
Chhoyhopper: A Moving Target Defense with IPv6
A S M Rizvi and John Heidemann

USC/Information Sciences Institute

ABSTRACT
Services on the public Internet are frequently scanned, then subject
to brute-force and denial-of-service attacks. We would like to run
such services stealthily, available to friends but hidden from adver-
saries. In this work, we propose a moving target defense named
“Chhoyhopper” that utilizes the vast IPv6 address space to conceal
publicly available services. The client and server hop to different
IPv6 addresses in a pattern based on a shared, pre-distributed secret
and the time of day. By hopping over a /64 prefix, services cannot
be found by active scanners, and passively observed information
is useless after two minutes. We demonstrate our system with the
two important applications—SSH and HTTPS.

ACM Reference format:
A S M Rizvi and John Heidemann . 2021. Chhoyhopper: A Moving Target
Defense with IPv6. In Proceedings of draft (under submission), ACSAC’2021
Poster, December 2021 (Draft (under submission)), 2 pages.
https://doi.org/

1 INTRODUCTION
Services on the public Internet are frequently scanned as a precursor
to a brute-force or denial-of-service attack. IPv4 scanning has been
possible for more than a decade and recent tools allow scanning all
of IPv4 in minutes [1].

We would like to provide stealthy services on the public Internet,
available to friends but hidden from adversaries.

IPv6 provides a huge address space in which we can hide ser-
vices. In spite of attempts to discover active addresses, when every
LAN has 264 addresses (or more), active discovery of services on
intentially obscure addresses is intractable (see §3). With /48s as the
recommended minimum size of publically routable prefix, and /56s
recommended for homes, even with a million devices in a home,
quintillions of addresses remain unused on every network.

Our insight is that a moving target can elude scanners. We de-
scribe Chhoyhopper1, using vast IPv6 address space to conceal pub-
licly available services. The client and server to hop to different
IPv6 addresses in a pattern based on a shared, pre-distributed secret
and the time-of-day. Like authentication via SSH keys,we target
sharing across small groups, and our approach can scale to support
millions of such small groups. By hopping over a /64 prefix, any
service cannot be found by active scanners, and passively observed
information is useless after two minutes.

We make two new contributions: first, we show that IPv6 ad-
dress hopping can be used to protect existing services like SSH
and HTTPS. Second, we propose a new approach to accommodate
long-lived connections in the face of frequent address changes. We
use ip6tables to retain existing connections even after the original
ephemeral address has changed.

Related work: Our work builds on ideas in privacy-preserving
IPv6 address assignment [3], but while that work proposes updating

1Chhoy is the number “six” in Bengali, since we hop in IPv6.

Client

(i)
Current addr.: fe80::5054:ff:fe80:634

Prior addr.: fe80::5054:ff:fe80:123

Internal addr.: fe80::5054:ff:fe80:1 Server (runs at
internal addr.)

NAT

Generate address with:
1. shared key
2. timestamp
3. salt

Chhoyhopper
(runs at

external addr.)

(ii) Existing
connections

(iii) Any other
addresses incl.
internal addr.

Figure 1: Client and server interaction in Chhoyhopper

addresses daily with a fixed pattern, we accelerate hopping each
minute to service as an active defense against scanning. Our work
is similar to port knocking [2], but it hides in IPv6 rather than
requiring “wake-up” packets. Closest to our work is IPv4-based
port-hopping [5]; we take advantage of much larger IPv6 interface-
identifier space (264) compared to the quite limited IPv4 port space
(216). Judmayer et al. propose hopping for IPv6 IoT devices [4]; we
show how to hop with existing services (SSH and HTTPS) and
unmodified servers.

Availability: Our implementation is freely available at https:
//ant.isi.edu/software/chhoyhopper/.

2 CHHOYHOPPER DESIGN
Our goal is to allow the client to rendezvous with the server on a
public, but temporary IPv6 address. By allocating the temporary
address from a large space (264 addresses), scanning is impractical,
as we show in §3. By changing the address frequently, reuse of a pas-
sively observed temporary address is only possible for a very brief
window of time. The hopping pattern is cryptographically secure,
so prior active addresses reveal nothing about future addresses.

Figure 1 shows the components of our system, and we describe
them next: selection and lifetime of the temporary address, hopping
on the server, and hopping by the client.

Address Hopping Pattern: The client and server must follow
the same hopping pattern to rendezvous. We assume they share
a pre-distributed secret key, which may be distributed by several
means, such as face-to-face sharing ahead-of-time, through a se-
cure channel such as encrypted e-mail. Our requirement for this
secret means Chhoyhopper cannot be used for anonymous clients
to discover a server, since scanners could exploit any discovery
process.

The server and the client compute the same temporary address
by computing a cryptographic hash of the shared secret, a salt value,
and the current time in minutes. We use the SHA-256 algorithm
for hashing and the time in seconds since the Unix epoch. The
salt value prevents rainbow attacks and can vary by service or
deployment.

We compute the IPv6 address in two parts. We take the DNS
name of the service address and look up a full IPv6 address, but
replace the low 64-bits of the address with the top 64-bits of the
hash result. Use of DNS allows the service to move in the Internet

https://doi.org/
https://ant.isi.edu/software/chhoyhopper/
https://ant.isi.edu/software/chhoyhopper/


Draft (under submission), December 2021, ACSAC’2021 Poster Rizvi and Heidemann

and provides a user-friendly name. We discuss the potential of
collisions in §3.

Server-Side Hopping: The server tracks its current address,
changing it every minute. To avoid problems with clock skew, the
server listens to two addresses, one for the current minute and the
other for the nearest adjacent minute.

It is cumbersome for server software to change its service address
every minute, and we would rather not modify server software and
cannot break active connections. We therefore operate the server
on a fixed address that is firewalled from the public Internet. A
daemon then uses network address translation to map the currently
active addresses through the firewall to the internal fixed address.
NAT translation also ensures that once a connection is established it
continues to operate, even after the server moves to other addresses
for new connections.

To summarize server processing in Figure 1: (i) new flows to the
current and prior address are detected by NAT rules and establish
new connection state before being passed to the internal server
address, (ii) existing flows are detected by NAT and pass through
to the internal address. (iii) Any other addresses, including external
traffic sent to the “internal” server address, are dropped by the
server’s firewall.

Our NAT-manipulation daemon is a simple Python program
modifying Linux ip6tables. The daemon assigns the NAT rules to a
particular external interface on the server.

Hopping at the Client: The client must compute and use the
server’s current IPv6 address to begin a new connection. We assume
the server’s secret key and the salt are known to the client, so the
client does the same hash computation as the server. As with the
server, the client looks up an IPv6 address from DNS and replaces
the low-64 bits with the current temporary hash. Our client imple-
mentation for SSH uses a simple Python program which invokes
the native client with appropriate arguments.

Challenges with HTTPS: The HTTPS deployment has two
unique challenges. Our first challenge is to ensure transparency
where a user gets the service like any other HTTPS service using a
web browser. Our second challenge is user demand for TLS authen-
tication. IP-based TLS certificates do not support wildcarding, and
a static DNS name would reveal the hop destination.

We provide transparent access to users with a new browser
extension, then it rewrites the Chhoyhopper web request to the
current hopping address without users able to tell. We currently
provide this extension for Mozilla Firefox.

We solve the certificate problem by getting a TLS certificate for a
wildcard domain name, and then dynamically create changing hop-
ping name under that wildcard. Dynamic DNS maps the hopping
name to the changing IPv6 address, and update the DNS entry every
minute. Only clients with the secret key can guess the hopping
URL, and they can authenticate because of the wildcard certificate
for the dynamic DNS name.

3 ANALYSIS
Risk of Discovery: To estimate the difficulty of brute-force scan-
ning, consider a scanner scanning at 100Gb/s looking for a server
hopping in one /64 with 64B TCP SYNs. At that rate (scanning
2 × 108 addresses per second) the expected time to discover one

server is about 3000 years, at which point the adversary will have
at most two minutes to exploit it. Since the address space is huge
compared to the scanning rate, we are confident that brute-force
scanning is impractical. Since the address is hopping randomly,
intelligent scanning is not possible.

Risk of Collisions: When multiple servers share the same /64
address prefix, it is possible that they could collide and hop to the
same address. A concerned operator should assign a unique IPv6
address every minute that is not used by any other server. However,
we suggest that odds of collision is so low that collision avoidance
is unnecessary.

Collisions of hopping addresses is equivalent to the well-known
Birthday Problem, but rather than 𝑛 people in 365 days of the year,
we have 𝑘 servers in 264 addresses. Using a simplified approxi-
mation, the probability of a hash collision in any given minute is
1 − 𝑒

−𝑘 (𝑘−1)
2𝑁 [6]. Using this formula, the probability of an address

mapped into the 𝑘 of 1million addresses is only 1 in 37million. As
we generate an address every minute, we can expect a collision
with these million servers once in every 70 years.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we provide an implementation of a moving target
defense named “Chhoyhopper” to provide security utilizing the
huge IPv6 address space. Using our system, a service will hop over
different IPv6 addresses, and a client needs to find the current IPv6
address to connect. We already support SSH client with a Python
program, and HTTPS using a Firefox extension. We also plan to
provide a Chhoyhopper client as a patch to OpenSSH, and provide
HTTPS extension support for Chrome.

ACKNOWLEDGMENTS
ASM Rizvi and John Heidemann’s work on this paper is supported, in
part, by the DHS HSARPA Cyber Security Division via contract num-
ber HSHQDC-17-R-B0004-TTA.02-0006-I, and by DARPA under Contract
No. HR001120C0157. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or DARPA.

We thank Rayner Pais who prototyped an early version of Chhoyhopper
and an IPv4 port hopper.

REFERENCES
[1] David Adrian, Zakir Durumeric, Gulshan Singh, and J. Alex Halderman. Zippier

ZMap: Internet-wide scanning at 10 Gbps. In Proceedings of the USENIX Workshop
on Offensive Technologies, San Diego, CA, USA, August 2014. USENIX.

[2] Rennie Degraaf, JohnAycock, andMichael Jacobson. Improved port knockingwith
strong authentication. In 21st Annual Computer Security Applications Conference
(ACSAC’05), pages 10–pp. IEEE, 2005.

[3] F. Gont, S. Krishnan, T. Narten, and R. Draves. Temporary address extensions
for stateless address autoconfiguration in ipv6. RFC 8981, Internet Request For
Comments, February 2021.

[4] Aljosha Judmayer, Johanna Ullrich, Georg Merzdovnik, Artemios G Voyiatzis,
and Edgar Weippl. Lightweight address hopping for defending the ipv6 iot. In
Proceedings of the 12th international conference on availability, reliability and
security, pages 1–10, 2017.

[5] Henry CJ Lee and Vrizlynn LL Thing. Port hopping for resilient networks. In
IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, volume 5,
pages 3291–3295. IEEE, 2004.

[6] Preshing on Programming. Hash collision probabilities. https://preshing.com/
20110504/hash-collision-probabilities/, 2011. [Online; accessed 7-November-
2021].

https://preshing.com/20110504/hash-collision-probabilities/
https://preshing.com/20110504/hash-collision-probabilities/


Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi 
asmrizvi@usc.edu

Chhoyhopper: A Moving Target Defense with IPv6

Research support by DARPA under Contract No. HR001120C0157

ACSAC 2021 Virtual Poster Session  / December 2021

John Heidemann
johnh@isi.edu

Introduction

Chhoyhopper Design

Services on the public Internet are frequently scanned, then subject to 

brute-force and denial-of-service attacks. We would like to run such 

services stealthily, available to friends but hidden from 

adversaries. In this work, we propose a moving target defense named 

“Chhoyhopper” that utilizes the vast IPv6 address space to conceal 

publicly available services. The client and server hop to different 

IPv6 addresses in a pattern based on a shared, pre-distributed secret 

and the time of day. By hopping over a /64 prefix, services cannot be 

found by active scanners, and passively observed information is 

useless after two minutes. We demonstrate our system with the two 

important applications—SSH and HTTPS.

This poster presents the design and implementation of Chhoyhopper 

with SSH and HTTPS applications.

Address hopping pattern:
▪ Client and server must follow the same hopping pattern to 

rendezvous.

▪ Client and server share a pre-distributed key and salt value.

▪ The server and the client compute the same temporary address 

by computing a cryptographic hash (we use SHA-256) of the 

shared secret, a salt value, and the current time in minutes.

▪ Using NAT, (i) only the current IPv6 address will be translated 

to the internal service address, (ii) we keep the existing 

connections, and (iii) traffic with the other target addresses will 

be dropped.

Our goal is to allow the client to rendezvous with the server on a 

public, but temporary IPv6 address. By allocating the temporary 

address from a large space (2^64 addresses), scanning is impractical.

▪ We provide a Python script that runs the server by updating 

ip6tables rules, NAT rules, and interface addresses.

Getting rendezvous address:

▪ We get the IPv6 address of a domain name using DNS.

▪ We keep the first 64 bits and replace the last 64 bits using the 

generated value from the hash function with key, salt, and 

timestamp.

▪ The server updates the address every minute. To handle clock 

drift, the server keeps two addresses at a given time.

Chhoyhopper Implementation

SSH

Server running Chhoyhopper for SSH  

Client connecting to Chhoyhopper SSH server

HTTPS
▪ For HTTPS, we have two challenges.

▪ Transparency: users want service like any other HTTPS service.

Solution: browser extension to run Chhoyhopper.

▪ TLS authentication: IP-based TLS certificates do not support 

wildcarding and a static DNS name would reveal the destination.

Solution: TLS certificate for a wildcard domain name, then 

dynamically create hopping domain name under that wildcard.

Dynamic DNS maps hopping name to the changing IPv6 address.

▪ We currently provide this extension for Mozilla Firefox.

Server running Chhoyhopper for HTTPS  

Browser extension redirects client to the current domain name

Risk of Discover and Collisions

Risks of discover and collisions are tiny.

Discovery: not in our lifetime! Scanning at 100 Gb/s, expected 

time to discover one server in one /64 is 3000 years.

Collision: it takes a million servers to get a collision in 70 years. 

Collisions are like the birthday problem, but in a “year” with 2^64 

days. The probability of collision is 1 − 𝑒
−𝑘 𝑘 −1

2𝑁 , with N = 2^64 

for k servers.

Conclusions
▪ We show the design and implementation of Chhoyhopper.

▪ We plan to provide a Chhoyhopper client as a patch to 

OpenSSH and provide HTTPS support for Chrome.

▪ Our implementation for SSH and HTTPS applications is freely 

available at: https://ant.isi.edu/software/chhoyhopper/.

https://ant.isi.edu/software/chhoyhopper/

	Abstract
	1 Introduction
	2 Chhoyhopper Design
	3 Analysis
	4 Conclusions and Future Work
	References

