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ABSTRACT

Prior studies of Internet traffic have considered traffic at
different resolutions and time scales: packets and flows for
hours or days, aggregate packet statistics for days or weeks,
and hourly trends for months. However, little is known
about the long-term behavior of individual flows. In this
paper, we study individual flows (as defined by the 5-tuple
of protocol, source and destination IP address and port) over
days and weeks. While the vast majority of flows are short,
and most bytes are in short flows, we find that about 20%
of the overall bytes are carried in flows that last longer than
10 minutes, and flows lasting 100 minutes or longer make
up 2% of traffic. We show that long-lived flows are qualita-
tively different from short flows: they are generally slower,
less bursty, and are due to different applications and pro-
tocols. We investigate the causes of short- and long-lived
flows, and show that the traffic mix varies significantly de-
pending on duration time scale, with computer-to-computer
traffic more and more dominating in larger time scales.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring ; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Net-
works—Internet ; C.2.6 [Computer-Communication Net-
works]: Internetworking
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1. INTRODUCTION
Traffic in the Internet is a complex mix of effects from pro-

tocols, routing, traffic engineering, and user behaviors. Un-
derstanding traffic is essential to modeling and simulation,
traffic engineering and planning [3], router design [1], and
better understanding of the Internet [17]. There has been
a great deal of study of traffic at the protocol level [19, 20],
and at time scales of seconds to hours [4–6,17,24], and over
longer terms for planning [18,22]. Yet prior work studies ei-
ther protocol effects at small time scales (seconds to hours)
or aggregate effects at large time scales (hours to weeks),
but little attempt to bridge this division and understand
protocol effects on long-lived traffic.

This paper explores how users and protocols affect long-
lived network traffic. Unlike prior protocol studies, we ex-
plore traffic that lasts for multiple hours to days. Unlike
prior long-term traffic studies, we explore the causes of traf-
fic patterns at the flow-level in multiple time scales, instead
of only trends of aggregate traffic. We use the standard flow
definition of the 5-tuple of source and destination IP address
and port, plus the protocol number, ended by a timeout [22].

There are several reasons that an understanding of long-
lived flows is increasingly important. First, understand-
ing long-lived flows is important for network management.
While capacity planning can be done on measures of ag-
gregate traffic, several kinds of on-line traffic control have
been proposed: protocol trunking [16], optical trunking [11],
lambda switching [2], and low-buffer operation [1]. Under-
standing the feasibility and impact of these approaches re-
quires flow-level traffic characterization.

Second, a scientific understanding of the Internet must in-
vestigate the patterns and causes of long-lived traffic. What
are the first-order statistical properties of long-lived flows,
and how do they differ from short ones? In addition, short-
term studies of network packet data have shown self-similar
behavior in time scales of seconds to hours [7,17], but most
such analysis stops as diurnal effects dominate.

Finally, we wish to understand the causes of long-term
flows. Protocol effects dominate sub-second time scales,
and human behavior governs diurnal and weekend effects.
Some human-centric traffic is no longer bound by human
patience, such as “patient”peer-to-peer file sharing [10], and
unattended streaming media, perhaps streaming Internet
audio in a store, or automated, Internet-based, Tivo-like
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devices such as the Slingbox [14]. Computer-to-computer
traffic is growing due to automated control and sensing, on-
line backup, and distributed processing in the cloud and
across distributed data centers. We hypothesize that at
some point in the future, computer-to-computer traffic will
eclipse human-driven traffic, just as data traffic has eclipsed
voice.

The contribution of this paper is to begin to answer these
questions. To this end, we describe new mechanisms for
multi-time-scale flow analysis that allows efficient evalua-
tion of network traffic from time scales of minutes to weeks
(Section 3). We have operated this system for more than six
months, taking data from a regional network. Second, we
document the presence of long-lived flows, showing 21% of
Internet traffic (by bytes) are carried by flows longer than
10 minutes, and nearly 2% are carried by 100 minutes or
longer flows (Section 4.1). Finally, in Section 4.2 we begin
to evaluate the causes of such traffic, exploring how protocol
mix changes as a function of time scale.

2. RELATEDWORK
An important aspect of understanding Internet traffic is

packet sizes and protocols. Thompson et al. studied the
packet size distribution and protocol mixes in one-day pe-
riod, and diurnal patterns of aggregate traffic in 7-day pe-
riod [22]. CAIDA has collected several 90-second traces each
day, in a period of ten months, and studied the trends of
packet lengths and protocol mixes [18]. We use the com-
mon 5-tuple flow definition [22], but we are more interested
in flow characteristics and traffic mixes across different time
scales.

Characteristics of Internet flows have also been studied
extensively. Brownlee et al. studied lifetimes of streams (bi-
directional flows) [4,5]. They found that at least 45% of the
streams are dragonflies (lasting less than 2 seconds), 98% of
the streams last less than 15 minutes and the rest 2% being
tortoises. Similarly, we find that most of the Internet bytes
are carried by the vast majority of short flows, but long
flows also account for a considerable fraction of bytes (see
4.1.2). Later work studied flow characteristics systemati-
cally, showing the correlations between flow size, duration,
rate and burstiness [6]. We adopt the similar ideas from this
work, but compare flows behavior as a function of duration.

Because of the large volume of traffic, careful sampling
techniques have been used to achieve better processing rates.
Researchers from AT&T estimated flow statistics by sam-
pling packet streams and exploiting protocol details [8]. Re-
searchers at UCSD used adaptive sampling algorithms to
increase Cisco NetFlow system robustness without compro-
mising accuracy (in case of large volume of traffic) [9]. Zhang
et al. studied the distributions and causes of different flow
rates [24]. They collected sampled traces from a backbone
ISP covering from 1 to 24 hours, and unsampled traces rang-
ing from 30 to 120 minutes. They also studied the correla-
tions between flow rates with size and duration, and gave
careful analysis on the causes of different flow rates (such
as congestion limited, sender/receiver window limited, and
application limited). Our work builds on theirs: we contin-
uously collect unsampled IP packet headers, and systemat-
ically study the relations between flow durations and other
characteristics. We also provide the ability to investigate
multi-time-scale flows for efficient analysis and give prelim-
inary analysis of causes of long-lived flows.

Several other groups have exploited flow characteristics
for traffic engineering purposes. Shaikh et al. studied load-
sensitive routing, but they adopted a conservative, 10-or-
more packet definition of long flows. We study several longer
time scales and find interesting implications of the long flows.
Trunking (with TCP or optical networks [2, 11, 16]) gath-
ers together groups of flows to achieve throughput benefits.
Our work identifies long-duration flows that could be used
by trunking. Recent work in low-buffer routing has shown
the possibility of using very few router buffers (two mag-
nitudes fewer than current commercial practices), provided
that traffic is “sufficiently” smooth [1]. We show that long-
duration flows are smoother and could be a good candidate
for such optimization.

3. DATA COLLECTION AND ANALYSIS
Network packet trace collection is well understood, but se-

quential processing becomes challenging as datasets stretch
from minutes to months. In this section we review our ap-
proach to long-term collection of network flows and multi-
time-scale analysis of that data.

3.1 Collection and Anonymization
Our campus network operators provide us anonymized

packet headers at the main USC connection to our upstream
regional network. We use the LANDER system [12] to pro-
cess data at USC’s HPCC compute cluster [23], coordinat-
ing parallel processing of 512MB fixed-length, Endace ERF-
format, packet-header traces.

The default LANDER policy anonymizes traffic with keys
that rotate at regular intervals. Such a scheme is useful be-
cause it insures that any accidental information disclosure in
one period does not assist unanonymization in other periods.
However, key rotation impedes analysis of flows longer than
the rotation period. LANDER therefore re-anonymizes all
flows with a common, long-term key. We reduce this greater
risk through stricter policy controls: we control access to the
long-term data and prohibit those with access to attempt
unanonymization.

Although our work builds on packet-header traces, a po-
tential direction for future is to start with NetFlow records
as a data source. Another interesting direction is to com-
pare characteristics of long flows at different places of the
Internet.

3.2 Multi-time-scale IP Flow Analysis
Given our goal of observing long duration flows, we have

four problems: what flows are and what to record for each
flow; how to manage streaming data and incremental anal-
ysis; how to support analysis at very different time scales,
from seconds to weeks or more. We consider each of these
next.

We use the standard 5-tuple definition of flows: source and
destination port and IP address, plus protocol. We convert
LANDER’s packet headers into flow records using a slightly
modified Argus toolkit [13]. Argus flow records provide: the
5-tuple flow identifier (given above), flow start and finish
time, number of packets, and number of bytes in the flow.
Flows begin with the first packet with a unique 5-tuple, and
continue until a timeout τ (currently set to 60 seconds).

We extend Argus to also capture information about flow
burstiness, which is defined as variance of bytes over fixed
time period T . We record the number of time periods ob-
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Figure 1: The structure of multi-level flow records:
each level has primarily flows with exponentially
longer durations, plus a “tail” to permit merging.

served, and the average and square sum of bytes over the
time periods. Our base time period for variance is T = 10
minutes, the same as our base segment length as described
below. This data allows us to compute standard deviation
of bytes over T afterwords.

Because we expect to run data collection indefinitely, it
is essential that we collect data concurrent with analysis,
and that we store data in a manner that supports efficient
queries. An easy algorithm would use an in-memory flow
table (indexed by the 5-tuple), and update corresponding
flow record upon seeing a flow. However, this algorithm can
easily run out of memory due to a large number of concurrent
flows, particularly with long timeouts. So we divide flow
records into segments for efficient analysis. LANDER uses
fixed-size segments (each 512MB of packet headers, or 1–2
minutes at our current capture rates), and these traces arrive
asynchronously, invoking our segment processing engine as
it arrives.

We convert these variable-duration segments to hierar-
chical, fixed duration segments to support efficient analysis
and queries that span different timescales. We call the in-
tial fixed duration segments level-0 flow segments, currently
each at a duration of T = 10 minutes. When we deter-
mine that all packet-header traces needed to cover a flow
segment are present, we process them to create the corre-
sponding level-0 flow-segment. Care must be taken because
each flow segment typically requires several packet-header
traces, and the packet-header trace at the start or end of
a flow segment typically span two flow segments. When a
trace spans multiple segments, we place the packets corre-
sponding to each segment in seperate flow records in each
segment. These records will later be merged into a common
flow record in hierarchical merging described next. The left-

most column of Figure 1 shows packet headers (dark gray)
being converted to level-0 flow-segments.

Each level-0 flow-segment contains 10 minutes of flow records,
but long flows will span multiple, possibly hundreds or thou-
sands of segments. Since we cannot sequentially process ter-
abytes of data to make queries for different durations, we as-
semble level-0 flow-segments into higher-level segments. We
assemble segments hierarchically in powers of two, so two ad-
jacent level-0 segments are processed to produce one level-1
segment, and so on, with two level-i flows producing a level-
i + 1 flow.

To avoid segments growing in size indefinitely and to al-
low efficient queries at large timescales, we prune the flow
contents at each level according to the following rule:

The pruning rule: A level-i segment starting at time t

must preserve all flows of duration longer than T2i−2

(the duration rule), and all flows that are active in the
timeout period the last τ seconds of the trace (the tail
rule).

The presence corollary: A level-i segment starting at time
t guarantees to contain all flows of durations between
T2i−2 and T2i−1 that start in the time [t, t + T2i−1].
It may also contain some shorter flows at the end, and
some longer flows (up to T2i) which are not complete
yet.

(When i = 0, the durations start at zero.)
The duration part of the pruning rule keeps each level

file small, because each targets a specific time duration and
guarantees coverage for that duration. All short flows that
are not active at the end of the segment may be discarded.
We can prove the presence corollary, because we guarantee
coverage for flows that start in the first half of the segment
and last for between a quarter and a half of the segment,
since by definition those flows must terminate in the segment
and are too long to be discarded. We do not guarantee all
shorter flows are present, since they will be discarded to keep
segment sizes manageable. We cannot guarantee that longer
flows are complete since they may stretch into subsequent
segments. We show the results of our multi-level storage
below in Section 3.4.

The tail part of the pruning rule allows adjacent segments
to be merged without loss of information. Only flows that
are active in the last τ seconds of the segment are candidates
to merge with the next segment, since by our definition of
flows they will timeout if the gap is longer. By keeping
all flows active in this window at the end of the trace we
therefore guarantee no information about mergeable flows
will be discarded, so we do not accidentally truncate the
head of a new long-duration flow. Finally, the rule keeps
flows that are active in the last τ seconds, more than flows
started in the last τ seconds—a flow may start anywhere in
the segment, and long-running flows will typically span most
or all of the segments.

Several details in segment organization support merging
and processing. When merging two adjacent level-i segments
to create a level-i+1 segment, we combine and reorder flow
records. We keep flow records sorted by flow start time, so
if the level-i files are numbered n and n+1, the merge must
scan all of file n but only the head of n + 1. Variance can
be combined across segments because we preserve the sum
of observations and their squares, not just the computed
variance.
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Figure 2: Durations of flows observed at 8 different
time scale levels (from 2 days of dataset D1, flows
less than 10 minutes truncated).

Finally, all segment processing is done on a workstation
cluster in parallel. Segments are processed and committed
atomically (using filesystem rename as the commit method).
Concurrent processing of the same file is discouraged by tag-
ging in-process files with a flag, and we recover from crashed
processing jobs by timing out flags. We periodically scan the
segment tree to catch and correct any missed merges due to
races.

3.3 Managing Outages
Very few network tasks can run uninterrupted forever

without error—with power outages and scheduled mainte-
nance, continuous operation more than a few months is
good. While we tolerate several types of outages, we have
experienced multiple gaps, primarily due to software errors
in our experimental system. Since May 2009 we have taken
8 traces to date in durations of 8, 9, 15, 23, 40, 65, and 99
days. In the future we plan to bridge brief outages by com-
puting both optimistic and pessimistic flow records around
a gap.

3.4 Understanding the Methodology
To illustrate how different time scale flows are stored in

different levels of our system, Figure 2 shows the cumulative
distribution of flow durations for different levels of segments
on a linear-log scale graph. Each line shows a different level
segment, starting with level-1 at 20 minutes and doubling
at each subsequent level.

Each level shows a range of flow durations. Because of the
tail rule, all segments have some very short flows. Because
there are relatively few very long flows, the size of high-
level segments is dominated by shorter flows. Although each
segments at level-i contain flows from zero to T2i in duration
(some of them may not be complete yet), many short flows
have been pruned away for clearer view of the longer flows.

In addition, each segment has a large number of flows
near the segment duration limit. For example, 70% of level-
1 flows are about 20 minutes long, and 57% of level-2 flows
are 40 minutes long. These durations indicate flows that last
the entire segment and are part of flows that span multiple
segments. Their correct duration can only be identified at
higher-levels.

To show the advantage of our multi-time-scale storage,
Figure 3 shows the number of flows across all files at each

time scale all median presence
0 4967M 2M 835k

1 652M 570k 7.1k

2 214M 276k 3.1k

3 105M 271k 1.5k

4 53M 274k 949

5 27M 268k 598

6 14M 265k 586

7 7M 300k 301

8 4M 308k 139

9 2.6M 265k 119

10 1M 243k 148

11 846k 846k 71

Figure 3: Number of flows at different time scales:
all flows, median per segment, and presence flows in
one segment (14 days from dataset D8).

level, the median for each level, and how many are valid by
the presence rule. We see the number of valid, presence flows
(bottom line) per segment drops quickly—the true number
of long flows is small. The median number of flows plateaus
around 300k per segement because segment size is limited
by the tail rule and all flows active in the last τ seconds.
Finally, the storage requirements (top line) drop exponen-
tially, although they are again limited by the tail rule. We
conclude that multi-scale storage is important to study long
duration flows.

4. RESULTS
We next describe the results of our measurement system:

how do long flows differ from short flows in their characteris-
tics and causes? Since May 2009 we have colected 8 traces.
For this paper, we focus on D1, a 2-day subset of 15-day
capture starting 27 May 2009, and D8, a 14-day subset of a
65 day capture starting 19 Feb 2010.

4.1 Characteristics of Long Flows
We first compare flow characteristics: rate, size in bytes,

and burstiness as a function of flow duration. Our goal is to
understand what long flows are like, and how they differ from
short flows. We therefore graph density plots, with darker
shades indicating more flows. To quantify distributions at
each time scale, we overlay box plots for each time scale,
showing quartiles, minimum, and maximum.

Most graphs in this section are generated with time-scale
sampling : we take one level-i segment for each level (i ∈

[1, 11], omitting level 0), getting a representative sample
from a fraction of the data (Section 3.4). We then select
subset of that segment that we can guarantee full capture
(flows with duration in [T2i−2, T2i−1]) and plot only those
flows, discarding the rest. This approach implies that one
can compare frequency of some characteristic across a given
time scale (for a fixed x value). However, at different time
scales (varying x), the absolute number of shorter duration
flows are underrepresented relative to longer duration flows.

Figure 4 shows this difference: the left graph uses both
level-0 segments and one level-1 segment (all flows), while
the right uses only one of each level (sampled), so the left
has higher absolute densities indicating more flows. Al-
though time-scale sampling under-estimates the total num-
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Figure 4: Density plot comparing all (left) and sam-
pled flows (right), duration vs. size (from D8).
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Figure 5: Density plot (log-scale) with quartile
boxes of flow duration vs. rate (sampled from D8).

ber of flows in the sampled case, it correctly reports the over-
all trend of flow sizes. More importantly, it allows study of
the long-tail of long-lived flows, while reducing computation
spent on the already-well-studied shorter flows (computa-
tion that would otherwise overwhelm analysis). In summary,
sampling allows efficient observation of the correct trends,
but not absolute density scales across durations.

4.1.1 Flow Rates

We first look at flow rate vs. duration in Figure 5. We
see that short-duration flows can be quite fast, spanning 6
orders of magnitude speed. By contrast, long flows are typ-
ically much slower. Quartiles show median rates are around
50 bytes/s for flows shorter than 40 minutes, with a broad
distribution, while flows longer than 100 minutes or longer
have medians closer to 10 bytes/s.

The slower rate of long flows may be helpful for traffic
engineering, allowing longer time to react to long-lived but
slow-moving flows. Although we see very different rates at
different durations, rate alone does not show which flows
contribute to traffic. To evaluate if “slow and steady wins
the race”, we next look at flow sizes across all time.

4.1.2 Flow Sizes

Prior studies of “slow but steady” tortoise flows can ac-
count for significant traffic [5, 6]. Having just shown long
flows are slower than short flows, we next consider if their
persistence makes up the difference.
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Figure 6: Density plot (log-scale) of flow duration
vs. size (bytes) (sampled from D8).
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Figure 7: Cumulative distribution of flow sizes (in
bytes) of all flows of two days from D1.

Figure 6 shows the flow sizes (in bytes) of D8. We see a
strong correlation between flow duration and total number of
bytes at a slower-than linear rate on the log-log plot. Linear
regression of median shows an exponentially increase at a
rate of 0.77 with a 0.958 confidence coefficient.

Although each long-duration flow sends many bytes, there
are many more brief flows, so in the aggregate short flows
may still dominate traffic by bytes. Figure 7 shows the cu-
mulative number of bytes sent by all flows of a two day
period in D1. (Unlike density plots, this CDF considers all
flow segments of all time scales sent over the entire period.)
This graph confirms that there are not enough long-duration
flows to dominate Internet traffic. From the figure we can
observe that although the short flows dominate the Internet
traffic (in terms of bytes), 21.4% of the Internet traffic are
carried by flows longer than 10 minutes, 12.6% are carried
by flows longer than 20 minutes, and nearly 2% are carried
by flows longer than 100 minutes. Even though short flows
are the majority of traffic bulk, optimizations to long flows
can still have a significant effect. Internet Service Providers
may also be interested in this observation, since the contri-
bution of long-running but slow flows supports the need to
meter service by bytes, not by peak speeds.

4.1.3 Flow Burstiness

Burstiness measures the uniformity of traffic rate over
time. From Figure 9, we can observe that long flows are gen-
erally less bursty than short flows (linear regression of me-
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Figure 9: Density plot (log-scale) of flow duration
vs. burstiness (log-scale variance, bytes ) (sampled
from D8).

dian shows an exponentially decrease at rate −0.296, with a
−0.830 confidence coefficient). Our explanation, confirmed
when we consider causes in Section 4.2, is that long flows
are mostly computer-to-computer communications, and so
are naturally less bursty. One implication of this observa-
tion is for very low-buffer routers, which assume input traffic
is smooth [1,21]. Low burstiness could be provided with high
probability in segregated long-duration flows.

4.2 Causes of Long-lived Flows
While we observe long-duration flows behave differently,

we would like to know their causes. Although imperfect,
port-based classification is our best tool and Figure 8 shows
fraction of flows by port usage from minutes to weeks. We
treat ICMP and Protocol Independent Multicast (PIM) as
special “ports”.

The result supports our hypothesis: the traffic mix switches
from interactive, to background, to computer-to-computer
as time scale increases. Hour time-scales are dominated by
web (HTTP, HTTPS, ports 80 and 443) destinations. Web is
also a frequent source port as well. Although at first it may
seem suprising to think about port 80 as a source of traf-
fic, this observation follows because our analysis treats each
side of a bidirectional connection independently, so a port-80

source is the reply-side of a web request Day-long flows con-
tain “background” traffic, with computer-driven but human-
initiated protocols like chat and messaging (msnp, aol). We
believe these represent regular application-level keep-alives
and presence reports. Finally, week-long flows are almost all
computer-to-computer protocols that run without human in-
volvement, such as time synchronization (ntp) and multicast
control (sd, pim, sapv1). This trend also shows with a very
strong shift against TCP in the protocol mix at longer time
scales: TCP is 66% through 10 hours, but falls to 16% at
two weeks, where 30% is PIM and 43% UDP.

Another interesting result is that ports 1024 through 1026
are very common sources for long-lived flows. These are
the first non-reserved ports and we believe indicate long-
running, started-at-boot daemons.

Although we have identified the question of causes for
long-lived Internet flows, we have only preliminary answers.
Port-based classification schemes are well known to be in-
accurate as many protocols today intentionally use random
ports, so use of other techniques to identify applications is
one direction (potentially those of Kim et al. [15]). Also, car-
rying out similar experiments in other locations, and more
thorough evaluation of causes of long-running flows (proto-
cols or applications) are both important future directions.

5. CONCLUSION
We propose an efficient multi-time-scale IP flow analysis

methodology in this paper, targeting at the long-lived flows.
The characteristics of different time scales of flows have been
studied, with flow duration ranging from minutes to weeks.
Our results show that long-lived flows are generally slow run-
ning and non-bursty ingredients of the Internet traffic, which
is useful for traffic engineering purposes. We also study the
causes of the long-lived flows, and found that unlike short
flows with much human traffic, they are mostly computer-
to-computer traffic for specific application purposes.
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