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Abstract—Distributed Denial-of-Service (DDoS) attacks ex-
haust resources, leaving a server unavailable to legitimate clients.
The Domain Name System (DNS) is frequently the target of
DDoS attacks, and its connectionless communication makes it an
easy target for spoofing attacks. A large body of prior work has
focused on specific filters or anti-spoofing techniques, but DDoS
threats continue to grow, augmented by the addition of millions
of Internet-of-Things (IoT) devices. We propose two approaches
to DDoS-defense: first, we propose having a library of defensive
filters ready, each applicable to different attack types and with
different levels of selectivity. Second, we suggest automatically
selecting the best defense mechanism at attack start, and re-
evaluating that choice during the attack to account for poly-
morphic attacks. While commercial services deploy automatic
defenses today, there are no public descriptions of how they
work—our contribution is to document one automated approach,
and to show the importance of multiple types of defenses. We
evaluate our approach against captured DDoS attacks against a
root DNS server, using analysis and testbed experimentation with
real DNS servers. Our automated system can detect attack events
within 15 s, and choose the best defense within 40 s. We show
that we can reduce 23% CPU usage and 63% egress network
bandwidth with the same memory consumption and with little
collateral damage.

I. INTRODUCTION

Even with more than a decade of research, Distributed-
Denial-of-Service (DDoS) attacks are a continuing and grow-
ing problem [26], [49]. The memcached attack in February
2018 against Github shows attacks now exceed 1.35 Tb/s [50].
Increasing deployment of Internet-of-Things (IoT) devices
means attacks no longer need to exploit amplification, but
can attack targets directly [55]. Automated tools make DDoS
attacks easier to invoke than ever before [66], and DDoS-As-
a-Service [39], [58] allows unsophisticated users to purchase
and execute DDoS attacks for as little as $10 per month [33].

The main consequence of a DDoS attack is to exhaust
resources of the victim [36], [44]. As servers or their ac-
cess networks spend more time answering malicious queries,
queries from legitimate may be dropped. Different types of
attacks may exhaust different resources. We identify four
resources that may be exhausted during a DDoS attack: ingress

and egress network bandwidth, physical memory and CPU
(§III-A2).

This paper focuses on DDoS against the Domain Name
System (DNS) and DNS roots. DNS is particularly challenging
because most DNS requests use UDP, making spoofing attacks
difficult to counter. Moreover, the DNS root service is a
high profile, critical service, and so it has been subject to
repeated DDoS attacks [46], [56], [57], [63]. Yet defenses are
vital, since a DNS outage can prevent users from reaching an
otherwise active service [54].

A number of DDoS defense techniques have been proposed,
particularly for DNS, including spoof suppression [3], [4],
[29], [61], [64], filtering traffic [7], [16], [18], [37], [68],
and solutions to specific attacks [8], [9], [11], [37], [70]. To
complement such protocol-level defenses, operators provide
overcapacity and use anycast to distribute load [14], [47], [52].

Several third-party DDoS Protection Services have arisen to
mitigate DDoS attacks [21], [31] including Akamai, Cloud-
flare, CenturyLink, and F5 networks. These companies nor-
mally shift the traffic into their scrubbing system, where they
both filter attack traffic and have over-provisioned network
capacity and servers. However, DDoS-mitigation services can
be expensive, vulnerable [30] and the need to forward traffic
through a third party raises privacy concerns [24]. While
DDoS-mitigation services have sophisticated defenses, their
details are proprietary.

Although large providers have automated defenses and
DDoS-mitigation services today [20], [21], [48], and there are
many specific defenses in published literature, to our knowl-
edge our paper is the first to describe an automated defense
in detail with multiple filters, and to show the importance of
matching appropriate filters to attacks.

The contributions of this paper are to show that a library of
defensive filters is necessary, automatic selection can identify
good filters, and that there is value in response-code filtering
as a last line of defense. A library of filters (§III-C) is
needed because, while no single method protects against all
attack types, different defenses help in different circumstances
(§VI-D2), and some defenses may have higher levels of
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collateral damage (legitimate traffic that is misclassified and
discarded). Automatic selection (§III-B) from a range of filters
(§III-C), and the ability to shift defenses during an attack is
important to handle polymorphic attacks. Our system detects
an attack, evaluates the attack pattern, selects the best filter,
deploys it, and continuously evaluates its performance in an
automated and quick manner. Finally, we introduce a new
filtering approach for DNS based on the response code of the
reply (§III-C3)—since a common DDoS attack against DNS
is to query random, non-existent names, we consider dropping
all negative responses. While this filter will also drop many
legitimate queries that happen to be for non-existent domains,
it is still a useful last defense. Our approach also includes
new implementations of two standard DNS DDoS filters:
Query Name Blacklisting (§III-C1) and Source IP Whitelisting
(§III-C2).

II. RELATED WORK

DDoS attacks have been a problem for more than two
decades, and many research and commercial defenses have
been proposed. This section reviews only those solutions that
are closely related to our approach.

DDoS exhausts resources which is acknowledged by pre-
vious studies [10], [32], [35], [60]. Akamai’s kill-bots [32]
and Microsoft’s FastRoute system [19] rely on server load
to get the potential attack signal. Another study highlights
the CPU-resource problem in web applications [43]. These
studies validate our choice to use resource consumption as the
problem indicator.

Several previous studies have focused on specific attacks
and defenses on DNS including amplification attacks [11],
[37], TCP-SYN flood attacks [16], and volumetric attacks [70].
Each of these studies concentrate on a specific type of attack.
In this paper, we show that only a single defense is insufficient
to handle the variety of attacks that a service faces. As an ex-
ample, while query-based blocking mitigates some volumetric
attacks, it does not address SYN-flood attacks (§VI-A). Even
for a single type of attack, one filter may or may not work
depending on the attack characteristics. Attack specific filters
show us the necessity of keeping multiple defenses.

Servers can deploy ingress or egress filtering. Ingress filters
reject attack traffic with different methods, including hop-
counts [29], [64], route traceback [59], path identifier [67], and
client legitimacy based on network, transport and application
layer information [61]. Keeping a whitelist or blacklist to
distinguish legitimate or malicious traffic is also suggested in
several studies and RFCs [7], [18], [40], [68]. These solutions
and recommendations may work when sources are spoofed,
provided upstream routers are not overloaded. However, IoT-
based attacks do not require spoofing to reach high bitrates,
and many attacks overload upstream routers before filtering.
Filtering on DNS reputation helps prevent malware and spam
when the attackers originate, repeatedly, from specific do-
mains [1], [73]. DDoS attacks against DNS typically use
varying or random names, so reputation does not apply. While
each of these approaches addresses a specific threat, none of

these solutions provides a complete solution, consistent with
our motivation for a library of defenses. Our work describes
an automated system that combines a library of ingress and
egress defenses to handle a wide range of attacks overcoming
the limitation of an attack specific solution.

Servers are recommended to filter egress traffic to avoid
resource exhaustion [51] as replies can be larger than the
queries. Some RFCs talk [2], [42] about filtering at client
egress to avoid spoofing. Egress filters in DNS servers can
protect the “spoofed” victims from amplification attacks [37].
Akamai’s content delivery network uses DNS filtering to
protect the rest of their network [21]. In this paper, we propose
a new response-based egress filter which is a useful last
level of defense. BIND can also limit the rate of NXDomain
replies [28].

Many companies also provide solution for DDoS. Aka-
mai mentions to use dynamic DNS filtering in their content
delivery network [21]. Verizon has an automated system
named Stonefish [5], [71], and Cloudflare also describes their
DDoS mitigation architecture [17]. These ideas are proprietary,
hence, we know little about their filter selection policies, de-
tailed design, and performance. The DeDoS system automates
replication of parts of applications during DDoS [13] . This
defense is useful when an application can be divided into
smaller units which is not the case for DNS. We provide a
publicly available, automatic anti-DDoS system in this paper.

Lastly, we measure the performance of individual filters
and our whole system on DNS server under real attack
events (§VI). Some previous studies also report these attack
events [15], [56]. The closest related work evaluates the
performance of anycast against real DDoS events [46] in DNS.

III. SYSTEM DESIGN

Our goal is an automated system which can protect DNS
servers from resource exhaustion (§III-A2) by selecting from
multiple filters (§III-C). Our system needs to select the best
filter quickly, and it should be robust to the changes in
the attack pattern during an event (§III-B). We describe our
prototype in §III-D.

A. Threat Model

Our threat model can be described from two standpoints—
attackers and target. We next describe our threat model:
distributed attackers attempt to exhaust resources at the target
running a service like DNS.

1) Attackers: DDoS is a threat because attackers attempt
to make a service at the target unavailable, often to extort
money, disadvantage a competitor, or simply show their power.
Attackers can directly make malicious traffic to a target or
the attackers can hide themselves by spoofing their addresses
leaving them intractable. DNS is mostly UDP traffic where
source validation is not possible. Attackers can also compro-
mise devices, particularly IoT devices, and make a distributed
DoS.

DNS is particularly vulnerable to DDoS attacks, since it is
an open service where attackers can use fixed, semi-random or
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completely random query names. DNS replies are larger than
the query size for which attackers use DNS to make reflection
attacks.

2) Target: DDoS attacks with DNS can directly affect the
DNS server, they can indirectly target another computer by
spoofing its addresses and innundating it with traffic returned
from DNS servers. In this paper, we focus on direct attacks
on the DNS server.

The main threat of a DDoS attack is to exhaust some
resource at the target victim. As an example, in 2015 DDoS
attacks on the root DNS some operators could reply to all
queries, but some failed to receive queries or could not respond
to them typically because of bandwidth limitations [41], [46].
Our system watches for resource exhaustion to detect attacks
and evaluate defenses, since different attacks threaten different
resources:

Ingress network bandwidth: Volumetric attacks like UDP
flooding can saturate the ingress network bandwidth [25].
The memcached attack did not even send DNS queries, but
exhausted channel capacity [50]. If a root server has a capacity
of I Gb/s, then attack traffic of rate IA (where IA > I) will
result in user loss of approximately (IA − I)/IA legitimate
queries.

Physical memory: Several types of attacks target server
memory, forcing kernels to buffer IP fragments [34], [75], or
TCP connections from a TCP-SYN flood attack [16]. Today’s
operating systems are generally hardened to these attacks
and drop partially-complete information when resources are
limited.

CPU usage: CPU usage increases in proportion to query
rates, and while non-DNS traffic may be filtered at a firewall,
DNS queries require some application-level processing. Query
processing can incur an asymmetric cost; they are cheap for
zombies to generate but much more expensive for servers to
detect and discard or handle.

Egress network bandwidth: DNS replies are always
larger than the requests, and in DNS amplification attacks, an
ANY request with signatures can draw an reply that is 100x
bigger [49], [62]. As a result, outgoing bandwidth may be a
bottleneck even if incoming bandwidth is not.

B. Our System and Its Components

Our automated system has three components: automated
problem detection, filter management, and parameter selection.

1) Automated problem detection: Problem detection must
collect information about resource status, then recognize when
a resource is threatened. Operators care about DDoS when
they have degraded performance by the exhausted resources,
as listed in §III-A2. We use collectd to collect status in-
formation from several resources (CPU, memory, bandwidth)
every 10 s. Our system consults collectd in every 10 s to
find an exhaustion.

We detect an attack when some resource exceeds some
fraction Ts of capacity. We currently use Ts of 80% of
maximum capacity. We then select and deploy a filter, as
described next.

After a filter has been deployed, we monitor how much
traffic the filter blocks. We declare the attack over when the
filter is no longer dropping the usual amount of traffic but still
keeping the threatened resource below Ts for at least 20 s.

2) Automated filter management: Automated filter selection
has three goals. Our first goal is to select the best filter among
several filters. Different attacks show different characteristics
with changing their attack pattern during an ongoing attack
event. Our system should react accordingly by recognizing
the changing attack characteristics. Our second goal is to make
a decision quickly. During an attack event, human decisions
to deploy filters can be time consuming during which time
regular traffic is impeded. In an automated system, as no
human is involved, we can expect it to take decisions faster
than human operators. Our third goal is to make the system
flexible so that we can easily add new filters to handle new
attacks without much changes in the decision module.

Filter selection: Our system finds the required parameter
for each filter, and then it selects a filter from a set of filters
whose parameters are known.

Each filter needs to learn different parameters for function-
ing (§III-B3). A filter is ready when it knows its required
parameter. Our system automatically finds the required param-
eters. Then the filter selection system selects the possible best
filter from the ready filters. Our system learns some parameters
during the attack, and some other parameters before the attack,
and it does not need to wait to learn all the parameters for all
the filters to start filtering.

Our filter selection system is designed to maximize its
ability to remove malicious traffic while minimizing any
collateral damage. Collateral damage means the false rejection
of good traffic. If multiple approaches have the same ability to
reduce attack traffic, our system selects one approach based on
the likelihood of minimizing collateral damage. We prefer the
filter with lowest collateral damage, based on our experiments
(§VI). Nevertheless, we can always change the priorities to
select the filter and add new filters.

Run-time evaluation of filter effectiveness during attack:
Our system reevaluates the deployed filter at run-time. If the
deployed filter is not suitable for the ongoing attack, our
system dynamically selects other filters.

To see whether the deployed filter is suitable for the attack,
we continue to check the resource consumption once every
10 s during the attack, after deploying a filter. If the filter fails
to keep the resource below the threshold for three consecutive
checks, our system withdraws the ineffective filter and selects
some other filter based on the above mentioned priority.

Evaluation of the inactive filters: In addition to on-line
evaluation of the active filter, our system also concurrently
computes parameters for other filters every 10 s, running in
the background. Checking and refreshing parameters of the
inactive filters allows filters to be quickly deployed if it is
required.

To evaluate the usability of the inactive filters, we cannot
use resource consumption as we get resources only for the
deployed filter. We estimate how much traffic we could block
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using each inactive filter by emulating its operation. We
emulate how they would behave by running TCPdump on
traffic (more on §III-D), to extract query name, source IP, and
response. We then apply inactive filters to these elements and
decide whether to block or accept (more about how to block
or accept in §III-C). Here, inactive filters only count blocks or
accepts using the application program but are not deployed to
discard a packet in kernel .

If an inactive filter blocks more than a threshold (how much
traffic a filter usually blocks as mentioned in §III-B1), our
system considers to deploy the inactive filter again based on
the usual priority. Otherwise, our system checks whether the
filter requires any parameter updates (as described in §III-B3)
and continue to check the usability once every 10 s.

3) Parameters selection: We learn some parameters during
the attack, and others ahead-of-time. A filter is ready to be
deployed when our system learns the parameter of that filter.

Our system can learn some parameters offline—even before
the attack starts. As an example, we can build the source
whitelist using normal traffic (more on §III-C2), and use that
whitelist during the attack duration. We need to update such
offline parameters after a certain duration so that they always
remain up-to-date.

Parameters for some filters must be determined at run-
time. For example, Query Blacklisting needs to determine
attack’s common query-name. Each filter has different ways to
learn these parameters (described in §III-C1 and §III-C3). Our
system needs to find these parameters quickly to deploy the
right filter. It uses a time-bin of 100 ms to observe the traffic
to learn the required parameters. As our system continuously
evaluates the deployed and inactive filters, our approach is self-
corrective—incorrect finding of a parameter will be corrected
quickly in an automated manner.

When our system looks for the run-time parameters, it
deploys Source Whitelisting (§III-C2) as the default filter.
This default filter learns the parameter before the attack starts
and does not need to evaluate the run-time traffic. Quickly
deploying a default filter provides some protection while
parameters are computed.

C. Filters

Currently, we have three filters: Query Name Blacklisting
(§III-C1), Source IP Whitelisting (§III-C2), Response Black-
listing (§III-C3). Response Blacklisting is new, and to the best
of our knowledge the others have not been formally described.
We next describe their design, then validate them in §V.

1) Query Name Blacklisting: Often attacks consist of many
queries, all with similar domain name (see all the attacks listed
in Table I). To stop this class of attack, we can block that
common query name, and give access to other query names.
Although query name filtering is computationally expensive
because it requires looking into payload of packets, it drops
the queries before making the replies. Due to this early discard
of queries, Query Blacklisting can be used to reduce memory,
CPU usage, and egress bandwidth.

Most of the time, Query Blacklisting can block a significant
portion of the attack traffic with lowest collateral damage
(more on §VI-A), our system gives it highest priority.

Query Blacklisting must determine the query to remove. We
look at 100 ms of traffic and look for the unusually common
queries. As attackers sometimes use randomized prefix names,
we distinguish two types of attack queries—fully-matched
query names and only suffix-matched query names (Table I).
We discard the first domain name component from the left,
and consider the rest as the suffix name.

We identify when common queries are present with thresh-
olds for full and suffix-matched queries. If any full name is 100
times more than the second highest full query name, and if any
suffix is 30 times more than the second highest suffix name, we
consider that full name or suffix name as the common query
name. Since matching names is computationally expensive,
we currently only match one full name or suffix at a time,
although in principle we could match several. We find that
the CPU usage increases around 15% when we block four
query names compared to blocking only one query. We use
two different thresholds for full name and suffix name. Suffix
names sometimes only have TLDs (e.g. .com or .net) for which
we have a high second-most frequent suffix name. Hence, we
use a lower threshold for suffix name so that we can get the
common suffix name properly. We also consider frequency
comparison for randomized suffix name and a fixed prefix
name. We have not implemented this option because it has
not occured in attacks we have seen.

Adversary: An attacker can defeat Query Blacklisting by
randomizing all components of the query. For such an attack,
we would automatically select a different filter for defense.

2) Source IP Whitelisting: We consider sources that we
have observed prior to attack as known good sources. Since
DDoS events are rare, we assume we will capture only
“normal” traffic, and include the good sources that are not
part of the attack.

For Source Whitelisting, we identify known-good sources
by IP address and allow their traffic through, then drop traffic
from unknown sources. This filter protects against attacks us-
ing spoofed source addresses, and attacks from compromised
devices (such as IoT), since DNS traffic typically only comes
from a relatively few recursive resolvers. However, depending
on how we learn the source addresses, the whitelist may be
incomplete or too large. As Source Whitelisting can drop the
packets before making the reply, it can potentially reduce
memory, CPU and egress bandwidth.

We build the source whitelist offline from service users for
some period before the attack starts. We rebuild the source
whitelist periodically to identify new sources. Two design
questions are: how long a period should we consider to build
the whitelist, and how often should we rebuild it. We use 120
minutes of normal traffic to build the whitelist and we build
the whitelist once in a day. We explore these questions more
in §V.

Adversary: Source Whitelisting can be defeated by a
prepared adversary. They might send low-rate queries from
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attacking machines ahead of time. We can counter this kind
of adversary by trying whitelists from different times, and
alerting when a new whitelist shows a large increase of new
addresses. Source whitelisting can also fail if the whitelist
omits some legitimate clients. We evaluate these effects in
§VI-B.

3) Response Blacklisting: DNS replies can be 100x larger
than the query size, stressing egress network bandwidth. Some
attacks use many queries, all generating the same reply (usu-
ally “non-existent domain”) We can drop the replies with that
response, and pass the replies with other responses reducing
egress traffic. This response filtering is useful when the attack
cannot be blocked by other filters—large reflection attack from
whitelisted sources with completely random query names.

Response Blacklisting is very effective when an attacker
floods DNS with many random queries, all of which will fail or
succeed, but it is a very imprecise tool (§VI-C), since normal
traffic often has the same replies (negative replies from Google
Chrome’s random queries to probe for captive portals [72],
or because users mistype URLs). Hence, our system uses
Response Blacklisting as a defense of “last resort”.

Filtering legitimate packets may cause a legitimate resolver
to try again, potentially aggravating an ongoing DoS at-
tack [47]. However, attackers do not typically retry queries,
and retries from legitimate clients normally make a small
portion of total traffic compared to the huge attack traffic.
Also, filtering frees resources at the server end which gives
more capacity for the legitimate requests.

We need to know what response should we filter and when.
We evaluate the normal and attack traffic characteristics to
answer this question. Among the possible DNS responses [45],
only two responses are common—response code 0 (no error)
and response code 3 (non-existent domain). We get ∼40%
response 0 and ∼60% response 3 in the normal DNS replies.
During attack, we get significant variations in response ratio.
If any response is more than 15% greater than its usual 40%-
60% ratio, we consider that response to filter.

Though different attacks make different changes in the
response trend, we do not block responses with response 0 (no
error). If server blocks response 0, then the legitimate query
makers will not receive any response for their valid queries.
Our system only selects Response Blacklisting when it needs
to block response 3 (NXDomain).

Adversary: Attackers may send queries which have re-
sponse 0 in the replies or different response for different
queries. Response Blacklisting is not usable in these cases.
Our automated system is designed to select other filters when
a particular filter fails to work.

D. Implementation

We next provide the implementation details to deploy the
system.

Resource information: We collect resource information
with SNMP. Our implementation of §VI-D uses collectd.
Collectd updates resource information in every 10 s, and
our system checks collectd for exhaustion in every 10 s. If

Attack
Day start Duration Attack query name

(UTC) (mins)
www.NUMBER1.com

2015-11-30 06:50 150 www.NUMBER2.com
2015-12-01 05:10 63 www.NUMBERCHAR.com
2016-06-25 22:18 5 N/A (TCP-SYN flood attack)

RANDOM.FIXED1.com\032
2017-02-21 06:40 117 RANDOM.FIXED2.com\032

RANDOM.FIXED3.com\032
RANDOM.FIXED4.com\032

2017-03-06 04:43 331 RANDOM.FIXED5.com\032
2017-04-25 09:54 175 RANDOM.FIXED6.com\032

TABLE I: Common query names in various attack days

the system finds any resource exhaustion, it notifies the filter
management module to start filtering.

Automated decision process: The automated decision pro-
cess starts filtering when any of the resources gets exhausted.
Our system parses Tcpdump output to evaluate the traffic and
starts filtering. We describe how the automated system takes
decisions in §III-B.

Deploying filters: We deploy all the filters using IPtable
rules. For Query Blacklisting, our automated system finds the
common query name. It then sets a rule to search the DNS
part of the packet using hex-string to match the common query
name. If it finds a match, it drops that query. For Source IP
Whitelisting, we use IPset to make a set of the whitelisted
addresses. We use IPtable rules to give access only to the IPset
listed addresses. We drop the queries from other sources. For
Response Blacklisting, we check four bytes of the outgoing
replies starting from the 28th byte for UDP, and the 54th byte
for TCP to get the response code. We use the u32 option of
IPtables to check the four bytes. If the response matches 3, we
drop those replies. Our automated system deploys one filter at
a time. When the traffic becomes normal or decision process
changes filter, it flushes all the existing rules.

IV. EVALUATION: DATA SOURCES AND APPROACH

We use RSSAC-002 data to find the attack events, and real
B-root traces to evaluate our filters and the whole system.

A. RSSAC-002 Data to Find Attack Events

RSSAC-002 is publicly available operational data from DNS
root operators that describes the ingress and egress traffic
statistics at root servers [38]. Different root servers started
to provide RSSAC data at different times, but currently all the
roots provide the statistics including traffic volume, number
of unique addresses, and response code volume on a daily
basis. RSSAC data reflects attack characteristics—increase in
the total number of queries and unique addresses or different
response code volume.

We identify attacks by looking at RSSAC-002 data [23]
from the available root letters starting from January 1, 2015
to February 1, 2018. Each root letter reports a number of
statistics; to us the most relevant ones are queries per day
and number of unique sources per day.
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We compute mean and standard deviation of numbers of
queries for each day over an entire month. We consider
days where the number of queries is more than one standard
deviation above the mean to be potential attack days. We
compute the difference between the number of queries in a
particular day and one standard deviation above the mean. If
the sum of this difference over each root exceeds a threshold
and if the potential attack day is common in at least three
letters, we consider that as an attack day. After finding the
attack days, we find the attack duration using query rates
over the whole day using the real B-root capture (§IV-B). If
the query rate is unusually high for a particular duration, we
suspect that duration as the attack duration.

This approach finds large events, but it will miss small
or brief events. Such small events are unlikely to exhaust
resources and so they are not our focus. Also, our approach
will miss the attacks that target only one or two letters.
However, this simple procedure to find the attack events is
for evaluation only. Our automated system identifies an attack
when the actual resource gets exhausted.

Table I lists the attack events we consider. For privacy
reasons, we publish only the anonymized query names. Dif-
ferent attacks last different durations. To get the confusion
matrix offline, we need to distinguish the attack traffic. We
use attack query name or TCP half-open connections (for
SYN flood attack) to distinguish the attack traffic. Our offline
evaluation uses the attack characteristics to see the individual
performance of the filters.

B. B-Root Data

We evaluate the filters and our automated system with real-
world attack data taken from B-Root operators which is also
publicly available. These traces are full packet captures, with
the IP addresses partially anonymized. These trace files capture
all the ingress and egress traffic at B-root.

C. Metrics to Evaluate Defenses

We evaluate the success of DDoS filters using standard
information-theoretic metrics. If we consider traffic from bad
actors as our detection goal, some traffic will be passed
through (accepted). A true accept of legitimate traffic is a true
negative (TN), while false accepts are malicious traffic that
accepted, a false negative (FN). For rejected traffic, legitimate
traffic that is dropped is a false reject or false positive (FP),
while dropped malicious traffic is a true positive (TP).

We evaluate methods using standard information theoretic
terms, treating rejects as positives and passes as negative.
Sensitivity TP/(TP + FN), identifies how much attack
traffic we find. Specificity TN/(TN + FP ), identifies the
fraction of correctly passed legitimate traffic, and Accuracy
(TP + TN)/(TP +FP + TN +FN), shows how often we
make the correct decision. Taken together, these metrics define
the confusion matrix.
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V. VALIDATION OF FILTER PARAMETERS

In this section, we validate several parameters that we
selected in §III-C. Good parameters are important for an
effective system.

A. Source Whitelisting: How Long to Observe?

In §III-C2, we used 120 minutes of traffic to build the
whitelist which we validate here.

We want to observe long enough to get most legitimate
sources, so we first consider how often each source makes
queries. Figure 1 shows that sources place queries at many
different rates with a long tail, with about 80% having inter-
arrivals of 1000 s or more, while a few place thousands of
queries per second. This wide range of rates is also visible in
earlier studies [6], [65]. We are certain to capture all frequent
queriers in our whitelist, as a relatively short observation
period (120 minutes) provides a whitelist that covers the
majority of queries. However, a short observation will miss
the infrequent queriers. We next quantify how much queries
and unique sources we can cover based on an observation
duration.

We expect shorter observations for hitlists to observe only
the most frequent carriers, hence, most legitimate queries. To
evaluate how long we must observe to get the most queries,
we examine normal traffic of the day 2015-11-29 and build
whitelists from data lasting from 10 minutes to 60 minutes
starting from 00:00:00 UTC. We evaluate how many future
queries these whitelists can identify from 02:00:00 UTC to
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Fig. 4: Impacts of the whitelist creation time based on confu-
sion matrix for 2017-03-06 event considering all queries

23:59:59 UTC traffic. Figure 2 shows only 20 minutes of traffic
can cover over 90% of future queries. Hence, only a small
duration of traffic can cover the sources which will make most
of the future queries of the day.

Though small duration covers frequent queriers which make
most queries, we still miss many non-frequent queriers. From
Figure 3, we can see that within a ∼1400 minutes time-frame,
we get 50% of unique sources within ∼250 minutes. This
implies that even if we create the whitelist with 250 minutes
of traffic, we still miss 50% of the future unique legitimate
sources (not the number of queries). However, these infrequent
sources send very few queries.

Finally, we choose to take 120 minutes of traffic to build
the whitelist. According to Figure 3, we expect to miss around
60% of the unique sources of the day (though attacks do
not persist the whole day). We choose this value because
this value is sufficient to cover most of the legitimate future
queries (Figure 2). Also, non-frequent queriers mostly have
well-configured cache, and most of the time they get their
query response from their own cache.

B. Source IP Whitelisting: How Often to Build?

We next consider how often we need to build a source IP
whitelist, confirming that once a day is sufficient (§III-C2).

How often the whitelist is built can influence its success.
We must build the list frequently enough that it reflects current

queriers, yet list generation has some cost so we cannot build
it continuously. To evaluate how list age changes accuracy,
we create lists from 120 minutes of data starting 0 to 960
minutes before the attack. We compute the confusion matrix
(as discussed in §IV-C) to see how much malicious traffic we
can block along with the collateral damage for 2017-03-06
event. From Figure 4, we can see little change in the confusion
matrix even if we build the whitelist 960 minutes before the
attack event. Sensitivity and specificity values differ by 1% to
2% based on the whitelist creation time.

Since time of list construction has relatively little effect on
effectiveness, we build the whitelist once a day.

VI. EVALUATION

We next look at the success of each filter method at blocking
DDoS and risk of collateral damage, then the latency of filter
selecting in our system as a whole.

A. Performance Evaluation of Query Blacklisting

How effective is Query Blacklisting? Query Blacklisting
is an ideal filter when attackers attack with a single name or
pattern. To evaluate its effectiveness we looked at all 6 Root
DNS events from 2015 to 2017 in Table II. We report each
event and its confusion matrix after Query Blacklisting. As
can be seen, Query Blacklisting detects all or nearly all attack
traffic (sensitivity 95% or more) and affects only attack traffic
(specificity 100% and accuracy 96% or more). However, the
challenge is we must determine what the attack query is to
deploy a filter. We next look at response time.

Effects of response time: Our system needs some time,
RT to find the common query name when the attack begins
or if the attacker changes the query. Within RT time, all
the legitimate queries are true accepts (true negative) and
malicious queries are false accepts (false negative). After this
time, assuming we block the actual attack query, we consider
all the legitimate queries as true accepts (true negative) and
all the malicious queries as true rejects (true positive). As we
are blocking a query name, legitimate queries with that query
name are false rejects (false positive). Attacks never use an
existing query since it would be satisfied by caches. Hence,
we do not get false rejects (false positive) by blocking the
popular queries.

Our automated system should have a small RT time so
that it makes small number of false accepts (false negative).
In §III-B3, we set to observe 100 ms of traffic to learn
the online parameters. That is why RT value is at least
100 ms. However, selecting a wrong query name causes false
acceptance of malicious traffic for a longer duration as our
system holds one decision for sometime. We observe 0.16 s to
33 s duration (Table II) to find the right common query name.
This small duration allows a small number of false accepts
(false negative).

Effects of blocking single query name: We block the most
common query using IPtables. DNS queries sometimes use
mixed case [12], and although we block the most common
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Day RT (s) Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Incoming
query
rate (Gb/s)

Rate after
filtering
(Gb/s)

2015-11-30 0.16 100.0 100.0 100.0 0.17 0.001
2015-12-01 0.17 100.0 100.0 100.0 0.18 0.002
2016-06-25 NA NA NA NA 0.67 NA
2017-02-21 32.14 96.28 100.0 97.89 0.09 0.033
2017-03-06 1.04 95.14 100.0 96.58 0.10 0.032
2017-04-25 0.30 96.55 100.0 97.80 0.08 0.031

TABLE II: Confusion matrix and ingress rate with blocking the most frequent query name in different DDoS events

form, others will pass through (false accepts or false nega-
tives). In practice, we find that the most common form covers
95% of malicious traffic (Table II).

Effects on bottleneck resources: To confirm Query Black-
listing reduces resources, the last two columns of Table II
shows the bitrate that the server will handle before and after
filtering. Except 2016 event, it filters out a significant portion
of the incoming traffic confirming our success in blocking
most of the malicious traffic. As it has little collateral damage,
we infer the right most column as the legitimate traffic bitrate.

B. Performance Evaluation of Source IP Whitelisting

How effective is Source IP Whitelisting? Source IP
Whitelisting will work when attackers spoof random ad-
dresses, and fail when attack traffic comes from resolvers
already in use. Table III shows the confusion matrix for our
six events.

We see that whitelisting is very effective for the first two
events (high sensitivity, specificity, and accuracy, all above
93%). For the 2016-06-25 event it stops the attack, but at
the cost of also discarding legitimate traffic (high sensitivity,
98%, but moderate specificity of 37%). It is not effective for
the three attacks in 2017 (fails to identify over 94% malicious
users).

For the 2016 event, Source Whitelisting shows collateral
damage—identifies only ∼37% legitimate users correctly. To
know the reason, we find that three particular IP addresses
made a good number of DNS UDP queries. These IP addresses
used an empty query name, and they were not in the whitelist.
We are not sure whether these IP addresses had any malicious
intent or not. If we do not consider these three IP addresses,
then we can get over 97% sensitivity value.

Source Whitelisting fails to find the malicious users in 2017
events. To find the reason, Table IV shows that over 66%
attack IPs were common when we built the whitelist. We
suspect attackers make these per-queries to test their attack or
attackers make queries from regular resolvers. From Figure 4,
we find that these attack IPs were present even if we build
the whitelist 960 minutes before the attack (sensitivity value
remains bad). Long observation of these IPs proves that the
attackers were behind the resolvers. As a result, these IPs are
in the whitelist and Source IP Whitelisting cannot filter them.
We also find that the attack sources are not spoofed as the
number of unique sources is significantly less than the number
that we have for the spoofed cases (2015 and 2016 events).

Evidence of non-spoofed attack addresses also supports our
claim to have attackers behind the resolvers.

Effects on bottleneck resources: Similar to Query Black-
listing, the last two columns of Table III show the bitrate
that the server will serve before and after filtering. We see
that the bitrates are high without filtering (up to 0.67 Gb/s),
but filtering is effective for the first three attacks (down to
0.012 Gb/s). Source Whitelisting is effective for the 2016
event which was not the case for Query Blacklisting. However,
Source Whitelisting fails in the last three events. This suggests
to us why we need multiple defenses.

Incoming query rate of Table III under-represents the in-
tensity of the attack events due to the measurement error
during the attack duration [46]. However, we believe that the
percentage of the blocked queries will remain the same even
if we could measure the actual intensity.

C. Performance Evaluation of Response Blacklisting

How effective is Response Blacklisting? Response Black-
listing can reduce prior attacks, but with considerable cost in
collateral damage, making it a defense of “last resort”. Again,
we evaluate all 6 events with Response Blacklisting, showing
the confusion matrix in Table V.

We see that Response Blacklisting does very well for the
three events in 2017, blocking all attack traffic (100% sen-
sitivity). It is so effective because these attacks used random
suffixes, which allows legitimate queriers to pass their queries
through recursive resolvers, defeating Source IP Whitelisting
but making them selected by Response Blacklisting. However,
as expected, we see significant collateral damage, with speci-
ficity from 42% to 46%—there are a lot of legitimate negative
responses. Due to this collateral damage, we see impacts over
accuracy.

When a client does not get a response from a server,
depending on the implementation, it may continue to send
queries to that unresponsive server or it may send queries to
other servers [69]. Overall, clients will experience delay due
to the unresponsive servers.

Effects on bottleneck resources: To confirm Response
Blacklisting reduces egress bandwidth, we show the last two
columns of Table V. We can see in the last three events without
Response Blacklisting egress bandwidth is as high as 0.75
Gb/s, whereas, response filtering can reduce it to 0.12 Gb/s.

We can see the outgoing reply rate (Table V) is smaller than
the incoming query rate (Table III) for the first two events,
even though DNS replies are bigger than the query size. This
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Day

Whitelist
Construc-
tion
(hours)?

Whitelist
size
(million)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Incoming
query
rate (Gb/s)

Rate
after
filtering
(Gb/s)

2015-11-30 -30 1.04 99.68 94.70 99.64 0.17 0.002
2015-12-01 -54 1.04 99.69 93.72 99.61 0.18 0.003
2016-06-25 -22 1.14 98.13 37.48 97.41 0.67 0.012
2017-02-21 -7 1.28 3.99 97.46 38.56 0.09 0.087
2017-03-06 -5 1.29 4.66 97.32 34.48 0.10 0.096
2017-04-25 -10 1.32 5.52 97.51 41.84 0.08 0.074

TABLE III: Confusion matrix with ingress rate of Source IP Whitelisting in different DDoS events

Day
No. of
unique
attack IPs

Common IPs
when we make
the whitelist

% in
common

2017-02-21 53424 36699 68.70
2017-03-06 56905 37800 66.43
2017-04-25 52874 36234 68.53

TABLE IV: No. of attack IPs that are common when we build
the whitelist in different 2017 DDoS events

is because DNS root servers deployed rate limiting [27] for
the first two events.

D. Performance Evaluation of Our Automated System

We already see the performance of individual filtering
approach with confusion matrix. Now the question comes, how
does our automated system perform when combining multiple
filters. To evaluate the performance, we make a controlled
experiment in DeterLab testbed (§VI-D1). Using the testbed,
we find answers about several research questions (§VI-D2).

1) Experimental setup: We replay traffic with LD-
player [74], replaying captured traffic through 22 clients to
get the full original bitrate.

Our attacks require that attackers and legitimate users be
on different IP addresses, but prior LDplayer maps all traffic
to the same set of IPs. We modified LDplayer to insure that
attack and legitimate traffic are on distinct IP addresses for
attacks where that was the case. The 2016-05-25 event was
a TCP-SYN flood and not a DNS-attack, so in that case we
reproduce the attack with the hping3 tool [53].

The attack target is an emulated DNS root server. We
implement it with BIND, using the LocalRoot method of
providing root service [22]

Reproducing viable events: To show the effects of attacks
that drive a production system to resource exhaustion requires
many servers to attack and to emulate the service. It is
also difficult to perfectly reproduce attacks since the stored
traces are often unable to capture the entire attack because
of limitations of the capture system. We therefore scale down
the server capacity to match the stored traces. We measure
the regular traffic resource consumption, and trigger a problem
when the resource is double than the regular consumption.

Other testbed implementation: We replay the attack
events and emulate a target server using the above mentioned
description. For the rest of the implementation, we use the
system mentioned in §III-D.

2) Evaluation of our automated system: Our system-level
evaluation considers how often and how long it takes to select
a good filter, and then how it adapts to polymorphic attacks.

Multiple filters and choosing a good one: We first explore
how often and how long it takes for our system to find a good
filter. To evaluate filter selection, we first determine the good
filters for each event. Table VII describes how effective each
filter is for each of our six events, based on off-line analysis
(§VI).

We consider a filter “good” if it successfully blocks the
malicious traffic (over 80% sensitivity) and accepts the le-
gitimate traffic (over 80% specificity). “Fair” means if a
filter successfully blocks malicious traffic, but fails to accept
legitimate traffic (less than 80% specificity). “No” means if a
filter is not feasible for an event or performs poorly (cannot
block over 80% malicious traffic). If there are two “good”
filters then the filter which blocks most with least collateral
damage is considered as the best one (in bold). For the 2016-
06-25 event, Source Whitelisting is best (in bold) as our system
does not have any other option.

Table VII also shows whether our system can select the best
filter or not. In all the cases, our system successfully converges
to the best filter.

Finally, this table shows that multiple filters are needed—no
single filter is “best” for all six scenario.

Latency to select a good filter: We measure the latency
to select the best filter. Latency depends on two factors—
latency to detect the problem and latency to find the required
parameters (e.g. common query, response). In our system, we
measure resources every 10 s and check for overload every
10 s, so we guarantee detection in 20 s, and in our six scenarios
we validate that the detection takes 5 to 15 s (see Table VII).
Reducing these two timers can give us faster detection at the
cost of more measurement overhead.

After detection, parameter selection takes a few seconds
because of our design to evaluate parameters every 100 ms.
We see the best filter selection time is 5 to 16 s (from attack
start) in all cases except the 2017-02-21 event. For the 2017-
02-21 event, our system selects and deploys ineffective filters
in about 7 s, then discovers that problem and deploys a good
filter, taking about 40 s in total.

For the 2017-02-21 event, our system makes three incorrect
choices before finding the best filter—Source Whitelisting
(default filter), Response Blacklisting (ready before query
filtering and as Source Whitelisting performs poorly) and
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Day Blocked
Rcode

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Outgoing
response
rate (Gb/s)

Rate after
filtering
(Gb/s)

2015-11-30 0 (not feasible) 100.0 57.22 92.84 0.13 0.01
2015-12-01 0 (not feasible) 100.0 54.39 82.72 0.14 0.02
2016-06-25 NA NA NA NA NA NA
2017-02-21 3 100.0 42.0 77.18 0.70 0.13
2017-03-06 3 100.0 43.68 80.29 0.75 0.12
2017-04-25 3 100.0 46.25 77.15 0.45 0.10

TABLE V: Confusion matrix with egress rate of Response Blacklisting in different DDoS events

Case Ingress network B/W (Gb/s) CPU usage (%) Egress network B/W (Gb/s)
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TABLE VI: Resource consumption comparison for 2017-03-06 event: top row shows resources when we do not deploy the
automated system, middle row shows resources when we deploy the automated system, bottom row shows when our system
is not adaptive to the changes during an attack. We ignore memory graph as memory remains consistent over experiment.

Event Source
Whitelisting

Response
Blacklisting

Query
Blacklisting

Converge to
the best?

Latency to
detect
attack (s)
(from
attack start)

Latency to
select the
best filter (s)
(from
attack start)

No. of
selected filters
before the
best choice

2015-11-30 Good No Good Yes 13.17 13.33 1
2015-12-01 Good No Good Yes 5.05 5.22 1
2016-06-25 Fair No No Yes 10.24 10.24 0
2017-02-21 No Fair Good Yes 6.67 38.81 3
2017-03-06 No Fair Good Yes 14.33 15.37 1
2017-04-25 No Fair Good Yes 11.73 12.03 1

TABLE VII: Applicability of each filter in various DDoS events and our selection.
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Query Blacklisting with wrong query name. In this event,
during the first few seconds of attack, we get a common query
name which is sporadic and non-malicious. Our system selects
that query as the common query name. In the 2016-06-25
event, our system selects the default filter as the best one for
which it does not select any intermediate filter. For the other
events, our system chooses the default filter before the best
one.

After filtering, does the service function? To answer
this question, we examine if resources that the attack would
exhaust are preserved after filtering. We consider the resource
before and after deploying our system.

From Table VI, we can see the comparison of resource
consumption for the 2017-03-06 event. CPU usage reduces
from ∼62% (top row, second graph from left) to ∼48%
(middle row, second graph from left) using our system. In case
of egress network bandwidth, we can reduce the bandwidth
from ∼0.8 Gb/s (top row, third graph from left) to ∼0.3 Gb/s
(middle row, third graph from left). We see an initial spike
before the reduced resource because of the latency to deploy
the defense. We cannot reduce ingress network bandwidth as
we have to give access before making any filtering. We do
not find any effect over memory during the attack and after
deploying the system (we ignore that in Table VI).

Defense overhead during problem detection: Our system
reduces CPU during the attack by reducing attack traffic, but
monitoring has some CPU overhead. We already show the
cumulative outcome which is a great reduction in the CPU
usage and egress bandwidth.

Monitoring in our current prototype system consumes about
10% of the CPU (the difference between the first two CPU
graphs in Table VI considering the first few minutes of non-
attack traffic). This overhead is high because our prototype
has separate packet extraction and text-based analysis. We are
currently working to reduce this overhead by directly counting
events in packets without textual conversion and re-parsing.

Responding to polymorphic attacks: Our system periodi-
cally evaluates the traffic to address polymorphic attacks that
change attack methods during the event. We next look at the
2017-03-06 event to see how our system copes with changing
attacks.

The top-leftmost graph of Table VI shows the polymorphic
nature of 2017-03-06 event—attack starts (first red line), pause
(green line), and then starts again with a new query name (last
red line). From the middle row-leftmost graph of Table VI, we
can see that our system deploys the best filter within 16 s (first
blue line), keeps the best filter until a temporary stop in attack
at ∼89 minutes, reacts accordingly to stop filtering within 26 s
(middle blue line), and deploys the best filter within 30 s when
a different attack starts again (last blue line). This shows our
system is adaptive to the polymorphic attack events.

Now, the question comes what will happen if our system is
not adaptive. To answer this question, we deliberately disable
our system from being adaptive after choosing the initial best
filter. We can see the impact from the bottom row of Table VI.
The attackers change its common query after ∼95 minutes. As

a result, the non-adaptive system gets an increased CPU and
egress network bandwidth. Our adaptive system can detect this
change, and react accordingly which is shown in the middle
row of Table VI.

VII. CONCLUSION

This paper provides the first in-depth design of an automated
system to mitigate DDoS in DNS. Our system detects the
resource exhaustion problem, selects the best defense from
a library of defenses, and deploys the defense automatically.
Our system is adaptive to the polymorphic attack events which
change attack pattern during an ongoing attack event. We show
one defense is not sufficient to handle all the attack events
by showing individual defense performance against several
real DDoS events captured in B-root. We test our automated
system with real DDoS events. We show our system converges
to the best defense within a small duration and is adaptive to
the polymorphic attack events. Blocking malicious traffic frees
resources which makes the server available to more legitimate
users. Our system helps to mitigate some DDoS attacks. While
we cannot mitigate pure volumetric attacks that completely
overwhelm ingress links, our approach improves reliance to
medium attacks.
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