DDiDD.

4.3.6. Aggressive recursive filter (AR)

This filter blocks the aggressive clients during an attack, starting
with the client that sends the highest query rate and moving down.
Filter adds addresses to the block-list until the query load reduces to
acceptable levels. We evaluated this filter on our dataset. It performs

ASM Rizvi et al.

Table 2

Ad Hoc Networks 151 (2023) 103259

DDiDD performance: comparing load control (con) and collateral damage (cd) for each possible filter and DDiDD as a whole. We highlight results within 1% of the best performance

in bold. For long attacks (*) we simulate only the first 600 s.

PoP Date Start dur ULQ DNS FQ UR HC WR DDiDD DDiDD ,
(UTC) (sec) mon con cd con cd con cd con cd con cd con cd
LAX 2015-11-30 06:50 8,918* 98 100 100 0 99.1 1.8 0.3 14 0 5.5 99.1 0.4 99.3 17
LAX 2015-12-01 05:10 3,781* 100 100 98.7 o 99.1 0 0.6 0 0 0 99.3 o 99.4 0
LAX 2016-06-25 22:18 2,436* 52 929 0 0 100 0.1 [0 0 0 100 0.1 100 0.1
LAX 2017-02-21 06:40 6,992* 2 1 98.4 0 0.1 1.8 0.1 1.5 98.4 0 929 0 98.8 o
LAX 2017-03-06 04:43 19,835* 6 5 98.8 0 0 11 0 0.4 91.6 1.5 100 0 92.3 1.5
LAX 2017-04-25 09:54 10,414* 3 4 98.3 0 0 11 0 0.7 94.9 2 99.1 o 95.1 2
ARI 2019-09-07 06:45 80 0 5 0 0 93.3 0.6 0 0.8 0 0.1 93.7 0.6 93.1 0.6
LAX 2019-09-07 06:45 80 23 5 0 0 100 0.9 0 0.2 0 0.2 100 0.9 100 0.9
MIA 2019-09-07 06:45 80 8 5 0 0 100 0.6 0 0 0 0.4 100 0.6 100 0.6
SIN 2020-02-13 08:05 206 14 2 100 0 0 0.3 4.8 0 38.5 0.5 100 0 97.5 0.8
ARI 2020-10-24 02:55 445 67 7 0 0 100 1.3 0 0 0 0.8 100 1.3 100 1.3
ARI 2021-05-28 02:35 70 25 3 0 0 100 1.1 0 0 0 0.1 100 11 100 1.1
IAD 2021-05-28 02:35 70 63 3 0 0 100 0.4 0 0 2.7 0 100 0.5 100 0.5
LAX 2021-05-28 02:35 70 3 3 0 0 100 0.4 [0 0 0 100 0.4 100 0.4
MIA 2021-05-28 02:35 70 2 3 0 0 100 1.5 0 0 0 0 100 1.7 100 1.7
SIN 2021-05-28 02:35 61 41 3 0 0 100 o 0 0 0 0 100 0 100 o
100.0 1 T T T T
CDF of new IP address
w0
80.0 - w 0.8
o
=]
& © 06
o 60.0 - o :
o =
3 2
£ g 04
S 400 | e &
[o
a w
a
o 02
20.0 -
0 i i i i i i i i i
0 150 300 450 600 750 900 1050 1200 1350 1500

10

20 30 40 50

Duration to build the accept list

60

Fig. 5. Impact of the duration to build the resolver list.

well when attacks use non-spoofed traffic, but its performance is con-
sistently worse than that of wild recursive filter. We thus do not include
it in DDiDD.

4.4. Parameter validation for the unknown resolver filter

Next, we validate our choice of the parameters for unknown resolver
filter. We will show how we choose observation period, L;z, and
observation frequency, Uy -

How long to observe? We want to observe long enough to get most
legitimate sources, so we first consider how often each source makes
queries. Fig. 2 shows that sources place queries at many different rates
with a long tail, with about 80% having inter-arrivals of 1000 s or more,
while a few place thousands of queries per second. This wide range of
rates is also visible in earlier studies [33,69].

We are certain to capture all frequent queriers in our accept list, as
a relatively short observation period (2h) provides a list that covers
the majority of queries. However, a short observation will miss the
infrequent queriers. We next quantify how much queries and unique
sources we can cover based on an observation duration.

We expect shorter observations for hitlists to observe only the most
frequent carriers, hence, most legitimate queries. To evaluate how long
we must observe to get the most queries, we examine normal traffic
of the day 2015-11-29 and build a list from data lasting from 10 min
to 60 min starting from 00:00:00 UTC. We evaluate how many future
queries these lists can identify from 02:00:00 UTC to 23:59:59 UTC
traffic. Fig. 5 shows only 20 min of traffic can cover over 90% of future
queries. Hence, only a small duration of traffic can cover the sources
which will make most of the future queries of the day.

Time (minutes) from start

Fig. 6. CDF of new IP address with time.

Although small duration covers frequent queriers which make most
queries, we still miss many non-frequent queriers. From Fig. 6, we can
see that within a ~1400 min time-frame, we get 50% of unique sources
within ~250 min. This implies that even if we create the accept list with
250 min of traffic, we still miss 50% of the future unique legitimate
sources (not the number of queries). However, these infrequent sources
send very few queries.

We choose to take 2h of traffic to build the known resolver list.
According to Fig. 6, we expect to miss around 60% of the unique
sources of the day (though attacks do not persist the whole day). We
choose this value because this value is sufficient to cover most of the
legitimate future queries (Fig. 5). Also, non-frequent queriers mostly
have well-configured cache, and most of the time they get their query
response from their own cache.

How often to build? We next consider how often we need to
build a known resolver list, confirming that once a day is sufficient
(Section 4.3.2).

How often the list is built can influence its success. We must
build the list frequently enough that it reflects current queriers, yet
list generation has some cost so we cannot build it continuously. To
evaluate how list age changes accuracy, we create lists from 2 h of
data starting O to 960 min before the attack. We compute the confusion
matrix to see how much malicious traffic we can block along with the
collateral damage for 2017-03-06 event. From Fig. 7, we can see little
change in the confusion matrix even if we build the known resolver
list 960 min before the attack event. Sensitivity and specificity values
differ by 1% to 2% based on the creation time (sensitivity means how
much malicious traffic we can detect and specificity means how much
legitimate traffic we can detect).

ASM Rizvi et al.

[Sensitivityl —@— Specificity? —@— |

10.0 T T T T T T T 100.0
3 =
Z)
= o]
2 S
T &
(%]
20 | 4 92.0
0.0 I I I I I I I 90.0

0 120 240 360 480 600 720 840 960
Start time before attack (mins)

Fig. 7. Impacts of the accept list creation time based on confusion matrix for
2017-03-06 event considering all queries.

Since time of list construction has relatively little effect on effective-
ness, we build the resolver accept list once a day.

4.5. Filter selection and synchronization

In this section we discuss how filters are selected for deployment
and why their learning periods have to be synchronized. Filter selec-
tion. Our goal was to design effective filter selection process, which
minimizes collateral damage to legitimate traffic. Our pseudocode for
filter selection is given in Fig. 3. At each time interval (e.g., one sec-
ond), if the current query load (CL) on the server (queries per second)
is higher than the acceptable load (A L), we first select candidate filters.
We continuously emulate operation of all filters, thus we produce for
each filter an estimate of the amount of queries they would drop.
Our candidate filters are those whose drop estimates are positive. If
among the candidate filters there are any that could reduce the load
to AL, we will select the filter with the lowest estimated collateral
damage (described in Section 4.2) and deploy only this filter (function
deploy single).

If no such filters exist, we will consider combinations of multiple
filters (function deploy combo). Not all combinations are valid, which
greatly reduces complexity of this step. HC filter must be deployed after
an UR filter, since HC is pass-through for addresses that do not exist in
TTL-table. UR filter removes queries that spoof unknown recursives,
thus guaranteeing that addresses of queries that pass will be present in
TTL-table. FQ, could be deployed together with any other filter. FQ,
and WR filters must be deployed after UR and HC, because they make
per-source blocking decisions, and require reliable source identities.
Since both FQ, and FQ; filter frequent query names, only one of them
should be deployed. FQ, has zero collateral damage and is considered
first. If it cannot be supported operationally (there are more than five
query names, and thus there will be added processing delay), FQ, will
be considered. In addition to considering filters in a specific order for
deployment, we only consider filters that are effective—filter at least 5%
of excess traffic (function effective). Deployment is finalized as soon as
the filter combination can reduce the load below AL.

Filter synchronization. DDiDD may engage one or multiple filters
to mitigate an attack. When some filter combinations are engaged, it
is important that their learning periods match, so that each filter has
entries for the same recursives in their table. Because we need a shorter
learning period for wild recursive filter, than for the unknown recursive
and hop-count filter, we learn parameters over 2 h, and then keep
updating WR entries each 20 min to keep them as recent as possible.

Sophisticated adversary. Each of the filters we consider could
be bypassed by a sophisticated adversary. We now discuss how their
combination makes this challenging (Fig. 8).

Ad Hoc Networks 151 (2023) 103259

HCF WR

pofson model

p4
pofon model

p3
spoof l}nown IPs
[1 .

pgison model

Fig. 8. Swiss cheese model of defense.

FQ filter could be bypassed by the attacker sending random queries.
UR filter could be bypassed by the attacker spoofing existing (known)
recursives. UR, HC and WR filters could each be bypassed by poisoning
the models during learning. One way to counter poisoning attacks could
be to learn over longer time periods, from random traffic samples.
While this works for UR and HC, whose data is fairly stable, it would
greatly diminish effectiveness of WR filter, and it would complicate
filter synchronization. Our approach is to handle poisoning attacks only
at WR filter, and to rely on the Swiss cheese defense model (Fig. 8) to
capture attackers that bypass one filter layer, but can be stopped at
the other. Thus random queries may bypass FQ, but will be stopped
at UR if they are from new sources, or at HCF if they are spoofed. At
WR, queries sent by recursives at high rate (spoofed or not) can be
detected and dropped. This leaves poisoning attacks at WR filter (thin
red arrow at the top right of Fig. 8), where each bot poisons the rate
model for itself by sending sporadic traffic during learning, with high
fluctuations. This can lead the filter to model a large expected rate for
the bot in each window, due to large standard deviation. To address
this attack, we learn only when load on the server is low (avg + stdev).
This forces the attacker to engage their bots very sporadically, which
becomes an outlier and is excluded from the model.

5. Evaluation

We use datasets containing real DNS root traffic and attacks (Sec-
tion 5.1) to calculate success metrics (Section 5.2) that characterize
DDiDD performance (Section 5.3).

5.1. Datasets

We use datasets collected at B-root, one of 13 root identifiers. These
datasets are publicly available [28]. in both pcap and text format.
The operators of B-root identify attacks based on unusual traffic rates
and system load, as seen from operational monitoring. Our evaluation
uses ten diverse attack events spanning six years (see Table 2). Dur-
ing events in 2017 and later B-root employed anycast network with
multiple points-of-presence (PoPs). Some attacks affected only one PoP
(e.g., 2020-02-13), while others targeted all PoPs (e.g., 2020-05-28).

We confirm that our selected events are DDoS attacks based on DNS-
mon observations shown in the “DNSmon” column Table 2. DNSmon
reports the fraction of responses received by many (about 100) phys-
ically distributed probers, which query each DNS root every 10 min.
In Table 2, the first three attack events had a large impact, showing
99%-100% of unanswered queries, as publicly reported [11-13]. The
other seven events had smaller impacts (1%-7% unanswered queries),
because they were shorter (5 min and less) and sent at a lower rate, and
because B-root’s capacity had increased. DNSmon reports reflect ag-
gregate performance across all PoPs, so the percentage of unanswered
queries at each PoP might be higher than measured by DNSmon. We
include traces from all the PoPs in our analysis, and simulate running
of DDiDD at each PoP. We use ground truth for attack start and stop
times to start and stop DDiDD’s simulation, and use f,cc = 2.5. During
attacks, query rate at the server increases more than 10-fold, so using
facc = 2.5 is reasonable.

While attackers could generate any random traffic to port 53, at-
tacks in our dataset had unique content or traffic signatures, which

ASM Rizvi et al.

enabled us to establish ground truth during evaluation. Attacks on
2015-11-30, 2015-12-01, 2017-02-21, 2017-03-06, 2017-04-25, and
2020-02-13 had used either several specific queries or a random prefix
with a common, specific, suffix. Attack on 2016-06-25 was a TCP SYN
flood. Attacks on 2019-09-07 and 2020-10-24 and 2021-05-28 sent
malformed UDP traffic to port 53, which consumed resources at the
server, but did not parse into legitimate query format.

Ethical considerations. Our analysis is performed on packet traces
incoming to and outgoing from B-root. Both source and destination IP
addresses are anonymized using Crypto-PAn [70,71]. Packet payloads
are not anonymized, which allows us to establish ground truth in
evaluation. After ground truth is established, analysis is automated and
we report only aggregate results. These steps preserve resolver privacy.

5.2. Metrics

Our goal is to reduce load on the DNS root server, by filtering
malicious traffic, to allow serving more legitimate users when under
duress. We therefore consider two success metrics: (1) controlled load,
the percent of time when server load is at or below acceptable load due
to defense’s actions, ideally 100%; (2) collateral damage, the percent of
legitimate queries filtered, with an ideal of 0%.

5.3. DDiDD Performance

Table 2 shows DDiDD’s performance per each PoP affected by a
given attack. We show several defense configurations: first, each filter
by itself (FQ, UR, HC, or WR), then the full DDiDD with all four filters
and a partial DDiDD with only UR, HC, and WR filters. Removing the
FQ filter from the partial DDiDD simulates a smart adversary, which
randomizes queries for each attack.

These experiments confirm that no single defense does well in all
attack cases. The FQ filter does very well in attacks that use similar
queries, but has no effect otherwise. The UR filter performs well in
many attacks. HC does not work well by itself, but enhances other
filters. Finally, WR does well in a few attacks, where some recursives,
which are present prior to the attack, modify their behavior to become
more aggressive. This evaluation demonstrates that we need multiple
filters to handle all attack events.

We further show that the full DDiDD automatically chooses the best
filter or combination of filters for each attack, always achieving 93% or
higher controlled load and at most 1.7% collateral damage. DDiDD
selects the optimal filter combination in 1-3 s.

Partial DDiDD’s performance (the right-most column) shows how
well it would handle an adversary that randomizes queries. DDiDD con-
trols load for most of the time (92.3%-100%), with low collateral
damage (2% or lower), with all filters selected in 3s or less.

We compare collateral damage of DDiDD with percentage of legiti-
mate queries at the affected PoP that fail to receive a response during
the original attack, without DDiDD. We calculate this percentage from
our datasets and show it in the fifth column (ULQ) of Table 2. This is
an internal measure of DoS impact and it can differ from the external
measurements by DNSmon, because of several reasons. First, DNSmon
averages measurements over 10 min and across all PoPs for a given
root, while our internal-DoS measure is per PoP and it is averaged
over the duration of the attack. For these reasons DNSmon will often
underestimate attack impact, as is the case for many of our attacks.
Second, if B-root’s incoming bandwidth were overloaded, DNSmon
could measure higher loss rate than our internal-DoS measure. This is
the case, for example, for 2019-09-07 attack.

Full DDiDD’s and partial DDiDD’s collateral damage is always lower
than DNSmon (external) and ULQ (internal) measures. Thus DDiDD
improves legitimate traffic’s handling during DoS attacks. DDiDD is also
effective, reducing resource consumption by controlling server load,
93%-100% of time, after a short initial delay of 1-3 s.

Ad Hoc Networks 151 (2023) 103259

att fil att pass —
3 T

leg pass — leg fil

T T T T T T T T
phase 1 phase 2 phase 3 | phase 4 phase 5

load (1=average)
o
T
1

0 100 200 300 400 500 600 700 800 900 1000
time (s)

Fig. 9. DDiDD evaluation for a synthetic polymorphic attack.

Legitimate flash crowds. While three attacks in 2017 overloaded
B-root, they involved a large number of recursives involved (around
50 K per event), large difference in rates per recursive, and did not
spoof. Legitimate flash crowds would show similar patterns. In 2017
events, DDiDD dropped only traffic that was causing the overload event,
and only as much as to free server resources from overload.

Polymorphic attacks. In evaluation events DDiDD changes defenses
because the attacks change. During 2015-11-30 attack there were peri-
ods where existing clients were spoofed with incremental TTL values,
traversing the entire TTL value space. Partial DDiDD correctly switched
from UR to UR+HC combo to handle these cases. During 2020-02-13
attack, single UR, HC and WR filters could not sufficiently reduce the
load. Partial DDiDD deployed all three filters, which managed to reduce
the load.

We demonstrate how DDiDD can nimbly adjust filter selection by
using an artificial polymorphic attack in Fig. 9. We create a synthetic at-
tack by mixing legitimate traffic from February 2017 with five synthetic
attacks, which correspond to pl-p5 labels in Fig. 8: (p1) a random-
spoofed attack with a fixed query name, (p2) an attack with random
query names, (p3) same as (p2) but also spoofs only known recursives
using random TTL values, (p4) same as (p3) but spoofs with correct
TTL values, (p5) same as (pl) but 90% of queries are random and
10% use a fixed query name. We find that DDiDD quickly converges
to the best single filter for each attack strategy: FQ,, UR, HC, WR and
FQ,, respectively. Fig. 9 shows passed and filtered legitimate and attack
traffic for our synthetic attack—overall controlled load was 99.1%,
collateral damage was 0.7%, and selection delay was 1-4s.

5.4. Impacts on resource consumption

We next look in detail about how DDiDD handles a DDoS attack. To
evaluate the performance, we conduct controlled experiments in the
DETER testbed (Section 5.4.1), evaluating resource consumption at a
simulated target.

5.4.1. Experimental setup

We replay traffic with LDplayer [72], using 22 clients to reproduce
the full, original bitrate. Fig. 10 shows the experimental setup to replay
an attack event to the server. Fig. 10 also illustrates how the different
components of our system interact each other to mitigate the attack.

The attack target is an emulated DNS root server. We implement it
with BIND, using the LocalRoot method of providing root service [73]

Reproducing viable events: To show the effects of attacks that
drive a production system to resource exhaustion requires many servers
to attack and to emulate the service. It is also difficult to perfectly
reproduce attacks since the stored traces are often unable to capture the
entire attack because of limitations of the capture system. We therefore

ASM Rizvi et al.

~

Client 1

Collectd daemon N
Replay attack - writes resource
3 data (every 10s) —
lient 2
LDPlayer \Cei/ Server Resource
data
Controller 4.
cpdump and)
(.. dnsanon —

Check resource
for attack signal

Client 3) Deploy

filtering v (every 10s)
. Automated Problem)
Client 22 decision detection

process

9 L daemon

/

Fig. 10. Experimental setup and the interaction with our automated system.

scale down the server capacity to match the stored traces. We measure
the regular traffic resource consumption, and trigger a problem when
the resource is double than the regular consumption.

After filtering, can we reduce the resource consumption?: We
consider the resource consumption before and after deploying our
system.

From Fig. 11, we can see the comparison of resource consumption
for the 2017-03-06 event. CPU usage reduces from ~62% (top row,
second graph from left) to ~48% (bottom row, second graph from
left) using our system. In case of egress network bandwidth, we can
reduce the bandwidth from ~0.8 Gb/s (top row, third graph from left)
to ~0.3Gb/s (bottom row, third graph from left). We cannot reduce
ingress network bandwidth as we have to give access before making
any filtering. We do not find any effect over memory during the attack
and after deploying the system (we ignore that in Fig. 11).

Ad Hoc Networks 151 (2023) 103259

Responding to polymorphic attacks: Our system periodically
evaluates the traffic to address polymorphic attacks that change attack
methods during the event. We next look at the 2017-03-06 event to see
how our system copes with changing attacks.

The top-leftmost graph of Fig. 11 shows the polymorphic nature
of 2017-03-06 event—attack starts (first red line), pause (green line),
and then starts again with a new query name (last red line). From
the bottom row-leftmost graph of Fig. 11, we can see that our system
deploys the best filter quickly (first blue line from the left), keeps
the best filter until a temporary stop in attack at ~89 minutes, reacts
accordingly to stop filtering (middle blue line), and deploys the best
filter again when a different attack starts again (last blue line from
the left). This shows our system is adaptive to the polymorphic attack
events.

6. Conclusion

This paper provides the first in-depth design and evaluation of an
automated, layered approach to mitigate DDoS on DNS root. Evaluated
on ten real-world DDoS attacks on B-root, DDiDD quickly selects the
best filter or filter combination from a library of filters, and deploys it
automatically. DDiDD reduces server load to acceptable levels within
seconds, with collateral damage under 2%. DDiDD is adaptive to poly-
morphic attack events, which change attack pattern during an ongoing
attack event, and nimbly makes new filter selection in up to 4 s. It
further has low operational cost, working offline to process incoming
traffic at the server, and producing filtering rules, which can be im-
plemented at no added processing delays using ipset. We show our
system successfully reduces resource consumption during replay of a
real-world attack. We release DDiDD as open source.

Case Ingress network B/W (Gb/s) CPU usage (%) Egress network B/W (Gb/s)
0.15 T T T 100.00 T T T 1.00 T T T
g
0.12 80.00 @0.80 r
g g z
'$0.09 '@ 60.00 - @0.60 -
o) ¥
g H S
3 El
30.06 3 40.00 + 040
a T c
o]] «w
@
0.03 20.00 | 20.20
=)
o
. 0.00 t 0.00 t - N 0.00 t - -
Without 0 30 90 120 0 30 0 20 120 0 30 60 90 120
Duration passed after 04:30:00 (mins) Duration passed after 04:30:00 (mins) Duration passed after 04:30:00 (mins)
system
0.15 T T T 100.00 T T T 1.00 T T T
2 g
G012 80.00 - go.80
z g z
@0.09 ' 60.00 B0.60 -
¥ 2 ¥
: g :
©0.06 5 40.00 [£0.40 -
c a c
n o n
@ @
20.03 20.00 £0.20
= =)
£ w
- 0.00 0.00 t t N 0.00 t - t
NOn . 30 60 90 120 0 30 60 90 120
adaptlve Duration passed after 04:30:00 (mins) Duration passed after 04:30:00 (mins)
system
0.15 100.00 T T T 1.00 T T T
2 g
@o.lz 80.00 §0.80 r
z g z
©0.09 o 60.00 - ©0.60 -
¥ 2 ¥
S I S
2
Z0.06 3 20,00 - 2040
c a c
0 o 0
@ @
Lo.03 20.00 [£0.20
1<) <)
£ w
i 0.00 g 0.00 - - N 0.00 - - -
With . 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120
adap[lve Duration passed after 04:30:00 (mins) Duration passed after 04:30:00 (mins) Duration passed after 04:30:00 (mins)
system

Fig. 11. Resource consumption comparison for 2017-03-06 event: top row shows resources when we do not deploy the automated system, middle row shows when our system
is not adaptive to the changes during an attack, bottom row shows resources when we deploy the automated adaptive system. We ignore memory graph as memory remains

consistent over experiment.

10

ASM Rizvi et al.
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
John Heidemann reports financial support was provided by National
Science Foundation. John Heidemann reports financial support was
provided by US Department of Homeland Security.

Data availability
Data will be made available on request.
Acknowledgments

This work is partially supported by the National Science Foun-
dation (grant NSF OAC-1739034) and DHS HSARPA Cyber Security
Division (grant SHQDC-17-R-B0004-TTA.02-0006-I), in collaboration
with NWO.

References

[1] Akamai InfoSec, A look back at the DDoS trends of 2018, 2017,
[Online]. https://blogs.akamai.com/2019/01/a-look-back-at-the-ddos- trends-of-
2018.html. (Accessed 31 May 2019).

A. Network, NETSCOUT Arbor’s 13th annual worldwide infrastructure security
report, 2019, [Online]. https://resources.netscout.com/threat-report-archives/
13th-worldwide-infrastructure-security-report. (Accessed 31 May 2019).

A. Toh, Azure DDoS protection—2021 Q1 and Q2 DDoS attack trends,
2021, [Online]. https://azure.microsoft.com/en-us/blog/azure-ddos-protection-
2021-ql-and-q2-ddos-attack-trends/. (Accessed 23 October 2021).

T. Emmons, 2021: Volumetric DDoS attacks rising fast, 2021, [Online]. https://
www.akamai.com/blog/security/2021-volumetric-ddos-attacks-rising-fast/. (Ac-
cessed 23 October 2021).

F. David Warbuton, Ddos attack trends for 2020, 2020, [Online]. https://www.f5.
com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020. (Accessed 7
October 2021).

L.H. Newman, Github servived the biggest DDoS attack ever recorded, 2018,
[Online]. https://www.wired.com/story/github-ddos-memcached/. (Accessed 19
March 2018).

ZD Net, Cloudflare says it stopped the largest DDoS attack ever reported, 2020,
[Online]. https://www.zdnet.com/article/cloudflare-says-it-stopped- the-largest-
ddos-attack-ever-reported/, (Accessed 7 October 2021).

The Guardian, DDoS attack that disrupted internet was largest of its kind in
history, experts say, 2016, [Online]. https://www.theguardian.com/technology/
2016/0ct/26/ddos-attack-dyn-mirai-botnet. (Accessed 24 October 2021).

[9] L. Adriano, Canadian comms company suffers DDoS attack, 2021,
https://www.insurancebusinessmag.com/ca/news/breaking-news/canadian-
comms-company-suffers-ddos-attack-310819.aspx.

P. Vixie, G. Sneeringer, M. Schleifer, Events of 21-oct-2002, 2002, web page
http://c.root-servers.org/october21.txt.

Root server operations, Events of 2015-11-30, 2018, [Online]. http://root-
servers.org/media/news/events-of-20151130.txt. (Accessed 17 January 2018).
Root server operations, Events of 2016-06-25, 2018, [Online]. http://root-
servers.org/media/news/events-of-20160625.txt. (Accessed 17 January 2018).
G.C. Moura, R. d. O. Schmidt, J. Heidemann, W.B. de Vries, M. Muller, L. Wei, C.
Hesselman, Anycast vs. DDoS: Evaluating the November 2015 root DNS event, in:
Proceedings of the 2016 Internet Measurement Conference, IMC ’16, Association
for Computing Machinery, New York, NY, USA, 2016, pp. 255-270.

B. Schneier, Lessons from the Dyn DDoS attack, 2016, [Online]. https://www.
schneier.com/blog/archives/2016/11/lessons_from_th_5.html. (Accessed 21 June
2018).

M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, J. Padhye, Analyzing the
performance of an anycast CDN, in: Proc. of ACM IMC, ACM, Tokyo, Japan,
2015, pp. 531-537.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B. Weihl, Globally
distributed content delivery, IEEE Internet Comput. 6 (5) (2002) 50-58.

J. Pang, J. Hendricks, A. Akella, R.D. Prisco, B. Maggs, S. Seshan, Availability,
usage, and deployment characteristics of the Domain Name system, in: Proc. of
ACM IMC, ACM, Taormina, Sicily, Italy, 2004, pp. 123-137.

G.C.M. Moura, J. Heidemann, M. Miiller, R. de O. Schmidt, M. Davids, When
the dike breaks: Dissecting DNS defenses during DDoS, in: Proc. of ACM IMC,
2018.

A. Rizvi, L. Bertholdo, J. Ceron, J. Heidemann, Anycast agility: Network
playbooks to fight DDoS, in: 31st USENIX Security Symposium, USENIX Security
22, USENIX Association, Boston, MA, 2022, pp. 4201-4218.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

11

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Ad Hoc Networks 151 (2023) 103259

G. Oikonomou, J. Mirkovic, Modeling human behavior for defense against flash-
crowd attacks, in: 2009 IEEE International Conference on Communications, IEEE,
2009, pp. 1-6.

S. Ramanathan, J. Mirkovic, M. Yu, Blag: Improving the accuracy of blacklists,
in: NDSS, 2020.

R. Tandon, J. Mirkovic, P. Charnsethikul, Quantifying cloud misbehavior, in:
2020 IEEE 9th International Conference on Cloud Networking, CloudNet, IEEE,
2020, pp. 1-8.

R. Tandon, A. Palia, J. Ramani, B. Paulsen, G. Bartlett, J. Mirkovic, Defending
web servers against flash crowd attacks, in: International Conference on Applied
Cryptography and Network Security, Springer, 2021, pp. 338-361.

K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen, R.K. Sitaraman, Akamai
DNS: providing authoritative answers to the world’s queries, in: Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication, 2020, pp. 465-478.

H. Wang, C. Jin, K.G. Shin, Defense against spoofed IP traffic using hop-count
filtering, IEEE/ACM Trans. Netw. 15 (1) (2007) 40-53.

C. Jin, H. Wang, K.G. Shin, Hop-count filtering: an effective defense against
spoofed DDoS traffic, in: Proceedings of the 10th ACM Conference on Computer
and Communications Security, ACM, 2003, pp. 30-41.

A. Mukaddam, I. Elhajj, A. Kayssi, A. Chehab, IP spoofing detection using
modified hop count, in: 2014 IEEE 28th International Conference on Advanced
Information Networking and Applications, 2014, pp. 512-516.

Analysis of network traffic (ANT) group, ANT datasets, 2022, [Online]. https:
//ant.isi.edu/datasets/all.html. (Accessed 19 February 2022). Datasets with
Anomaly keywords.

USC/ISI, Ddos defense in depth for dns (ddidd) tools, 2022, [Online]. https:
//ant.isi.edu/software/ddidd/index.html. (Accessed 24 November 2022).

A. Rizvi, J. Mirkovic, J. Heidemann, W. Hardaker, R. Story, Defending root DNS
servers against DDoS using layered defenses, in: Proc. of IEEE International Con-
ference on Communications Systems and Networks, COMSNETS, IEEE, Bengaluru,
India, 2023 (in press). Awarded best paper.

A. root, rcode-volume, 2022, [Online]. https://a.root-servers.org/rssac-metrics/
raw/2022/01/rcode-volume/. (Accessed 24 January 2022).

B. root, rcode-volume, 2022, [Online]. https://b.root-servers.org/rssac/2022/01/
rcode-volume/. (Accessed 24 January 2022).

S. Castro, D. Wessels, M. Fomenkov, K. Claffy, A day at the root of the Internet,
ACM SIGCOMM Comput. Commun. Rev. 38 (5) (2008) 41-46.

C. Duckett, Chromium DNS hijacking detection accused of being around half of
all root queries, 2020, [Online]. https://www.zdnet.com/article/chromium-dns-
hijacking-detection-accused- of-being-around- half-of-all-root-queries/. (Accessed
24 January 2022).

B.-R. Operators, B-root statement of operational principles, 2008, Web page
https://b.root-servers.org/statements/operation.html.

Bill Slater, President of Chicago ISOC, The internet outage and attacks of
october 2002, 2002, https://billslater.com/writing/2002_1107_Internet Outage_
and_Attacks_in_october_2002_by_William_Slater.pdf.

ICANN, FACTSHEET: Root server attack on 6 february 2007, 2007, https://www.
icann.org/en/system/files/files/factsheet-dns-attack-08mar07-en.pdf.

G.C. Moura, J. Heidemann, R. d. O. Schmidt, W. Hardaker, Cache me if you
can: Effects of DNS time-to-live, in: Proceedings of the Internet Measurement
Conference, 2019, pp. 101-115.

T. Koch, K. Li, C. Ardi, E. Katz-Bassett, M. Calder, J. Heidemann, Anycast in
context: A tale of two systems, in: Proc. of ACM SIGCOMM, ACM, 2021, Virtual.
C. Barna, M. Shtern, M. Smit, V. Tzerpos, M. Litoiu, Model-based adaptive
DoS attack mitigation, in: Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 119-128.

S. Kandula, D. Katabi, M. Jacob, A. Berger, Botz-4-sale: Surviving organized
DDosS attacks that mimic flash crowds, in: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation-Volume 2, USENIX
Association, 2005, pp. 287-300.

E.Y. Chen, M. Itoh, A whitelist approach to protect SIP servers from flooding at-
tacks, in: Communications Quality and Reliability (CQR), 2010 IEEE International
Workshop Technical Committee on, IEEE, 2010, pp. 1-6.

M. Yoon, Using whitelisting to mitigate DDoS attacks on critical internet sites,
IEEE Commun. Mag. 48 (7) (2010) 110-115.

T. Peng, C. Leckie, K. Ramamohanarao, Proactively detecting distributed de-
nial of service attacks using source IP address monitoring, in: International
Conference on Research in Networking, Springer, 2004, pp. 771-782.

P. Ferguson, D. Senie, Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing, 2000, RFC 2267, internet-rfc.
also BCP-38.

J. Levine, DNS blacklists and whitelists, 2010, RFC 5782, IETF.

D. Gillman, Y. Lin, B. Maggs, R.K. Sitaraman, Protecting websites from attack
with secure delivery networks, Computer 48 (4) (2015) 26-34.

J. Blazina, Stonefish—automating DDoS mitigation at the edge, 2019, [Online].
https://medium.com/@verizondigital/stonefish-automating-ddos-mitigation-at-
the-edge-6a2650aeb6af. (Accessed 30 May 2019).

https://blogs.akamai.com/2019/01/a-look-back-at-the-ddos-trends-of-2018.html
https://blogs.akamai.com/2019/01/a-look-back-at-the-ddos-trends-of-2018.html
https://blogs.akamai.com/2019/01/a-look-back-at-the-ddos-trends-of-2018.html
https://resources.netscout.com/threat-report-archives/13th-worldwide-infrastructure-security-report
https://resources.netscout.com/threat-report-archives/13th-worldwide-infrastructure-security-report
https://resources.netscout.com/threat-report-archives/13th-worldwide-infrastructure-security-report
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q1-and-q2-ddos-attack-trends/
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q1-and-q2-ddos-attack-trends/
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q1-and-q2-ddos-attack-trends/
https://www.akamai.com/blog/security/2021-volumetric-ddos-attacks-rising-fast/
https://www.akamai.com/blog/security/2021-volumetric-ddos-attacks-rising-fast/
https://www.akamai.com/blog/security/2021-volumetric-ddos-attacks-rising-fast/
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.wired.com/story/github-ddos-memcached/
https://www.zdnet.com/article/cloudflare-says-it-stopped-the-largest-ddos-attack-ever-reported/
https://www.zdnet.com/article/cloudflare-says-it-stopped-the-largest-ddos-attack-ever-reported/
https://www.zdnet.com/article/cloudflare-says-it-stopped-the-largest-ddos-attack-ever-reported/
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.insurancebusinessmag.com/ca/news/breaking-news/canadian-comms-company-suffers-ddos-attack-310819.aspx
https://www.insurancebusinessmag.com/ca/news/breaking-news/canadian-comms-company-suffers-ddos-attack-310819.aspx
https://www.insurancebusinessmag.com/ca/news/breaking-news/canadian-comms-company-suffers-ddos-attack-310819.aspx
http://c.root-servers.org/october21.txt
http://root-servers.org/media/news/events-of-20151130.txt
http://root-servers.org/media/news/events-of-20151130.txt
http://root-servers.org/media/news/events-of-20151130.txt
http://root-servers.org/media/news/events-of-20160625.txt
http://root-servers.org/media/news/events-of-20160625.txt
http://root-servers.org/media/news/events-of-20160625.txt
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb13
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb15
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb15
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb15
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb15
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb15
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb16
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb16
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb16
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb17
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb17
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb17
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb17
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb17
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb18
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb18
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb18
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb18
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb18
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb19
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb19
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb19
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb19
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb19
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb20
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb20
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb20
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb20
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb20
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb21
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb21
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb21
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb22
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb22
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb22
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb22
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb22
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb23
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb23
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb23
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb23
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb23
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb24
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb25
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb25
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb25
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb26
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb26
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb26
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb26
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb26
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb27
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb27
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb27
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb27
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb27
https://ant.isi.edu/datasets/all.html
https://ant.isi.edu/datasets/all.html
https://ant.isi.edu/datasets/all.html
https://ant.isi.edu/software/ddidd/index.html
https://ant.isi.edu/software/ddidd/index.html
https://ant.isi.edu/software/ddidd/index.html
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb30
https://a.root-servers.org/rssac-metrics/raw/2022/01/rcode-volume/
https://a.root-servers.org/rssac-metrics/raw/2022/01/rcode-volume/
https://a.root-servers.org/rssac-metrics/raw/2022/01/rcode-volume/
https://b.root-servers.org/rssac/2022/01/rcode-volume/
https://b.root-servers.org/rssac/2022/01/rcode-volume/
https://b.root-servers.org/rssac/2022/01/rcode-volume/
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb33
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb33
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb33
https://www.zdnet.com/article/chromium-dns-hijacking-detection-accused-of-being-around-half-of-all-root-queries/
https://www.zdnet.com/article/chromium-dns-hijacking-detection-accused-of-being-around-half-of-all-root-queries/
https://www.zdnet.com/article/chromium-dns-hijacking-detection-accused-of-being-around-half-of-all-root-queries/
https://b.root-servers.org/statements/operation.html
https://billslater.com/writing/2002_1107__Internet_Outage_and_Attacks_in_october_2002_by_William_Slater.pdf
https://billslater.com/writing/2002_1107__Internet_Outage_and_Attacks_in_october_2002_by_William_Slater.pdf
https://billslater.com/writing/2002_1107__Internet_Outage_and_Attacks_in_october_2002_by_William_Slater.pdf
https://www.icann.org/en/system/files/files/factsheet-dns-attack-08mar07-en.pdf
https://www.icann.org/en/system/files/files/factsheet-dns-attack-08mar07-en.pdf
https://www.icann.org/en/system/files/files/factsheet-dns-attack-08mar07-en.pdf
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb38
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb38
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb38
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb38
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb38
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb39
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb39
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb39
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb40
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb41
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb42
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb42
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb42
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb42
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb42
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb43
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb43
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb43
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb44
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb44
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb44
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb44
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb44
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb45
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb45
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb45
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb45
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb45
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb46
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb47
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb47
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb47
https://medium.com/@verizondigital/stonefish-automating-ddos-mitigation-at-the-edge-6a2650aeb6af
https://medium.com/@verizondigital/stonefish-automating-ddos-mitigation-at-the-edge-6a2650aeb6af
https://medium.com/@verizondigital/stonefish-automating-ddos-mitigation-at-the-edge-6a2650aeb6af

ASM Rizvi et al.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Yoachimik. O., Who DDoS’d Austin?, 2019, [Online]. https://blog.cloudflare.
com/who-ddosd-austin/. (Accessed 02 December 2019).

A. Fabre, L4Drop: XDP DDoS mitigations, 2018, [Online]. https://blog.cloudflare.
com/l4drop-xdp-ebpf-based-ddos-mitigations/. (Accessed 01 December 2019).
M. Sung, J. Xu, IP traceback-based intelligent packet filtering: a novel technique
for defending against internet DDoS attacks, IEEE Trans. Parallel Distrib. Syst.
14 (9) (2003) 861-872.

Z. Duan, X. Yuan, J. Chandrashekar, Controlling IP spoofing through interdomain
packet filters, IEEE Trans. Dependable Secur. Comput. 5 (1) (2008) 22-36.

A. Yaar, A. Perrig, D. Song, StackPi: New packet marking and filtering mecha-
nisms for DDoS and IP spoofing defense, IEEE J. Sel. Areas Commun. 24 (10)
(2006) 1853-1863.

R. Thomas, B. Mark, T. Johnson, J. Croall, Netbouncer: client-legitimacy-
based high-performance DDoS filtering, in: DARPA Information Survivability
Conference and Exposition, 2003. Proceedings, volume 1, IEEE, 2003, pp. 14-25.
1. S. C. (ISC), Using the response rate limiting feature, 2018, [Online]. https:
//kb.isc.org/docs/aa-00994. (Accessed 05 May 2019).

W. Hardaker, Analyzing and mitigating privacy with the DNS root service, 2018.
M. Allman, On eliminating root nameservers from the DNS, in: Proc. of ACM
Workshop on Hot Topics in Networks, ACM, Princeton, NJ, USA, 2019.

W. Kumari, P. Hoffman, Running a root server local to a resolver, 2020, RFC
8806, Internet Request For Comments.

M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, A. Dainotti, Millions of
targets under attack: a macroscopic characterization of the DoS ecosystem, in:
Proceedings of the 2017 Internet Measurement Conference, 2017, pp. 100-113.
K. McCarthy, Internet’s root servers take hit in DDoS attack, 2015, [Online].
https://www.theregister.co.uk/2015/12/08/internet _root_servers_ddos/.
(Accessed 29 Janurary 2019).

Imperva, Different attack description, 2015, [Online]. https://www.imperva.
com/docs/DS Incapsula_The Top_10_DDoS_Attack_Trends_ebook.pdf. (Accessed
19 September 2017).

C. Kaufman, R. Perlman, B. Sommerfeld, DoS protection for UDP-based protocols,
in: Proceedings of the 10th ACM Conference on Computer and Communications
Security, ACM, 2003, pp. 2-7.

L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, N. Somaiya, T-DNS:
Connection-oriented DNS to improve privacy and security, ACM SIGCOMM
Comput. Commun. Rev. 44 (4) (2015) 379-380.

W. Eddy, et al., TCP SYN Flooding Attacks and Common Mitigations, Technical
Report, 2007, RFC 4987.

K. Tzvetanov, DDoS mitigation tutorial NANOG 69, 2017, [Online]. https:
//www.nanog.org/sites/default/files/DDoSTutorial-NANOG69-v3.pdf. (Accessed
31 January 2018).

R. van Rijswijk-Deij, A. Sperotto, A. Pras, DNSSEC and its potential for DDoS
attacks: a comprehensive measurement study, in: Proceedings of the 2014
Conference on Internet Measurement Conference, ACM, 2014, pp. 449-460.

A. Rizvi, J. Heidemann, J. Mirkovic, Dynamically Selecting Defenses to DDoS
for DNS (Extended), Technical Report ISI-TR-736, USC/Information Sciences
Institute, 2019.

M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock, On
the feasibility of TTL-based filtering for DRDoS mitigation, in: International
Symposium on Research in Attacks, Intrusions, and Defenses, Vol. 9854, RAID,
2016, pp. 303-322.

D. Wessels, M. Fomenkov, Wow, That’s a lot of packets, in: Passive and Active
Network Measurement Workshop, PAM, PAM, San Diego, CA, 2003.

J. Xu, J. Fan, M.H. Ammar, S.B. Moon, Prefix-preserving IP address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme, in: 10th IEEE International Conference on Network Protocols, 2002.
Proceedings, IEEE, 2002, pp. 280-289.

L. Zhu, J. Heidemann, Dnsanon: extract DNS traffic from pcap to text with
optionally anonymization, 2017, [Online]. https://ant.isi.edu/software/dnsanon/
index.html. (Accessed 20 January 2018).

L. Zhu, J. Heidemann, LDplayer: DNS experimentation at scale, in: Proceedings
of the Internet Measurement Conference 2018, ACM, 2018, pp. 119-132.

W. Hardaker, LocalRoot: Serve yourself, 2018, [Online]. https://localroot.isi.
edu/. (Accessed 11 January 2019).

12

Ad Hoc Networks 151 (2023) 103259

A.S.M. Rizvi is a Ph.D. student in Computer Science at the
University of Southern California Information Sciences Insti-
tute. He works in the Analysis of Network Traffic (ANT) lab,
which Prof. John Heidemann leads. His research interests
include Networking, Security, and Internet Measurement.
He received his B.Sc. in Computer Science and Engineering
from Bangladesh University of Engineering and Technology
(BUET).

Jelena Mirkovic is Project Leader at USC/ISI and research
faculty at USC. She received her MS and Ph.D. from UCLA,
working in the LASR group, lead by Prof. Peter Reiher.
She received BS in Computer Science and Engineering from
School of Electrical Engineering, University of Belgrade, Ser-
bia. Jelena’s research interests span networking and security
fields. Her current research is focused on several network
security problems: botnets, denial-of-service attacks, and IP
spoofing. Additionally, she is interested in methodologies
for conducting security experiments and she is working with
colleagues at USC/ISI on improving DeterLab testbed.

John Heidemann is a principal scientist at the University of
Southern California/Information Sciences Institute (USC/ISI)
and a research professor at USC in Computer Science. At ISI
he leads the ANT (Analysis of Network Traffic) Lab, studying
how to observe and analyze Internet topology and traffic to
improve network reliability, security, protocols, and critical
services. He received his Ph.D. from UCLA in 1995, and his
BS from the University of Nebraska-Lincoln in 1989. He is
a senior member of ACM and fellow of IEEE.

Wes Hardaker is Senior Computer Scientist at USC’s
Information Sciences Institute. His research focuses on de-
veloping research programs to enhance the security of the
DNS and other Internet protocols. He is principally respon-
sible for the operation and management of the Internet’s
b.root-servers.net DNS critical infrastructure. He actively
participates in the Internet Engineering Task Force and is a
member of the Internet Architecture Board (IAB) and on the
board of directors for the Internet Corporation for Assigned
Names and Numbers (ICANN).

Robert Story is a Lead Research Engineer in the Networking
and Cyber Security Division at the University of Southern
California’s Information Sciences Institute. He improves and
maintains the B-Root authoritative server infrastructure,
one of the 13 DNS root name servers. He also provides
development and IT support to various research projects at
ISI. He can often be found at DNS, Network Operator, and
Internet protocol conferences.

https://blog.cloudflare.com/who-ddosd-austin/
https://blog.cloudflare.com/who-ddosd-austin/
https://blog.cloudflare.com/who-ddosd-austin/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb51
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb51
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb51
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb51
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb51
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb52
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb52
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb52
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb53
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb53
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb53
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb53
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb53
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb54
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb54
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb54
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb54
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb54
https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-00994
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb56
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb57
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb57
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb57
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb58
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb58
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb58
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb59
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb59
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb59
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb59
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb59
https://www.theregister.co.uk/2015/12/08/internet_root_servers_ddos/
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
https://www.imperva.com/docs/DS_Incapsula_The_Top_10_DDoS_Attack_Trends_ebook.pdf
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb62
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb62
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb62
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb62
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb62
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb63
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb63
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb63
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb63
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb63
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb64
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb64
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb64
https://www.nanog.org/sites/default/files/DDoSTutorial-NANOG69-v3.pdf
https://www.nanog.org/sites/default/files/DDoSTutorial-NANOG69-v3.pdf
https://www.nanog.org/sites/default/files/DDoSTutorial-NANOG69-v3.pdf
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb66
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb66
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb66
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb66
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb66
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb67
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb67
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb67
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb67
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb67
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb68
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb69
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb69
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb69
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb70
https://ant.isi.edu/software/dnsanon/index.html
https://ant.isi.edu/software/dnsanon/index.html
https://ant.isi.edu/software/dnsanon/index.html
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb72
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb72
http://refhub.elsevier.com/S1570-8705(23)00179-8/sb72
https://localroot.isi.edu/
https://localroot.isi.edu/
https://localroot.isi.edu/

	Defending Root DNS Servers against DDoS Using Layered Defenses (Extended)
	Introduction
	Background: DNS and DDoS
	DNS Root Traffic
	The DNS Root and DDoS

	Related Work
	Flash-Crowd DDoS Defenses
	Spoofed Traffic Filtering
	DDoS on DNS

	DDiDD Design
	Threat Model
	DDiDD Operation
	Attack detection
	Filter priming and selection

	DDiDD Filters
	Frequent query name filter (FQ)
	Unknown recursive filter (UR)
	Hop count filter (HC)
	Wild recursive filter (WR)
	Response code filter (RC)
	Aggressive recursive filter (AR)

	Parameter Validation for the Unknown Resolver Filter
	Filter Selection and Synchronization

	Evaluation
	Datasets
	Metrics
	DDiDD Performance
	Impacts On Resource Consumption
	Experimental setup

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

