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Abstract—Large websites and distributed systems employ
sophisticated analytics to evaluate successes to celebrate and
problems to be addressed. As analytics grow, different teams
often require different frameworks, with dozens of packages
supporting with streaming and batch processing, SQL and
no-SQL. Bringing multiple frameworks to bear on a large,
changing dataset often create challenges where data transitions—
these impedance mismatches can create brittle glue logic and
performance problems that consume developer time. We pro-
pose Plumb, a meta-framework that can bridge three different
abstractions to meet the needs of a large class of applications in
a common workflow. Large-block streaming (Block-Streaming) is
suitable for single-pass applications that care about the temporal
and spatial locality. Windowed-Streaming allows applications to
process a group of data and many reductions. Stateful-Streaming
enables applications to keep a long-term state and always-on
behavior. We show that it is possible to bridge abstractions, with
a common, high-level workflow specification, while the system
transitions data batch processing and block- and record-level
streaming as required. The challenge in bridging abstractions is
to minimize latency while allowing applications to select between
sequential and parallel operation, while handling out-of-order
data delivery, component failures, and providing clear semantics
in the face of missing data. We demonstrate these abstractions
evaluating a 10-stage workflow of DNS analytics that has been
in production use with Plumb for 2 years, comparing to a brittle
hand-built system that has run for more than 3 years.

Index Terms—programming model, abstraction, big-data ab-
straction, large-block streaming, programmer productivity

I. INTRODUCTION

Services like websites, web crawling, on-line advertising,
advertising action systems, and the Domain Name System
(DNS) generate continuous data streams of user and system
activity. Analysis of this activity provides business intelli-
gence, performance analysis, intrusion detection, and security
monitoring that helps monetize, optimize, and secure these
services. Such analytics often employ multi-step workflows,
and mature systems will have analytic components that are
developed by different teams, requiring multiple, different
software frameworks to provide efficient, effective, and timely
results.

Large workflows often require multiple analytic frame-
works. A recent survey showed that, on average, enterprise
data pipelines use seven different tools in a workflow [11],
sometimes employing custom integration methods to bridge
frameworks [16]. There are three reasons applications benefit
from using multiple frameworks—ease-of-coding, efficiency,
and working with the existing codebase.

When the framework matches the problem, development
will be easier, with shorter and less complicated code. As
an example, employing a complex algorithm like DNS TCP
reassembly in a packet trace is easier as a MapReduce [12]
job than in Hive [32] job, since TCP semantics do not map
to SQL. Such ease of expression increases code velocity and
programmer efficiency.

Second, framework choice often affects performance. Some
frameworks are optimized for throughput (data processed per
hour per server), while others emphasize low latency (data
in to results out). As an example, Spark [34] is a better fit
for workloads that carry out multiple steps over the same
data, Flink is optimized streams of small records [8], and
MapReduce is optimized for single-pass, batch processing.

Third, organizations often have large, long-lived bodies of
code that solve their specific problems. Integrating existing
code with big-data processing is important to leverage this
investment. An example is a serial toolchain for network data
analyses that cannot be easily rewritten for better parallelism
but still needs to adapt to a cluster environment.

Our goal is to support migration between multiple abstrac-
tions with a common streaming workflow such that processing
is correct, efficient, and easy-to-use. While developers can
sometimes shoehorn one abstraction into another system, a
mismatch often compromises correctness when handling the
many corner cases that arise in an operational system, and
it can be difficult to provide good performance as data
moves between abstractions. Finally, developers must imple-
ment special-purpose code to bridge abstractions and address
correctness and performance needs, adding development time.

We see three different abstractions are important to cover
a broad range of big data analytics. We identify abstrac-
tions of large-block streaming (Block-Streaming), windowed
large-block streaming (Windowed-Streaming), and continuous
streaming (Stateful-Streaming) to meet our goal. These ab-
stractions cover a range of tasks in our case study, a DNS
processing and analytics workflow (§II-A), as well as other
applications we have considered.

With Block-Streaming, large data-blocks (often 0.2 to 2 GB
in size) are sent to the user processing functions that emit new
large blocks as output. When blocks can be processed out-of-
order, Block-Streaming can exploit easy parallelism by pro-
cessing blocks as they arrive, in parallel, across multiple cores
or machines. In addition to supporting parallelism, Block-
Streaming simplifies error handling, since the processing status



of each block can be tracked and when processing fails for a
block, it can be automatically retried. This abstraction support
applications with single-pass ingestion, leveraging temporal
or spatial locality of data, and with block-level parallelism.
We have found Block-Streaming is a good fit for many
aspects of statistical analysis of network traffic such as DNS.
For example, DNS queries have short-lived TCP flows, with
different TCP segments of the same flow are near in time. Our
Block-Streaming abstraction can exploit temporal and spatial
locality during TCP reassembly, where MapReduce would
require much larger I/O because it shuffles all data due to
grouping by 5-tuple, and a Spark-based system would require
memory to cache the entire dataset.

Some applications require processing a fixed window of
data—often a particular time period (a day or an hour),
or a large amount of data. For these applications, we
see Windowed-Streaming as a second important abstraction.
Windowed-Streaming enforces time ordering on blocks and
provides a window of such data to developer for processing,
that can then operate on the entire window in one work-
flow step. Error handling in Windowed-Streaming is more
complicated than with Block-Streaming, since blocks may
arrive late, violating processing time constraints, and if blocks
are lost, a window may never be complete. A Windowed-
Streaming can automate error handling, providing common
methods to handle completeness and timeouts based on the
developer’s requirements. We have found windowed process-
ing is necessary to match the requirement that reporting occur
at regular times (perhaps daily), while bulk data is more
efficiently handled with fixed-size Block-Streaming. Periodic
MapReduce analysis often assumes a time-based window of
input data.

Finally, some applications require tracking state overall
time. Such applications require all data arrive, in-order.
Stateful-Streaming streams blocks with lower latency than
Block-Streaming to a specific instance of an application that
keeps long-running state. Rather than running to completion,
this application runs continuously, consuming data and track-
ing long-running state. Application such as intrusion detection
often benefit from such state.

Prior systems support each of these abstractions, but typi-
cally provide only one abstraction. For example, Spark [35]
and Kafka [23] support record-level streaming, MapRe-
duce [12] works well for periodic analysis of windowed data
(but leaves windows management to the developer), and most
network tools such as intrusion detection systems (IDS) [26]
expect to work directly on an infinite stream of data.

The contribution of this paper is to show that one frame-
work can support multiple classes of applications—we can
efficiently bridge data between block-level streaming, time- or
data-based windows, and also support stateful-streaming when
required. The challenge in reaching this goal is to provide good
performance as data moves between very different formats
(large blocks of MB or GB, very large windows of hours
or days and many GB or TB, and continuous streams),
while providing clear error semantics and a simple program-

ming workflow. We demonstrate three abstractions: Block-
Streaming, Windowed-Streaming, and Stateful-Streaming. We
demonstrate this approach in a system that has been opera-
tional for over 5 years (initially with custom workflow, now
with our system) and has processed more than 12 PB of DNS
packet data (when uncompressed), daily statistics for 5 years,
and is now being used for streaming intrusion detection. Plumb
has cut per-block latency by 74% (§III-A) and daily statistics
by 97% (§111-B3), while reducing code size by 58% (§III-B1)
and lowering operator intervention to handle problems by 73%
(81II-B2).

Plumb is open source and available for download from our
website [27].

II. SYSTEM DESIGN

Plumb make it easy to move data between three abstrac-
tions: Block-Streaming, Windowed-Streaming, and Stateful-
Streaming to support a large class of applications. In this sec-
tion we describe the goals of our system and these abstractions,
illustrated with a DNS as a case study that we describe first.

A. Case Study: A DNS Workflow

We use DNS (the domain name system that maps human-
readable names to machine-friendly addresses) as a case study
to show the need for multiple frameworks in a real workflow.
Figure 1 shows the workflow, with most stages requiring
Block-Streaming, but the two on the right requiring our other
two abstractions. Versions of this workflow have been in use
since 2015, so it provides a good example of how we manage
workflow with and without multiple abstractions.

The main goal of this workflow is to compute daily statistics
and archive trace information in two formats, but it has grown
to include different kinds of intrusion detection as well. This
workflow has evolved over 5 years, and different individuals
are responsible for different components.

DNS data from geographically distributed B-Root sites
arrive at our processing cluster (A in Figure 1). Initial few
steps of processing need Block-Streaming based processing
to harness DNS flow’s temporal and spacial locality (marked
as steps B, C and F in Figure 1). Blocks are processed
into rssacint-format [18] (C in the figure), a summary with
information needed for daily statistics. We accumulate a 24-
hour window of rssacint files to drive daily statistics (from
step C to D). Currently this step is done with custom code to
bridge Block-Streaming abstraction to MapReduce; we plan to
move to Windowed-Streaming, as we evaluate in our prototype
in §II1-B.

Applications like network intrusion detection need to run
continuously to consume streaming data, keeping long-term
state, and detecting and alerting about any interesting events.
Workflow steps A to E in Figure 1 depict one such applica-
tion where our Stateful-Streaming abstraction makes it easy
to build the application with low delay. Our B-Root DNS
infrastructure often comes under malicious attacks, and our
early studies show that there is often a reconnaissance pre-
activity before the actual attack [17]. To allow reaction to
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Fig. 1: The DNS processing pipeline, our case study described in §1I-A. Intermediate and final data are ovals, computation
occurs on each arcs. Different steps use one of our abstractions to achieve diverse processing goals.

security problems, intrusion detection must run as quickly as
possible, in near-real-time.

B. Plumb Goals and Requirements

The primary goal of our work is to enable developers
to process data correctly in an efficient, and flexible way,
applying the best applicable abstraction in each step of the
workflow.

We improve correctness by avoiding ad-hoc code that is
otherwise required to bridge abstractions. In our pre-Plumb
system (a hand-tuned but often a brittle system), we required
significant code to confirm that a window is complete before
processing when going from Block-Streaming to Windowed-
Streaming. Our pre-Plumb system is an example where simple
solutions were deployed to emulate streaming. It also show
the challenges without framework support for streaming: in-
complete information prevents the pre-Plumb system from
handling corner-cases such as detecting missing data and
deduplicating work. With Plumb-managed windowing, system
administrators can improve algorithms over time without any
change in the developer code.

Our second goal is to provide efficient processing by reduc-
ing latency. Custom developer code either redundantly exercise
large amount of data and processing to achieve lower delay or
sacrifice low latency by running windowing algorithms after
long intervals. In §III-B3 we show that Plumb reduces latency
of a site by 97%.

Ease-of-use is also an explicit goal. Our developers can eas-
ily specify their processing needs using one of our abstractions
in a YAML job description, and our framework takes care
of all the data transport, accumulation, scheduling, and fault
details. Developer don’t need to employ custom cronjobs to
schedule their jobs. In §III-B1 we show that Plumb reduces
code by 58%.

Figure 2 shows logical architecture of our system. Developer
applications use one or more of our abstractions in their
workflow. Three abstraction of Block-Streaming, Windowed-
Streaming, and Stateful-Streaming are our approach to achieve
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Fig. 2: System architecture.

1# following 3 stages via Block-Streaming

2

3 input: pcap.sz

4 program: "/user/aqadeer/jobserver/user-progs/snzip_merged.sh"

5 output: pcap.xz

6-

7 input: pcap.sz

8 program: "/user/aqadeer/jobserver/user-progs/dnsanon_wrapper_snzip.sh"
9 output: [ message_question.fsdb, message.fsdb ]

10

il S

12 input: message. fsdb

13 program: "/user/aqadeer/jobserver/user-progs/rssac_wrapper.sh"

14 output: rssacint

15 # following stage via Windowed-Streaming

16 -

17 input: rssacint

18 program: "/mapreduce_wrapper.sh"

19 output: rssac_mapreduce_stagel

20 window:

21 size: "24 hours"

22 start: "2020-04-01-00-00-UTC"
23 max_wait: "1 hours"

24 cutoff_delivery_requirement: "Cutoff_Exactly Once To Current_Window"
25 use_queue_sequence_number_instance: "Yes"

26 queue_sequence_number_instance_list: "lax,mia,ari,ams,iad,sin"

27 # following stage via Stateful-Streaming
8 -

29 input: pcap.sz

30 program: "zeek wrapper.sh"

31 output:  [weird.log, notice.log]
32 abstraction: "stateful streaming"

Fig. 3: Three abstraction in use in the DNS workflow.

above mentioned requirements. In the following we explain
our abstractions in detail. Table I is a summary of them as
they compare with each other.

C. Large-Block Streaming

The Large-Block Streaming abstraction divides the stream
data into fixed-sized blocks for processing. Our network



Unit of ption Pr order

Call-back function

1/0 size control State Canonical usecase

Block-Streaming 1 full block None

-Read 1 or more blocks
-Write one or more blocks
-Run to completion in bounded time

-Single pass apps

-Temporal and spacial locality
-Block level parallelism

-Block level fault isolation
-Example: DNS TCP reassembly

No except emit in

No direct control output block(s)

Strict ordering or
out-of-order across windows
as per request

1 full window of time

Windowed-Streaming ordered blocks

-Process input windows
-Write output blocks
-Run to completion in bounded time

-Data accumulation
-Reductions like MapReduce
-Multi-input ordering
-Example: DNS daily stats

No except emit in
output block(s)

Yes, by specifying
window size

Oldest data first or
strict monotonic stream order
as per request

Stateful-Streaming Never ending data stream

-Read input blocks
-Write output block(s)
-Application continuously run

-Lower latency apps

-Always on processing
-Example: Real-time intrusion
detection

No, but app can flow

control incoming data Yes, long-term state

TABLE I: Comparison of three abstractions.

observer captures data as a stream of 2 GB-blocks of packet
captures. Under Block-Streaming, we process each block in-
dependently, hence providing good block-level parallelism and
fault isolation. As developer call-back functions process these
blocks, they generate new large-blocks, whose size depends
on the amount of data emitted by an application. Developers
don’t have direct control on the size of the block.

Block-Streaming is suitable for applications that need single
pass processing, and they leverage spatial or temporal locality.
Additionally, Block-Streaming blocks facilitate low-overhead
deduplication of computation and storage [28]. The size of the
block is domain-specific and configurable as per the need.

Plumb streams one large block to an instance of developer
call-back function. Developer code is expected to process data
and stream out one or more data blocks. Block-Streaming
requires developer call-back function to run to completion in a
bounded time. Plumb uses a pre-defined upper run-time limit
for Block-Streaming based developer code.

Developers specify their job requirement in a pipeline-graph
(see Figure 3) and our framework takes care of streaming in,
streaming out, and retries on failures. The first stage of the
workflow in Figure 3 gets captured network data as sz com-
pression, and changes it to more compact xz format for long-
term archival by utilizing spatial locality. The second stage
also consumes captured DNS data and does TCP reassembly to
generate DNS records for output. This stage utilizes temporal
locality to correctly stitch DNS TCP flows, because multiple
packets of a TCP flow are near-by in the data.

D. Windowed-Streaming Abstraction

A large class of analytics require a particular duration of
data—a time window. (As a related problem, some applica-
tions want to operate on a very large chunk of data.) With
Block-Streaming, processing happens in fixed-size blocks,
providing a more uniform unit of work, and allowing different
blocks to be processed in parallel. By contrast, time-based
windows are often aligned with reporting requirements, and
process varying amounts of work.

Windowed-Streaming must bridge the gap between data
arriving in discrete blocks, possibly out of order, while pro-
viding the developer this simplifying abstraction of a complete
window of data. In addition, developers can specify windowing
variations: are windows measured by time or data, how much,
what phase, can different windows be processed in parallel,
how boundary conditions are handled (data that crosses the

window boundary), how long should we wait or how much
missing data should we allow before timing out and processing
an incomplete window, and how we recover from errors.
Table II lists these parameters and their defaults. We review
these design options below.

To minimize latency while providing simple and clean error
handling, Plumb’s primary job is to trigger window processing
when the window is complete, and to handle error detection
and recovery. Since Plumb tracks arrival of new data to the
window, can checks for completeness as soon as new data
arrives and can schedule window processing as soon as a
window completes. By contrast, pre-Plumb systems without
framework support for windowing periodically probe to check
for window completion, with infrequent polling unnecessarily
adding latency.

Error handling is more difficult. Developers specify a time-
out of hours after the window should be complete, and require
that the number of missing blocks be below a threshold
or percentage. Plumb requires that applications provide a
sequence number and data start time for each block in a data
stream. These values mean it can identify a window may be
complete from block start times (the window will be complete
when timestamps bracket the window start and end times), and
confirm it is complete by insuring all sequence numbers are
present. This information also allows Plumb to handle error
conditions: has too long passed after the window should be
complete, and if so, is a large-enough percentage of blocks
present to process anyway?

Systematic error handling and tracking window completion
is a major advance in Plumb compared to our pre-Plumb
systems—its ad hoc code judged completeness by counting
“enough” blocks per day, based on estimates of typical counts.
Such estimates are fragile in the face of operational changes
such as sites being closed for maintenance or large increases or
decreases in traffic from external changes. Centralizing error
handling simplified our implementation, reducing code size
by 58% (97 vs 231 lines-of-code) (§III-B1). Most operator
interventions in our pre-Plumb system were due to violations
of our ad-hoc windowing implementation due to unexpected
operational changes; use of Plumb would have lowering oper-
ator interventions by 73% (§II1-B2).

Error recovery is necessarily specific to applications. We
allow developers to specify a recovery function to list the
blocks that are present and missing. That function can choose
to ignore missing data, or can estimate what that data would



Window Parameter

Allowed Values Default Value

size What is the size of the window in terms of time or number of blocks

X hours or Y blocks N/A

start

Where the window should start. This property must be used along with size

YYYY:MM:DD:hh:mm UTC Head of the queue

start_and_end

When to start and finish windowing. Either size or this property required

<start_time-end_time > N/A

max_wait

Max wait time or missing blocks or percentage of missing blocks before moving on

x hours or y blocks or z% 1 hour

across_window_ordering If windows complete out-of-order, are they scheduled in order or not

Yes or No No

cutoff_delivery_requirement For time-based windows, how to deliver cut block

Cutoff_Exactly_Once_To_Current_Window
Cutoff_Exactly_Once_To_Next_Window
Cutoff_Duplicate_Delivery

Cutoff_Exactly_Once_
To_Current_Window

use_queue_sequence_number_instance

Make sub-windows based on developer provided label in block names such as sites

Yes or No No

queue_sequence_number_instance_list

Developer can provide specific labels for sub-windowing that occur in a pre-defined
place in a block name, or if not given framework learns them over time from block names

Comma separates list of text labels N/A

framework
frameworks

For future use: allows organizations to performance tune wrappers for specific

No Not implemented yet N/A

TABLE II: Properties of a window.

have said. We are still experimenting with error handling, but
being able to make an informed response to missing data is a
step forward. Our pre-Plumb do not do error recovery because
it lacked information to estimate what was missing.

Plumb supports parallelism between windows (the default),
or allows the developer to process windows sequentially.
Sequential processing is important if a window must consider
state saved from the prior window, but it requires that window
processing be faster-than-real-time.

With time-based windows, phase and boundary conditions
must be considered. The phase of the window is its start time
relative to an absolute clock: should the window run every
24 hours based on when it began, or should it run midnight-
UTC-to-midnight? When data arrives in blocks, the first and
last blocks of the window will usually only partially overlap
the window’s time frame. By default, the first block in a
window starts in its time frame, so each block is processed
once but the window may start slightly late. The developer
can also request that blocks that straddle window boundaries
be delivered to both windows, allowing the application to get
a 100% complete window after discard data outside the time
frame. Our pre-Plumb system did not handle boundary blocks.

We have several examples of window-based processing
in our workflows. In our DNS case study (§II-A), RSSAC
statistics concern a midnight-UTC-to-midnight window. In
another deployment (pre-dating Plumb) we processed 24- or
12-hour windows of packets to convert to net flow. Conversion
to Plumb has reduced the code developers must maintain,
reduced latency by 74% (§III-A), and lowering operator in-
tervention to handle problems by 73% (§I1I-B2).

In summary, Windowed-Streaming enables developers to
write correct, low-latency application with ease.

E. The Stateful-Streaming Abstraction

The Stateful-Streaming abstraction is suitable for those
applications that need long-term state and and along-running
process for near-real-time consumption of streaming data.
Intrusion detection is an example application that benefits
from this abstraction, as are other systems that often capture
data directly from the network. Plumb’s Stateful-Streaming
enable these applications to share a single network tap. Design
choices include handling data ordering and missing data,
parallelization, and fault-tolerance and crash recovery of the
long-running process. We discuss them one by one.

Plumb streams data in-order to the developer’s code, re-
ordering blocks that arrive out-of-order. However, missing or

very late blocks require other choices—should Plumb ignore
any absent data and move on, or should Plumb wait, and how
long? The developer can specify how long to wait for missing
data, and what action to take to handle a time out. Missing
out on data means different things for different applications—
a financial application might not be willing to lose any data
while an application counting a long-term average might be
willing to let go some data.

An application’s ability to process data in time depends
on stream arrival rate, and speed of the underlying hardware
and software. While a single-instance application is easier to
write and manage, at some point aggregate data may exceed
the capacity of a single processing instance. Some streaming
data tools (for example, Zeek) include support for parallel
operation. Alternatively, Plumb can hash traffic into separate
partitions to support parallelism across multiple instances of
the data stream. In this case, hashing would be a Plumb
workflow step that sends data to several separate queues (each
with Stateful-Streaming), and Plumb will handle parallelism
and fault tolerance. We currently support single instance
operation and plan support for these forms of parallelism.

Finally, we need to plan for failure of even long-running
processes. In some cases, a Stateful-Streaming worker can
restart, but in other cases it may need to retain and restore state.
If the application is prepared to periodically checkpoint its
state, but requires the replay of recent data to recover, Plumb
can assist by retaining and replaying recent data (similar to
Kafka [23]).

As an example of Stateful-Streaming in our case study,
we pass all traffic through Zeek [26]. Normally Zeek directly
reads from the network, but we use Plumb to multiplex data
collected for our existing workflow across Zeek. (Zeek runs
indefinitely as if it was capturing directly from the network.)
Zeek output can be fed back into Plumb as an output queue,
or logged independently.

In summary Stateful-Streaming allows applications to pro-
cess continuously coming data efficiently. We evaluate our
design choices in §I1I-C by using a network intrusion detection
system Zeek on our DNS workflow (last stage in Figure 3).

F. Fault Tolerance

Failures happen due to a myriad of reasons, so automatic
masking and graceful tolerance of these failures are important
to make a system robust and easy-to-use. Inside our system,
we can categorize failures into two classes—compute failures
and data failures.



1) Compute Failures: Compute failures happen when a
stage fails unexpectedly, probably due to some hardware
or software problem. We use retries like MapReduce [12];
rerunning after delay recovers from intermittent problems
such as network or storage failures. Since stage execution is
idempotent, possible duplicate retries do not cause problems
other than wasting a small amount of capacity. We cannot
do automatic recovery for state-bearing stages, but hooks
allow a developer to save and restore checkpoints with custom
recovery. Our system allows stages to store their state inside
our meta-data store or use an external state management
system while keeping a pointer to the external state inside
Plumb. If a given input fails after multiple retries, we mark
the data block as faulty and request a manual inspection. By
default we support four retries (same as in Apache Hadoop
[33]); we plan to make this value customizable. Our system
schedules and executes each stage separately, so failure of one
stage does not impact other stages.

2) Data Failures: Data failures happen when some blocks
come in late or never arrive. On an asynchronous network
like the Internet, such data faults are common, and we need
to manage them for our three abstractions (Block-Streaming,
Windowed-Streaming and Stateful-Streaming abstractions).

Our Block-Streaming abstraction provides out-of-order
block execution and so is not affected by missing blocks.
Stages using the Block-Streaming might ignore missing data
to achieve high parallelism and low latency now and to deal
with data faults in a later stage.

For the Windowed-Streaming abstraction, developers need
to process complete data in a window and they also need
low latency. Data completeness and latency have a tradeoff
between them—waiting longer might help getting a complete
window but at the expense of added latency. We enable
developers to choose a trade-off between data completeness
and latency for their windows and allow developers to set
parameters to run windows with partial data. Developers can
specify missing data either as an absolute value or a percentage
of data in a window. Developers can bound their wait time
using a timeout value. To facilitate data completeness, each
block has a unique identity in our system so that we can keep
a tally which blocks of a window are present and which are
missing. As soon as all the blocks of a window are present,
our system schedules the window for processing.

A developer can specify maximum wait time, maximum
number of missing blocks, or percentage of missing blocks
allowed to trigger a window for processing. To dial the tradeoff
between data completeness and latency, we provide max_wait
argument (Table II) in our Windowed-Streaming abstraction
so that our system could automatically manage missing or
late blocks in a window. Developers can control latency or
completeness using above mentioned parameter. If a window
is unable to trigger for processing (for example, because a
developer requested availability of all data and something
is missing), we inform related developer of such cases and
provide tools to interact with the window for a manual
directive (for example, process with whatever is available).
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Fig. 4: Design dimensions in analytics (unit of consumption,
processing goals, business use-cases).

For the Stateful-Streaming abstraction, developers need an
in-order stream. We divide the stream into blocks and as-
sign each block a unique, monotonically increasing sequence
number so that our system knows the order of the stream,
and any missing blocks. Our system provides an API so that
stage programs could detect gaps in the in-order stream, and
developers can directly manage their wait time. Stages need
to invoke our API after each block consumption to know if
the next block is available. If it is not, the stage can wait
and timeout, or move on and skip the block. These options
allow latency-sensitive processing with Windowed-Streaming,
and fault recovery is necessarily application-specific.

We evaluate data completeness and latency tradeoff in
§II-B2, and show that our system provides consistently low
latency under faults in §III-B3.

G. Application Coverage

Here we argue that our three abstractions apply to large
classes of streaming applications. We classify stream process-
ing based on multiple dimensions—business domain, smallest
unit of input consumption, and processing goals (see Figure 4).
Developers might use our abstractions to efficiently process
their data from different business domains, for variable-sized
input consumption, and for broad efficiency goals. The green
axis in Figure 4 present example applications for all of the
above dimensions to show applicability of our abstractions.
Our system is applicable to many classes of applications
except when the need is hard-real-time.

III. EVALUATION

We use applications from our DNS workflow to evaluate
our system. This workflow (shown in Figure 1) shows all three
Plumb abstractions: it uses large-block streaming for statistics
generation and archiving (nine steps on the left of the figure).
It uses Windowed-Streaming to accumulate a 24 hours window
of data that is then processed with map/reduce. Finally, it uses
Stateful-Streaming to send a virtual stream of all data to Zeek,
a standard logging and intrusion detection tool.

A. Block-Streaming Enables Low Latency Processing

To evaluate Block-Streaming’s latency, we use steps A to
C of our B-Root DNS workflow (Figure 1). We de-compress
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and decode DNS (steps A and B), then compute intermediate
statistics (step B to C), both using Block-Streaming.

We evaluate latency from step A to step C (via step B),
comparing our pre-Plumb, batch-based system with Plumb
using Block-Streaming. We evaluate one day’s worth of real
data (2018-10-23, 1393 files, each 2 GB when uncompressed).
For this experiment, we used a cluster with 37 servers, 544
cores, 1853 GB memory, 224 TB HDFS storage, and 1Gb/s
network bandwidth between the servers. Figure 5 shows the
distribution of latency for this workflow over all 1393 files.

Current Plumb latency (the left, green line in Figure 5) is
much lower, with median latency of 695s instead of 2724 s
in our prior system. In addition, Plumb latency is much more
consistent, with standard deviation of 50s instead of 614s
(compare the narrow range of Plumb against the wide range
of pre-Plumb).

Plumb latency is lower because it processes blocks as soon
as they arrive, while our pre-Plumb system grouped blocks
into batches to use Hadoop-based parallelism. Plumb latency is
good, approaching the theoretical minimum of 388 s from step
A to C without any queuing delays, when run on an idle server.
(But there is some room for optimization.) Plumb’s delays are
either due to queuing (all compute resources currently busy) or
thundering herd phenomenon when there are many readers and
writers on its HDFS shared file system, with 3-way replication
(see [28] for more details).

B. Windowed-Streaming Enables Efficient Reduction

We next show ease-of-use, correctness, and low latency of
analytics via Windowed-Streaming and compare the results
with a pre-Plumb system.

1) Windowed-Streaming is Easy-to-use: One of our design
goals is that our system be easy-to-use, so we next compare
a pre-Plumb solution that bridges Block-Streaming and win-
dowing with Plumb. For this experiment we compare lines of
code to do 24-hour RSSAC statistics [18] in our pre-Plumb,
hand-coded windowing mechanism to that with Plumb. We
use pygount [2] tool to correctly count the lines-of-code for
bash and python scripts.

lines of code

Developer Code pre-Plumb  Plumb Reduction
Window Creation 163 28 83%
Statistics 66 59 11%
Scheduling 2 0 100%
Job Specification 0 10 (-100%)

TABLE III: Comparison of number of lines-of-code in pre-
Plumb RSSAC (with developer custom windowing) and Plumb
RSSAC (with Windowed-Streaming abstraction).

Our experiment in Table III shows that Plumb requires
only 41% of the code of our pre-Plumb implementation (a
code reduction of 58%). Processing requires four components:
window creation, statistics, scheduling, and YAML job de-
scription. Window creation is 83% shorter than pre-Plumb
because Plumb only calls developer code when a window is
complete and ready-to-run. Plumb code is simpler since the
framework handles windowing and the many corner cases of
incomplete input and error handling (see §III-B2). Window
creation code now contains API calls to interface with Plumb
and statistics processing.

Statistics code is smaller by 11% because Plumb automates
forwarding output results to downstream in the workflow and
archiving the output on disk in the final stage. Two lines of
scheduling code (a cron job) are eliminated because Plumb
automates scheduling across the cluster. Avoiding cron-based
polling also reduces latency, as we show in §III-B3. The
main new code is the Plumb specification and windowing
requirements, 10 lines of YAML (Figure 3).

In summary, Windowed-Streaming is easy-to-use and en-
ables developers to offload data completion and scheduling
responsibilities to Plumb while concentrating on their analyt-
ics.

2) Windowed-Streaming Improves the Correctness-latency
Tradeoff: Analytics should consider all data that is collected.
Yet in real-world data collection systems data can be late or
out-of-order, or even missing, as it is captured and relayed
to the data warehouse and components or networks fail and
disks fill. The developer must chose between waiting for
perfect data (which may never come if there was a failure), or
processing data after a reasonable time to allow for retries and
perhaps operator intervention. This tradeoff between latency,
correctness, and degree of operator intervention is common
to most distributed systems and something for which Plumb
should allow control.

We next evaluate Plumb’s correctness and the degree of
operator intervention when compared our pre-Plumb system
with a custom-designed but ad hoc algorithm to estimate
completeness, and in the next section (§III-B3) we will see
how it affects latency.

Table IV summarizes the tradeoff between data complete-
ness and latency for pre-Plumb and Plumb algorithms. We use
real-world B-Root data from 2019-08-19 to 2020-10-10 (14
months). Over this time B-Root expanded, from 3 sites (LAX,
MIA and ARI starting 2020-08-19, adding AMS on 2020-
01-20 and TAD and SIN on 2020-01-22). This data reflects
typical operational issues that arose over that time, including
occasional site network failures and shutdown for planned



Pre-Plumb RSSAC Plumb RSSAC Total

Site Missed Stalls Missed Stalls Days

(early trig.) (00 wt.) (1h wt.) (100%)
LAX 0 7 (1.7%) 0 13 (3.1%) 2 (0.5%) 416
MIA 0 8 (1.9%) 0 19 (4.6%) 4 (1.0%) 416
ARI 1(0.2%) 25 (6.0%) 0 45 (10.8%) 1 (0.2%) 416
AMS 1(0.4%) 16 (6.1%) 0 76 (28.8%) 4 (1.5%) 264
IAD 0 1 (0.4%) 0 22 (8.5%) 3 (1.2%) 260
SIN 0 1 (0.4%) 0 33 (12.7%) 2 (0.8%) 260
all 2 (0.1%) 58 (2.8%) 0 208 (10.2%) 16 (0.8%) 2032

TABLE IV: Comparing pre-Plumb and Plumb data stalls and
number of missed data events over 14 months.

maintenance. Each site computes separate rssacint intermedi-
ate statistics, these are then later combined on another system.

We use same data with two systems: pre-Plum and Plumb.
The input gives data generation time and the time it is
delivered to our analytics cluster. For Plumb, we extract
information of interest from our HDFS logs. For pre-Plumb,
we replay data to find latency. This replay preserved the data
arrival order and time, but did not emulate inter-arrival waits
to expedite loading of 14 months of data (420409 input files,
73 MB each), and because our latency calculation use time-
stamps associated with input data. Some input data might get
lost due to hardware/software issues at the capturing site. We
know about missing input files using a unique, monotonically
increasing sequence numbers in the input names. Our pre-
Plumb system uses our custom-built but ad-hoc algorithm
to estimate completeness. These algorithms use conservative
estimates from historical data to estimate how many blocks
each site should generate each day to detect data relay stalls.
If these checks fail, they alert the operator and block progress
until they can investigate and confirm or correct any problem.
Our Plumb-based system allows the operator to select the
tradeoff in completeness and delay in the Plumb specification,
and allows Plumb to infer completeness based on file times
and sequence numbers. Plumb checks are therefore much more
accurate and robust to changes in site load over time.

We first evaluate correctness in Table IV, then later consider
latency in Table V. Pre-Plumb rarely misses available data
(column 2 in Table IV) because it adopts a very conser-
vative algorithm. We compare to Plumb with two settings:
with infinite wait, it never misses data (but requires oper-
ator intervention on a stall), and with a 1h threshold we
see it misses data about 10% of the time. Here both have
similar behavior when correct, but due to different reasons—
pre-Plumb’s conservative wait time coupled with long-term
traffic rate mostly works while Plumb relies on monotonically
increasing sequence numbers of the underlying blocks for
completion checks. With an aggressive threshold, Plumb can
be configured to meet a strict (real-time) deadline at the cost
of incomplete results. In some cases (if timely results are more
important than perfect) this choice may be preferred.

Pre-Plumb stalls falsely many times (58 events, 3% of
the time, column 3 in Table IV). These stalls occur because
traffic changes, usually due to intentional engineering, making
prior traffic estimates invalid. Each of these events require
an operator intervention to reset the thresholds. By contrast,
Plumb stalls 16 times, always because some data file was

Latency (in hours)
Site pre-Pl.  Plumb | pre-Pl. Plumb | pre-Pl. Plumb
50%ile 90%ile 99%ile
LAX 9.72 0.29 12.72 0.41 53.91 7.32
MIA 9.75 0.37 13.07 0.52 89.64 26.64
ARI 15.04 0.41 17.58 1.26 | 666.04 169.36
AMS 10.76 0.43 34.47 18.68 90.14 91.00
IAD 10.44 0.79 13.95 0.81 39.17 12.22
SIN 10.5 0.70 15.1 1.98 39.18 30.32

TABLE V: Comparison of pre-Plumb and Plumb latency (in
hours) at 50, 90, and 99%ile for RSSAC processing.

blocked due to an error or network problem.

Finally, we see that pre-Plumb’s ad hoc algorithm silently
misses some actual stalls. Plumb reports 3 and 2 for sites IAD
and SIN, while pre-Plumb stalled only once for each, missing 3
events. Pre-Plumb’s traffic estimation algorithm cannot detect
single file losses, while Plumb’s check of sequence numbers
is complete. Although missing one file has only a small effect
on statistics, detecting errors is important.

In summary, Plumb only produces true stalls for developer
intervention, while allowing developers to pick a suitable wait
timeout value—hence allowing a developer-guided tradeoff
between completeness and latency.

3) Windowed-Streaming Enables Low Latency Processing:
Our second design goal is low latency, so we next evaluate
latency using the same pre-Plumb and Plumb with Windowed-
Streaming implementations as we did in §III-B2, again com-
paring RSSAC statistics for the 6 B-Root sites.

As before, we collect times of RSSAC input files (step C in
Figure 1) and the output of rssacint summary files from HDFS
logs. We examined all six sites, but here we report data for
two sites, LAX and AMS. (Other sites are similar to LAX.)

Figure 6 shows the CDF of latency for RSSAC output at
LAX with Plumb (the left, green line) and pre-Plumb (the
right, red line) over 14 months. Figure 7 shows similar results
for AMS for nearly 9 months. Table V summarizes median
and tail-latency of all six sites.

Plumb has much lower latency at all sites. At LAX, median
and 90%ile latency are only 3% of their prior values (to 0.29
hours from 9.72 at 50%ile, and 0.41 from 12.72 for 90%ile).
The tail for both systems is long, but 99%ile latency is 33% of
its prior value (left curve compared to right curve in Figure 6
and column six vs. seven in Table V). The LAX site behaves
with Plumb as we hope, usually processing data within the
hour it’s available, and only occasionally requiring longer.

AMS and some other sites show much longer tail latency,
with AMS 99%ile latency of nearly four days. These delays
represent a few days spent data back-haul for this site when
it was coming on-line.

Finally, we see very long latency for the ARI site: 99%ile
latency is 169 hours (more than a week). There were events
when ARI had traffic engineering that dropped its data rate
to zero. Correcting this problem brought ARI latency back to
our goal of less than one hour latency per day.

Finally, median latencies of older sites (LAX, MIA) are
lower than newer sites (for example: 0.29% for LAX while
0.43% for AMS) because with the addition of newer sites,
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Fig. 6: Latency comparison at LAX site.

we are getting more data. Our publicly available RSSAC
stats [18]show that traffic increased by about 50% with the
addition of the three newest sites and corresponding lower
latencies, while our analytics cluster’s processing capacity did
not change during this time.

The tail latency in graphs reflects our conservative choice of
requiring all data (or operator intervention) before processing
statistics. If we wished to guarantee processing each day, even
with incomplete data, Plumb makes it easy to set a 1 hour
timeout and processes whatever data is available. Plumb’s
infinite and 1 hour columns of Table IV show the implication:
about 10% of cases would run with incomplete data, a choice
that might be preferred to stalling if approximate results were
required by operational needs.

In summary, we see that RSSAC processing based on
our Windowed-Streaming improves correctness and makes it
easy to provide fixed-latency results when required. More
importantly, it relieves the developers and operators of ad
hoc, error-prone windowing algorithms and makes it easy (a
configuration parameter) to balance correctness and latency.

C. Stateful-Streaming Enables Continuous Applications

Block-Streaming works well for processing that requires
little state, and windowing supports data with predicable
amounts of state, but some applications expect continuous
state. Intrusion detection systems and long-term logging like
Zeek fall in to this third category, so we next consider how
Plumb can drive Zeek with Stateful-Streaming.

As we described in §II-E, any Stateful-Streaming will be
limited by the ability of one compute to keep up. What
that exact rate is depends on the workload and the hardware
doing the processing. As one example, we evaluate data
from one B-Root site over 24 hours starting on 2020-11-27,
considering about 1TB of data (538 blocks, each 2 GB before
compression). Figure 8 shows the distribution of block arrival
and Zeek processing to see how well it keeps up with real-time
on our hardware, using just one core.

For our hardware and this application, data arrives every
three minutes, and is processed in 9.7 minutes (both median).
Only about 3% of blocks are handled faster than incoming
traffic—our hardware cannot keep up with this workload. To
process this workload will require either Plumb-level flow-
based hashing, use of cluster-mode Zeek where it does flow
hashing, or addition of windowing to allow different days to
process concurrently (without retaining state between days).
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Fig. 7: Latency comparison at newer AMS site.

Either Plumb- or Zeek-based flow hashing would support
this workload with 4-way parallelism (where each way uses
one core, and four instances can be on different machines on
the cluster) since processing time is consistently between 8 and
10 minutes. Processing time is so consistent because input data
is fixed size (2 GB per block). Our initial prototype that uses
two developer-level stages—first for hashing and splitting [30]
and the second for Zeek processing confirms (see Figure 9)
that four instances can keep up with the LAX real-time traffic.

In summary, Stateful-Streaming was able to support our
state bearing application, though initially we found out that we
need 4-way parallelism to keep up with the traffic rate with our
hardware. This need for processing parallelism suggests we
should provide Plumb-level flow splitting as a primitive, and
allow Plumb jobs to schedule multiple cores to support cluster-
mode Zeek. We are able to achieve parallelism by using an
additional stateful state before Zeek queues. We are extending
Plumb for better support for hashing/splitting input.

IV. RELATED WORK

The primary goal of our work is to enable our developers to
process data using multiple abstractions easily and with good
performance. We compare our effort with related systems to
evaluate the differences and similarities.

Facebook’s data processing system with Puma, Stylus,
and Swift [10] provides multiple abstractions like us, but
it uses three independent frameworks—making a workflow
that might use all of them is left to the developers. Plumb
allows developers to mix abstractions in a single workflow.
Facebook’s Puma system allows developers to do operations
on an arbitrary size of data, but it uses SQL queries to
combine many small records and relies on query optimizations
to get locality and good performance. Our Block-Streaming
abstraction allows developers to write code to benefit from
single pass processing for temporal and spatial locality, at the
cost of a lower-level abstraction. Facebook’s Stylus system
provides data ordering but they do not specify how they handle
late, missing, or duplicated data. In Windowed-Streaming
we allow the developer to choose completeness criteria and
handle errors. Facebook’s Swift system provides continuous
streaming like our Stateful-Streaming, but underlying data
management [14] is different—their data moves out to long-
term archives automatically over time, while Plumb keeps
track of each data item and proactively either delete or archive
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data right after last-use; hence keeping free storage to absorb
any DoS attack traffic. Facebook’s approaches reflect the need
for multiple abstractions, but they do not describe integration
to combine those across a workflow as we do.

Google’s dataflow system [4] maps a developer’s SQL code
to one of the underlying frameworks (MapReduce [12], Flume-
Java [9], MillWheel [3])—only allowing to use abstractions in
any one framework at a time. Plumb allows its developers to
use a different abstraction on each step of a workflow. Their
frameworks don’t support Block-Streaming and implementing
complex functions like TCP reassembly is not straightforward
in their SQL-like language.

To provide developers multiple frameworks on a single
shared cluster, Nexus [20] (a precursor of Mesos system [19])
provides an isolation boundary between different frameworks
(MapReduce [12], Dryad [21]) and provide each framework
a slot abstraction. We go beyond their work to provide three
different abstractions, and to support the developer in moving
data between abstractions in our framework.

Spark streaming [34] provides a distributed shared memory
abstraction for continuous stream and allows its developers to
perform series of operations on a group of data. They provide
abstractions similar to us that are applicable to in-memory data
only and iterative workloads that repeatedly apply operations
on slowly changing data for sub-second latency. Our Block-
Streaming allows to leverage spacial and temporal locality for
single-pass operations. Plumb allows developers to use Spark
as a framework with our Stateful-Streaming.

Streaming systems like Flink [8] optimize for throughput
or latency by configuration; we focus on throughput while
considering latency as a secondary goal. Flink is optimized
for streaming small records, depends on data sharding, and
does not provide multi-user collaboration or deduplication
abilities. Plumb is optimized for large blocks, manages skew
when data sharding is not possible and provides multi-user
collaboration and deduplication. Flink’s APIs are integrated
with a specific programming language, limiting application to
functionality available inside that framework. Plumb’s pipeline
graphs provide language-independent job descriptions with
multiple abstractions, supporting more diverse components and
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Fig. 9: 4-way connection hashing (on data from A to E
in Figure 1) and using 4 Zeek instances on the cluster (as
provided by Plumb) is enough to keep up LAX real-time
traffic rate.

abstractions from multiple frameworks.

Airflow [6] and Oozie [22] are workflow managers to glue
Hadoop-based frameworks. They do not provide higher-level
abstractions, like ours, and they leave moving data between
abstractions and windowing to the developer.

SECRET and TSpoon [1], parts of the system described
by Lorenzo Affetti et al, use data windowing to provide
interoperability between relational databases and streaming
data, and allowing database operators on streaming data.
They don’t provide Block-Streaming and Stateful-Streaming.
They provide ACID transactional guarantees while Plumb
operations provide at-least once semantics.

There are many systems (examples include [15], [31], [5],
[24], [29]) that provide glue between two specific frameworks.
Plumb provides three abstractions that cover a broad part of
the design space, and glue to move data between them.

Scientific workflow systems such as Pegasus [13] work well
for big-science applications [25], [7] that run periodically.
Plumb is instead optimized for mixes of continuously stream-
ing data with windowed computation. Potential future work is
to compare applications across these frameworks.

V. CONCLUSIONS

Plumb makes it easy for developers to access multi-
ple abstractions in their big-data workflows, simplifying
code, lowering latency, and improving correctness. To do
so, it bridges data streams between three different abstrac-
tions (Block-Streaming, Windowed-Streaming, and Stateful-
Streaming), while managing error handling and allowing de-
velopers to dial the trade-offs between latency and com-
pleteness. These abstractions optimize for different goals
(Block-Streaming for high parallelism when some context is
needed, Windowed-Streaming for time-dependent processing,
and Stateful-Streaming for long-running applications with
state). Versions of Plumb have been in production use at B-
Root for more than two years and has already reduced latency
by 74% (blocks) or 97% (daily statistics), while reducing code
size and improving correctness. Plumb is open source and
available for use.
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