
Plumb: Efficient Processing of Multi-User Pipelines (Poster)
Poster October 12, 2018; USC/ISI Technical Report ISI-TR-731, January 2019

Abdul Qadeer and John Heidemann USC/ISI {aqadeer, johnh}@isi.edu

As the field of big data analytics matures, workflows are increas-
ingly complex and often include components that are shared by
different users. Individual workflows often include multiple stages,
and when groups build on each other’s work it is easy to lose track
of computation that may be shared across different groups.

We propose Plumb, a workflow system for multi-stage workflow
where parts of computation and output are shared across different
groups. Plumb focuses on blocked, streaming workflows, a mid-
dle ground between large-file batch processing and small-record
streaming. A particular challenge with this problem domain is struc-
tural and computational skew, where the computation of different
stages and of different blocks in a stage can vary by a factor of ten
due to differences in the work or data.

Plumb’s first goal is to identify duplication of computation and
storage that can occur when different groups share components
of a pipeline. When different users are responsible for different
portions of the workflow, work done in common stages will be
duplicated if each user assumes they begin with raw input, par-
ticularly as the workflow evolves over the course of development.
This problem of computational sharing was recently recognized at
Microsoft [2]; we identify duplication both in computation and in
storage of intermediate results. While databases sometimes save
and share intermediate results, automated discovery is more chal-
lenging in today’s loosely structured big-data workflows, where
processing modules are largely opaque to the system.

The second problem we take on is skew. Prior work has iden-
tified data skew, where many data items fall into one processing
bin, slowing the overall workflow [1]. We identify and address
two new types of skew: computational skew and structural skew.
Computational skew occurs when a bin of data takes extra long to
process, not necessarily because there is more data, but because
the data interacts with the processing algorithms to take extra time.
Structural skew occurs when one stage of the processing pipeline
is noticeably slower than other stages.

We address both of these types of skew in Plumb by scheduling
additional processing elements when one data block or one stage
falls behind. Plumb decouples processing for each stage of the
workflow, buffering output when required and allowing each stage
to be scheduled independently. However, to avoid the cost of data
buffering, Plumb also allows stages to run concurrently when they
are well matched. This decoupling also addresses computational
skew, since additional computation can be brought to bear when
specific data inputs take extra time.

Plumb is designed for large-block, streaming workloads. Tradi-
tional map-reduce has focused on batch processing, and systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. For all other uses, contact the owner/author(s).
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6011-1/18/10.
https://doi.org/10.1145/3267809.3275461

such as Spark [3] consider streams of small records. We have iden-
tified a class of applications that involve long-term streams of data,
but where the processing requires examination of large blocks of
data (say, 10 to 1000 megabytes of data at a time) to capture tempo-
ral or spatial locality, to integrate with existing tools, and to support
fault tolerance and recovery in long-running data processing. Ap-
plications that require large-block data preclude use of adaptive
sharding schemes to present skew. We have designed Plumb to
support large-block, streaming workloads and exploit this “middle
ground” where per-data scheduling is possible.

In this poster we propose Plumb, a framework for processing of
a multi-stage pipeline. Plumb integrates pipelines contributed by
multiple users, detecting and eliminating duplication of computa-
tion and intermediate storage. It tracks and adjusts computation
of each stage, creating more processing instances as required to
accommodate both structural and computational skew. Plumb also
tracks I/O-boundness of each stage and generate alerts for users for
possible merging of I/O bound stage to a CPU-bound stage. Plumb
currently uses named large size files as a proxy for large-blocks.

We exercise Plumb with the processing pipeline for B-Root DNS
traffic. Compared to the currently operational, hand tuned system,
we expect Plumb to provide one-third the latency while utilizing
22% less CPU. Moreover, the Plumb abstractions enable multiple
users to contribute to processing with minimal coordination, and
it keep latency low during normal conditions, while adapting to
cope with dramatic changes to traffic and processing requirements
when handling denial-of-service attacks.

The contribution of this poster is to provide an organization-wide
processing substrate Plumb that can be used to solve commonly
occurring problems and to achieve a common goal. Plumb makes
multi-user sharing a first-class concern by providing pipeline-graph
abstraction. This abstraction is simple and based on fundamental
model of input-processing-output but is powerful to capture pro-
cessing and data duplication. Plumb then employs best available
solutions to tackle problems of large-block processing under struc-
tural and computational skew without user intervention.

This material is based on research sponsored by Air Force Research Laboratory
under agreement number FA8750-18-2-0280. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

REFERENCES
[1] Emilio Coppa and Irene Finocchi. 2015. On Data Skewness, Stragglers, and

MapReduce Progress Indicators. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 139–152. https:
//doi.org/10.1145/2806777.2806843

[2] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Yi-
fung Lin Marc Friedman, and Sriram Rao Konstantinos Karanasos. 2018. Com-
putation Reuse in Analytics Job Service at Microsoft. In Proc. of ACM SIG-
MOD International Conference on Management of Data. ACM, Houston, TX, USA.
https://doi.org/10.1145/3183713.3190656

[3] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 423–438.

https://doi.org/10.1145/3267809.3275461
https://doi.org/10.1145/2806777.2806843
https://doi.org/10.1145/2806777.2806843
https://doi.org/10.1145/3183713.3190656

2 Stage pipeline with original structural skew of x and then
first stage slowed down additionally in 10% increment

Research question: How data de-duplication via hard-link-emulation reduces storage?
Answer: Due to one physical copy of each file, storage use is low. These storage benefits increase
with increasing load or increased sharing.

Research question: How disaggregated processing pipeline improves throughput?
Answer: Disaggregated configuration only utilizes sum of CPU need of all pipeline stages, that is
optimal. Aggregated configuration uses containers proportional to the slowest stage.

5 users’ de-duplicated pipeline utilize 5X fewer
storage as compared to duplicated
configuration.
(Compare G and F)

G = 5-users’ de-duplicated pipeline with input
load of 8 files
F = 5-users’ pipelines with duplications and
with input load of 8 files

Disaggregated execution configuration only
slows down proportional to added skew.
(From 20 minutes to 30 minutes)
(Compare H and I)

Aggregated execution configuration slows
down twice from x to x+50%.
(From 35 minutes to 62 minutes)
Aggregated execution holds onto all
containers until slowest stage finishes.
(Compare J and K)

Relative benefit of de-duplication non-linearly
increases with increasing load
(Compare A, B and C)

De-duplication benefits increase when a new
shared stage added
(Compare A with D)

De-duplication benefits increase when 2
additional users tap data at tail of pipeline
(Compare A with E)

High Throughput and Low Storage Use

Research question: What is effect of processing de-duplication on system throughput?
Answer: Process de-duplication substantially reduces cluster container hours. These benefits
increase as load or number of redundant processing stages across users increase.

3 users’ pipelines 5 users

Plumb: Efficient Processing of Multi-User Pipelines

Multi-user processing pipelines of high-value data are often inefficient due to computational
redundancy and choice of execution methodology. Low throughput, low cost-efficiency and
higher latency are the consequences of such inefficiency.

Computational redundancy is when different users run same (or similar) processing to
generate same data. Such processing or data duplication is not apparent to individual users,
whose jobs run in isolation for security reasons.

Execution methodology dictates the way processing pipeline is run on a shared cluster.
Users' processing usually consists of cascading steps of multiple programs to constitute a
pipeline --- Each program potentially having widely different I/O and CPU needs (a
problem we call skew). There are myriad ways to implement and run such pipelines. End-
users are often not aligned with global optimization due to time or complexity and pick
straightforward, but suboptimal solutions.

Our contributions and solution:
We provide an abstraction layer that captures processing and data duplication across users
still keeping data security and user illusion of isolation. Additionally this view across users
makes it possible to enforce currently best possible execution methodology for all jobs. We
provide Plumb system that implements above mentioned abstraction layer for a sub-set of
bigdata problems that we call large-block streaming. Plumb provides following services:

 Automatedly finds and removes duplicate processing across users
 Efficiently stores data to remove data-duplication via hard-link emulation
 Mitigates skew via pipeline disaggregation and dynamic compute resource assignment

based on stage slowness.

Abdul Qadeer
University of Southern California / ISI

aqadeer@isi.edu

John Heidemann
University of Southern California / ISI

johnh@isi.edu

Introduction

Lower bar is
better

Lower y value
is better

Lower bar is
better

A

B

C

D
E

F

G

H

I
J

K

Reason Example

Performance A program doing TCP-reassembly of a DNS flow mostly has its data in single large-block.

A compression algorithm generally has better chance to compress well on larger data.

User convenience Desire to utilize legacy programs that work for large files instead of writing new parallel code.

Approach
Automatedly find & remove redundant processing for multiple-users:
 Simple (input-program-output) based user facing API
 Two processing steps considered similar if they have same (input,output)
 Store similar data physically once using hard-link-emulation over HDFS
 Make a common optimized pipeline
 User illusion of their private data that they can manipulate
 Strong data security

Mitigate effects of skew:
 Disaggregate pipeline and run each step separately
 Inter stage communication is via HDFS backed queues
 (Re)Assign compute workers based on queue lengths

Example: 3 users processing on B-root DNS data:

Problem
Large-block streaming applications are a subset of bigdata analytics that require
large amount of data consumption per program instance. B-root DNS data is an
example of high-value data that is amenable for large-block streaming. Multiple
users tap into it and process it to generate derivative data. There are two reasons for
large-block streaming:

Skew is a phenomenon where stages of a pipeline take arbitrarily different CPU time-
to-completion. There are two sources of skew: Structural skew and computational
skew. Structural skew is the property of the way pipeline is constructed. Any stage
can exhibit unexpected increase in execution time due to unexpected data as well. We
call such data based slowness computational skew. Such data is common for Internet
services where a malicious user can send arbitrary data. Such skew is a new source of
straggler and re-running the stage with same data elsewhere will add to the problem.
Additionally adaptive data sharding is not possible due to large-blocks requirement.

Measure of efficiency:
Our main measure of efficiency is high throughput and high cost-efficiency while
providing best-effort low latency.

Conclusion and Future Work
 Processing de-duplication improves system throughput as load increases or sharing increases.

 Data de-duplication optimally utilize storage by keeping single physical copy and yet
providing user illusion of private data. Data security is fully enforced.

 Disaggregated pipeline stage run and reassignment of compute workers based on stage queue
lengths help keeping throughput high and latency lower.

 By changing similarity definition, we can utilize system for broader classes of big-data (future
work). Plumb system can be used as pre-processing engine in any multi-user environment.

This research is sponsored by Air Force Research Laboratory under agreement number FA8750-18-2-0280 See our technical report ISI-TR-727 for more details: https://www.isi.edu/publications/trpublic/pdfs/isi-tr-727.pdf Symposium on Cloud Computing 12 Oct, 2018 Carlsbad California

User 1’s
terminal data

User 2’s
terminal data

User 3’s
terminal data

Optimized pipeline for 3 usersA user provides his job as
YAML encoded text

Simple Abstraction to Capture Inefficiencies
 Input and output names come from global namespace that is visible to all users
 Global namespace helps system de-duplicate processing and keeping single copy of each file
 (Input,program,output) style tuple enables system to run it separately from rest of pipeline to mitigate

structural skew
 Each input and output is backed by queue. Resource assignment based on queue length mitigates

computational skew
3rd User’s Pipeline
-

input: pcap.sz
program: “snzip -c –d”
output: pcap

-
input: pcap
program: “/usr/bin/dnsanon”
output: [message_question.fsdb, message.fsdb]

-
input: message_question.fsdb
program: “xz -c”
output: message_question.fsdb.xz

