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ABSTRACT

Prior studies of Internet traffic have considered traffic at dif-

ferent resolutions and time scales: packets and flows for

hours or days, aggregate packet statistics for days or weeks,

and hourly trends for months. However, little is known about

the long-term behavior of individual flows. In this paper,

we study individual flows (as defined by the 5-tuple of pro-

tocol, source and destination IP address and port) over days

and weeks. While the vast majority of flows are short, and

most bytes are in short flows, we find that about 20% of the

overall bytes are carried in flows that last longer than 10 min-

utes, and flows lasting 100 minutes or longer make up 2%

of traffic. We show that long-lived flows are qualitatively

different from short flows: they are generally slower, less

bursty, and are due to different applications and protocols.

We investigate the causes of short- and long-lived flows, and

show that the traffic mix varies significantly depending on

duration time scale, with computer-to-computer traffic more

and more dominating in larger time scales.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network Monitoring ; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area
Networks—Internet ; C.2.6 [Computer-Communication
Networks]: Internetworking

General Terms

Measurement

Keywords

Long Duration Flow, Computer-to-computer communi-
cation

1. INTRODUCTION

Traffic in the Internet is a complex mix of effects
from protocols, routing, traffic engineering, and user
behaviors. Understanding traffic is essential to model-
ing and simulation, traffic engineering and planning [3],

router design [1], and better understanding of the In-
ternet [17]. There has been a great deal of study of
traffic at the protocol level [19, 20], and at time scales
of seconds to hours [4–6, 17, 25], and over longer terms
for planning [18,23]. Yet prior work studies either pro-
tocol effects at small time scales (seconds to hours) or
aggregate effects at large time scales (hours to weeks),
but little attempt to bridge this division and understand
protocol effects on long-lived traffic.

This paper explores how users and protocols affect
long-lived network traffic. Unlike prior protocol studies,
we explore traffic that lasts for multiple hours to days.
Unlike prior long-term traffic studies, we explore the
causes of traffic patterns at the flow-level in multiple
time scales, instead of only trends of aggregate traffic.
We use the standard flow definition of the 5-tuple of
source and destination IP address and port, plus the
protocol number, ended by a timeout [23].

There are several reasons that an understanding of
long-lived flows is increasingly important. First, under-
standing long-lived flows is important for network man-
agement. While capacity planning can be done on mea-
sures of aggregate traffic, several kinds of on-line traffic
control have been proposed: protocol trunking [16], op-
tical trunking [11], lambda switching [2], and low-buffer
operation [1]. Understanding the feasibility and impact
of these approaches requires flow-level traffic character-
ization.

Second, a scientific understanding of the Internet must
investigate the patterns and causes of long-lived traffic.
What are the first-order statistical properties of long-
lived flows, and how do they differ from short ones?
In addition, short-term studies of network packet data
have shown self-similar behavior in time scales of sec-
onds to hours [7, 17], but most such analysis stops as
diurnal effects dominate.

Finally, we wish to understand the causes of long-
term flows. Protocol effects dominate sub-second time
scales, and human behavior governs diurnal and week-
end effects. Some human-centric traffic is no longer
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bound by human patience, such as “patient” peer-to-
peer file sharing [10], and unattended streaming me-
dia, perhaps streaming Internet audio in a store, or au-
tomated, Internet-based, Tivo-like devices such as the
Slingbox [14]. Computer-to-computer traffic is growing
due to automated control and sensing, on-line backup,
and distributed processing in the cloud and across dis-
tributed data centers. We hypothesize that at some
point in the future, computer-to-computer traffic will
eclipse human-driven traffic, just as data traffic has
eclipsed voice.

The contribution of this paper is to begin to answer
these questions. To this end, we describe new mecha-
nisms for multi-time-scale flow analysis that allows ef-
ficient evaluation of network traffic from time scales of
minutes to weeks (Section 3). We have operated this
system for more than six months, taking data from a
regional network. Second, we document the presence
of long-lived flows, showing 21% of Internet traffic (by
bytes) are carried by flows longer than 10 minutes, and
nearly 2% are carried by 100 minutes or longer flows
(Section 4.1). Finally, in Section 4.2 we begin to eval-
uate the causes of such traffic, exploring how protocol
mix changes as a function of time scale.

(This technical report is an extended version of a pa-
per that will appear at the ACM SIGCOMM Internet
Measurements Conference in 2010 [21]. The bulk of the
contents are the same as the conference paper but it
includes some additional details about data collection
(Section 3.1), and adds Figure 10. In addition, the for-
matting of this version is slightly larger.)

2. RELATEDWORK

An important aspect of understanding Internet traf-
fic is packet sizes and protocols. Thompson et al. stud-
ied the packet size distribution and protocol mixes in
one-day period, and diurnal patterns of aggregate traf-
fic in 7-day period [23]. CAIDA has collected several
90-second traces each day, in a period of ten months,
and studied the trends of packet lengths and protocol
mixes [18]. We use the common 5-tuple flow defini-
tion [23], but we are more interested in flow character-
istics and traffic mixes across different time scales.

Characteristics of Internet flows have also been stud-
ied extensively. Brownlee et al. studied lifetimes of
streams (bi-directional flows) [4, 5]. They found that
at least 45% of the streams are dragonflies (lasting less
than 2 seconds), 98% of the streams last less than 15
minutes and the rest 2% being tortoises. Similarly, we
find that most of the Internet bytes are carried by the
vast majority of short flows, but long flows also account
for a considerable fraction of bytes (see 4.1.2). Later
work studied flow characteristics systematically, show-
ing the correlations between flow size, duration, rate
and burstiness [6]. We adopt the similar ideas from

this work, but compare flows behavior as a function of
duration.

Because of the large volume of traffic, careful sam-
pling techniques have been used to achieve better pro-
cessing rates. Researchers from AT&T estimated flow
statistics by sampling packet streams and exploiting
protocol details [8]. Researchers at UCSD used adaptive
sampling algorithms to increase Cisco NetFlow system
robustness without compromising accuracy (in case of
large volume of traffic) [9]. Zhang et al. studied the dis-
tributions and causes of different flow rates [25]. They
collected sampled traces from a backbone ISP cover-
ing from 1 to 24 hours, and unsampled traces rang-
ing from 30 to 120 minutes. They also studied the
correlations between flow rates with size and duration,
and gave careful analysis on the causes of different flow
rates (such as congestion limited, sender/receiver win-
dow limited, and application limited). Our work builds
on theirs: we continuously collect unsampled IP packet
headers, and systematically study the relations between
flow durations and other characteristics. We also pro-
vide the ability to investigate multi-time-scale flows for
efficient analysis and give preliminary analysis of causes
of long-lived flows.

Several other groups have exploited flow characteris-
tics for traffic engineering purposes. Shaikh et al. stud-
ied load-sensitive routing, but they adopted a conser-
vative, 10-or-more packet definition of long flows. We
study several longer time scales and find interesting im-
plications of the long flows. Trunking (with TCP or
optical networks [2, 11, 16]) gathers together groups of
flows to achieve throughput benefits. Our work identi-
fies long-duration flows that could be used by trunking.
Recent work in low-buffer routing has shown the possi-
bility of using very few router buffers (two magnitudes
fewer than current commercial practices), provided that
traffic is “sufficiently” smooth [1]. We show that long-
duration flows are smoother and could be a good can-
didate for such optimization.

3. DATA COLLECTION AND ANALYSIS

Network packet trace collection is well understood,
but sequential processing becomes challenging as datasets
stretch from minutes to months. In this section we re-
view our approach to long-term collection of network
flows and multi-time-scale analysis of that data.

3.1 Collection and Anonymization

We first review our packet collection, processing, and
anonymization framework [12].

Source data is from packet taps at USC’s connection
to Los Nettos, their upstream Internet Provider and a
regional network for the Los Angeles area. Packet cap-
ture rates are 100–300k packets/second or 400–1000Mbits/s,
but only packet headers are captured.
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We use the LANDER system [12] to process data
at USC’s high performance computing facility, a clus-
ter of more than 2500 multi-core PCs [24]. LANDER
anonymizes packet headers, removes all user data, and
coordinates our data analysis. It dynamically sched-
ules tasks to the computing cluster and buffers pending
processes, using up to 10 concurrent compute tasks and
queueing thousands of trace segments if necessary. This
accommodates changing traffic bitrates and CPU avail-
ability. LANDER produces fixed-length, 512MB files in
Endace ERF format.

The default LANDER policy anonymizes traffic with
keys that rotate at regular intervals. Such a scheme is
useful because it insures that any accidental information
disclosure in one period does not assist unanonymiza-
tion in other periods. However, key rotation impedes
analysis of flows longer than the rotation period. LAN-
DER therefore re-anonymizes all flows with a common,
long-term key. We reduce this greater risk through
stricter policy controls: we control access to the long-
term data and prohibit those with access to attempt
unanonymization.

Although our work builds on packet-header traces, a
potential direction for future is to start with NetFlow
records as a data source. Another interesting direction
is to compare characteristics of long flows at different
places of the Internet.

3.2 Multi-time-scale IP Flow Analysis

Given our goal of observing long duration flows, we
have four problems: what flows are and what to record
for each flow; how to manage streaming data and in-
cremental analysis; how to support analysis at very dif-
ferent time scales, from seconds to weeks or more. We
consider each of these next.

We use the standard 5-tuple definition of flows: source
and destination port and IP address, plus protocol. We
convert LANDER’s packet headers into flow records us-
ing a slightly modified Argus toolkit [13]. Argus flow
records provide: the 5-tuple flow identifier (given above),
flow start and finish time, number of packets, and num-
ber of bytes in the flow. Flows begin with the first
packet with a unique 5-tuple, and continue until a time-
out τ (currently set to 60 seconds).

We extend Argus to also capture information about
flow burstiness, which is defined as variance of bytes
over fixed time period T . We record the number of
time periods observed, and the average and square sum
of bytes over the time periods. Our base time period for
variance is T = 10 minutes, the same as our base seg-
ment length as described below. This data allows us to
compute standard deviation of bytes over T afterwords.

Because we expect to run data collection indefinitely,
it is essential that we collect data concurrent with anal-
ysis, and that we store data in a manner that supports

Figure 1: The structure of multi-level flow
records: each level has primarily flows with ex-
ponentially longer durations, plus a “tail” to
permit merging.

efficient queries. An easy algorithm would use an in-
memory flow table (indexed by the 5-tuple), and update
corresponding flow record upon seeing a flow. However,
this algorithm can easily run out of memory due to a
large number of concurrent flows, particularly with long
timeouts. So we divide flow records into segments for
efficient analysis. LANDER uses fixed-size segments
(each 512MB of packet headers, or 1–2 minutes at our
current capture rates), and these traces arrive asyn-
chronously, invoking our segment processing engine as
it arrives.

We convert these variable-duration segments to hi-
erarchical, fixed duration segments to support efficient
analysis and queries that span different timescales. We
call the intial fixed duration segments level-0 flow seg-
ments, currently each at a duration of T = 10 min-
utes. When we determine that all packet-header traces
needed to cover a flow segment are present, we process
them to create the corresponding level-0 flow-segment.
Care must be taken because each flow segment typically
requires several packet-header traces, and the packet-
header trace at the start or end of a flow segment typi-
cally span two flow segments. When a trace spans mul-
tiple segments, we place the packets corresponding to
each segment in seperate flow records in each segment.
These records will later be merged into a common flow
record in hierarchical merging described next. The left-
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most column of Figure 1 shows packet headers (dark
gray) being converted to level-0 flow-segments.

Each level-0 flow-segment contains 10 minutes of flow
records, but long flows will span multiple, possibly hun-
dreds or thousands of segments. Since we cannot se-
quentially process terabytes of data to make queries for
different durations, we assemble level-0 flow-segments
into higher-level segments. We assemble segments hi-
erarchically in powers of two, so two adjacent level-0
segments are processed to produce one level-1 segment,
and so on, with two level-i flows producing a level-i + 1
flow.

To avoid segments growing in size indefinitely and to
allow efficient queries at large timescales, we prune the
flow contents at each level according to the following
rule:

The pruning rule: A level-i segment starting at time
t must preserve all flows of duration longer than
T2i−2 (the duration rule), and all flows that are
active in the timeout period the last τ seconds of
the trace (the tail rule).

The presence corollary: A level-i segment starting
at time t guarantees to contain all flows of dura-
tions between T2i−2 and T2i−1 that start in the
time [t, t+T2i−1]. It may also contain some shorter
flows at the end, and some longer flows (up to T2i)
which are not complete yet.

(When i = 0, the durations start at zero.)
The duration part of the pruning rule keeps each level

file small, because each targets a specific time duration
and guarantees coverage for that duration. All short
flows that are not active at the end of the segment may
be discarded. We can prove the presence corollary, be-
cause we guarantee coverage for flows that start in the
first half of the segment and last for between a quarter
and a half of the segment, since by definition those flows
must terminate in the segment and are too long to be
discarded. We do not guarantee all shorter flows are
present, since they will be discarded to keep segment
sizes manageable. We cannot guarantee that longer
flows are complete since they may stretch into subse-
quent segments. We show the results of our multi-level
storage below in Section 3.4.

The tail part of the pruning rule allows adjacent seg-
ments to be merged without loss of information. Only
flows that are active in the last τ seconds of the seg-
ment are candidates to merge with the next segment,
since by our definition of flows they will timeout if the
gap is longer. By keeping all flows active in this win-
dow at the end of the trace we therefore guarantee no
information about mergeable flows will be discarded,
so we do not accidentally truncate the head of a new
long-duration flow. Finally, the rule keeps flows that
are active in the last τ seconds, more than flows started

in the last τ seconds—a flow may start anywhere in
the segment, and long-running flows will typically span
most or all of the segments.

Several details in segment organization support merg-
ing and processing. When merging two adjacent level-i
segments to create a level-i + 1 segment, we combine
and reorder flow records. We keep flow records sorted
by flow start time, so if the level-i files are numbered
n and n + 1, the merge must scan all of file n but only
the head of n + 1. Variance can be combined across
segments because we preserve the sum of observations
and their squares, not just the computed variance.

Finally, all segment processing is done on a work-
station cluster in parallel. Segments are processed and
committed atomically (using filesystem rename as the
commit method). Concurrent processing of the same
file is discouraged by tagging in-process files with a flag,
and we recover from crashed processing jobs by tim-
ing out flags. We periodically scan the segment tree to
catch and correct any missed merges due to races.

3.3 Managing Outages

Very few network tasks can run uninterrupted forever
without error—with power outages and scheduled main-
tenance, continuous operation more than a few months
is good. While we tolerate several types of outages,
we have experienced multiple gaps, primarily due to
software errors in our experimental system. Since May
2009 we have taken 8 traces to date in durations of 8,
9, 15, 23, 40, 65, and 99 days. In the future we plan to
bridge brief outages by computing both optimistic and
pessimistic flow records around a gap.

3.4 Understanding the Methodology

To illustrate how different time scale flows are stored
in different levels of our system, Figure 2 shows the
cumulative distribution of flow durations for different
levels of segments on a linear-log scale graph. Each line
shows a different level segment, starting with level-1 at
20 minutes and doubling at each subsequent level.

Each level shows a range of flow durations. Because
of the tail rule, all segments have some very short flows.
Because there are relatively few very long flows, the size
of high-level segments is dominated by shorter flows.
Although each segments at level-i contain flows from
zero to T2i in duration (some of them may not be com-
plete yet), many short flows have been pruned away for
clearer view of the longer flows.

In addition, each segment has a large number of flows
near the segment duration limit. For example, 70% of
level-1 flows are about 20 minutes long, and 57% of
level-2 flows are 40 minutes long. These durations indi-
cate flows that last the entire segment and are part of
flows that span multiple segments. Their correct dura-
tion can only be identified at higher-levels.
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Figure 2: Durations of flows observed at 8 dif-
ferent time scale levels (from 2 days of dataset
D1, flows less than 10 minutes truncated).

time scale all median presence
0 4967M 2M 835k

1 652M 570k 7.1k

2 214M 276k 3.1k

3 105M 271k 1.5k

4 53M 274k 949

5 27M 268k 598

6 14M 265k 586

7 7M 300k 301

8 4M 308k 139

9 2.6M 265k 119

10 1M 243k 148

11 846k 846k 71

Figure 3: Number of flows at different time
scales: all flows, median per segment, and pres-

ence flows in one segment (14 days from dataset
D8).

To show the advantage of our multi-time-scale stor-
age, Figure 3 shows the number of flows across all files
at each level, the median for each level, and how many
are valid by the presence rule. We see the number of
valid, presence flows (bottom line) per segment drops
quickly—the true number of long flows is small. The
median number of flows plateaus around 300k per sege-
ment because segment size is limited by the tail rule
and all flows active in the last τ seconds. Finally, the
storage requirements (top line) drop exponentially, al-
though they are again limited by the tail rule. We con-
clude that multi-scale storage is important to study long
duration flows.

4. RESULTS

We next describe the results of our measurement sys-
tem: how do long flows differ from short flows in their
characteristics and causes? Since May 2009 we have
colected 8 traces. For this paper, we focus on D1, a
2-day subset of 15-day capture starting 27 May 2009,
and D8, a 14-day subset of a 65 day capture starting 19
Feb 2010.

4.1 Characteristics of Long Flows

We first compare flow characteristics: rate, size in
bytes, and burstiness as a function of flow duration. Our
goal is to understand what long flows are like, and how
they differ from short flows. We therefore graph density
plots, with darker shades indicating more flows. To
quantify distributions at each time scale, we overlay box
plots for each time scale, showing quartiles, minimum,
and maximum.

Most graphs in this section are generated with time-
scale sampling : we take one level-i segment for each
level (i ∈ [1, 11], omitting level 0), getting a representa-
tive sample from a fraction of the data (Section 3.4). We
then select subset of that segment that we can guaran-
tee full capture (flows with duration in [T2i−2, T2i−1])
and plot only those flows, discarding the rest. This ap-
proach implies that one can compare frequency of some
characteristic across a given time scale (for a fixed x

value). However, at different time scales (varying x),
the absolute number of shorter duration flows are un-
derrepresented relative to longer duration flows.

Figure 4 shows this difference: the left graph uses both
level-0 segments and one level-1 segment (all flows),
while the right uses only one of each level (sampled),
so the left has higher absolute densities indicating more
flows. Although time-scale sampling under-estimates
the total number of flows in the sampled case, it cor-
rectly reports the overall trend of flow sizes. More im-
portantly, it allows study of the long-tail of long-lived
flows, while reducing computation spent on the already-
well-studied shorter flows (computation that would oth-
erwise overwhelm analysis). In summary, sampling al-
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Figure 4: Density plot comparing all (left) and
sampled flows (right), duration vs. size (from
D8).
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Figure 5: Density plot (log-scale) with quartile
boxes of flow duration vs. rate (sampled from
D8).

lows efficient observation of the correct trends, but not
absolute density scales across durations.

4.1.1 Flow Rates

We first look at flow rate vs. duration in Figure 5. We
see that short-duration flows can be quite fast, spanning
6 orders of magnitude speed. By contrast, long flows are
typically much slower. Quartiles show median rates are
around 50 bytes/s for flows shorter than 40 minutes,
with a broad distribution, while flows longer than 100
minutes or longer have medians closer to 10 bytes/s.

The slower rate of long flows may be helpful for traffic
engineering, allowing longer time to react to long-lived
but slow-moving flows. Although we see very different
rates at different durations, rate alone does not show
which flows contribute to traffic. To evaluate if “slow
and steady wins the race”, we next look at flow sizes
across all time.
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Figure 6: Density plot (log-scale) of flow dura-
tion vs. size (bytes) (sampled from D8).

4.1.2 Flow Sizes

Prior studies of “slow but steady” tortoise flows can
account for significant traffic [5, 6]. Having just shown
long flows are slower than short flows, we next consider
if their persistence makes up the difference.

Figure 6 shows the flow sizes (in bytes) of D8. We
see a strong correlation between flow duration and total
number of bytes at a slower-than linear rate on the log-
log plot. Linear regression of median shows an exponen-
tially increase at a rate of 0.77 with a 0.958 confidence
coefficient.

Although each long-duration flow sends many bytes,
there are many more brief flows, so in the aggregate
short flows may still dominate traffic by bytes. Figure 7
shows the cumulative number of bytes sent by all flows
of a two day period in D1. (Unlike density plots, this
CDF considers all flow segments of all time scales sent
over the entire period.) This graph confirms that there
are not enough long-duration flows to dominate Internet
traffic. From the figure we can observe that although
the short flows dominate the Internet traffic (in terms
of bytes), 21.4% of the Internet traffic are carried by
flows longer than 10 minutes, 12.6% are carried by flows
longer than 20 minutes, and nearly 2% are carried by
flows longer than 100 minutes. Even though short flows
are the majority of traffic bulk, optimizations to long
flows can still have a significant effect. Internet Service
Providers may also be interested in this observation,
since the contribution of long-running but slow flows
supports the need to meter service by bytes, not by
peak speeds.

4.1.3 Flow Burstiness

Burstiness measures the uniformity of traffic rate over
time. From Figure 9, we can observe that long flows
are generally less bursty than short flows (linear regres-
sion of median shows an exponentially decrease at rate
−0.296, with a −0.830 confidence coefficient). Our ex-
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Figure 8: Source (left) and destination (right) port usage, plus PIM and ICMP, as a function of time
scale (sampled from D8). Well-known ports are labeled with protocols and protocol colors differ.
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Figure 7: Cumulative distribution of flow sizes
(in bytes) of all flows of two days from D1.

planation, confirmed when we consider causes in Sec-
tion 4.2, is that long flows are mostly computer-to-
computer communications, and so are naturally less
bursty. One implication of this observation is for very
low-buffer routers, which assume input traffic is smooth [1,
22]. Low burstiness could be provided with high prob-
ability in segregated long-duration flows.

4.2 Causes of Long-lived Flows

While we observe long-duration flows behave differ-
ently, we would like to know their causes. Although
imperfect, port-based classification is our best tool and
Figure 8 shows fraction of flows by port usage from
minutes to weeks. We treat ICMP and Protocol Inde-
pendent Multicast (PIM) as special “ports”.

The result supports our hypothesis: the traffic mix
switches from interactive, to background, to computer-
to-computer as time scale increases. Hour time-scales
are dominated by web (HTTP, HTTPS, ports 80 and
443) destinations. Web is also a frequent source port as
well. Although at first it may seem suprising to think
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Figure 9: Density plot (log-scale) of flow dura-
tion vs. burstiness (log-scale variance, bytes )
(sampled from D8).

about port 80 as a source of traffic, this observation
follows because our analysis treats each side of a bidi-
rectional connection independently, so a port-80 source
is the reply-side of a web request Day-long flows contain
“background” traffic, with computer-driven but human-
initiated protocols like chat and messaging (msnp, aol).
We believe these represent regular application-level keep-
alives and presence reports. Finally, week-long flows
are almost all computer-to-computer protocols that run
without human involvement, such as time synchroniza-
tion (ntp) and multicast control (sd, pim, sapv1). This
trend also shows with a very strong shift against TCP
in the protocol mix at longer time scales: (as shown in
Figure 10) TCP is 66% through 10 hours, but falls to
16% at two weeks, where 30% is PIM and 43% UDP.
However, there do exist some very long http connec-
tions. For example, we have seen week long http flows
from a Texas based infrastructure providing company
(http://www.softlayer.com/, 208.43.202.*) to some USC
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Figure 10: Protocol usage as a function of time
scale, sampled from D8.

IPs (128.125.179.*, 128.125.230.*, 128.125.128.*, 128.125.169.*)
in our observations. Since we scramble the last 8 bits of
the IP addresses, we can only know the subnet (/24) of
the observed flows. An interesting observation is that,
although these long connections are http flows, they are
also computer-to-computer communications in their na-
ture (which verifies our basic assumption).

Another interesting result is that ports 1024 through
1026 are very common sources for long-lived flows. These
are the first non-reserved ports and we believe indicate
long-running, started-at-boot daemons.

Although we have identified the question of causes for
long-lived Internet flows, we have only preliminary an-
swers. Port-based classification schemes are well known
to be inaccurate as many protocols today intentionally
use random ports, so use of other techniques to identify
applications is one direction (potentially those of Kim et
al. [15]). Also, carrying out similar experiments in other
locations, and more thorough evaluation of causes of
long-running flows (protocols or applications) are both
important future directions.

5. CONCLUSION

We propose an efficient multi-time-scale IP flow anal-
ysis methodology in this paper, targeting at the long-
lived flows. The characteristics of different time scales
of flows have been studied, with flow duration ranging
from minutes to weeks. Our results show that long-
lived flows are generally slow running and non-bursty
ingredients of the Internet traffic, which is useful for
traffic engineering purposes. We also study the causes
of the long-lived flows, and found that unlike short flows
with much human traffic, they are mostly computer-to-
computer traffic for specific application purposes.
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