
Plumb: Efficient Processing of Multi-User Pipelines
Abdul Qadeer and John Heidemann USC/ISI {aqadeer, johnh}@isi.edu

As the field of big data analytics matures, workflows are increas-
ingly complex and often include components that are shared by
different users. Individual workflows often include multiple stages,
and when groups build on each other’s work it is easy to lose track
of computation that may be shared across different groups.

We propose Plumb, a workflow system for multi-stage workflow
where parts of computation and output are shared across different
groups. Plumb focuses on blocked, streaming workflows, a mid-
dle ground between large-file batch processing and small-record
streaming. A particular challenge with this problem domain is struc-
tural and computational skew, where the computation of different
stages and of different blocks in a stage can vary by a factor of ten
due to differences in the work or data.

Plumb’s first goal is to identify duplication of computation and
storage that can occur when different groups share components
of a pipeline. When different users are responsible for different
portions of the workflow, work done in common stages will be
duplicated if each user assumes they begin with raw input, par-
ticularly as the workflow evolves over the course of development.
This problem of computational sharing was recently recognized at
Microsoft [2]; we identify duplication both in computation and in
storage of intermediate results. While databases sometimes save
and share intermediate results, automated discovery is more chal-
lenging in today’s loosely structured big-data workflows, where
processing modules are largely opaque to the system.

The second problem we take on is skew. Prior work has iden-
tified data skew, where many data items fall into one processing
bin, slowing the overall workflow [1]. We identify and address
two new types of skew: computational skew and structural skew.
Computational skew occurs when a bin of data takes extra long to
process, not necessarily because there is more data, but because
the data interacts with the processing algorithms to take extra time.
Structural skew occurs when one stage of the processing pipeline
is noticeably slower than other stages.

We address both of these types of skew in Plumb by scheduling
additional processing elements when one data block or one stage
falls behind. Plumb decouples processing for each stage of the
workflow, buffering output when required and allowing each stage
to be scheduled independently. However, to avoid the cost of data
buffering, Plumb also allows stages to run concurrently when they
are well matched. This decoupling also addresses computational
skew, since additional computation can be brought to bear when
specific data inputs take extra time.

Plumb is designed for large-block, streaming workloads. Tradi-
tional map-reduce has focused on batch processing, and systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. For all other uses, contact the owner/author(s).
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6011-1/18/10.
https://doi.org/10.1145/3267809.3275461

such as Spark [3] consider streams of small records. We have iden-
tified a class of applications that involve long-term streams of data,
but where the processing requires examination of large blocks of
data (say, 10 to 1000 megabytes of data at a time) to capture tempo-
ral or spatial locality, to integrate with existing tools, and to support
fault tolerance and recovery in long-running data processing. Ap-
plications that require large-block data preclude use of adaptive
sharding schemes to present skew. We have designed Plumb to
support large-block, streaming workloads and exploit this “middle
ground” where per-data scheduling is possible.

In this poster we propose Plumb, a framework for processing of
a multi-stage pipeline. Plumb integrates pipelines contributed by
multiple users, detecting and eliminating duplication of computa-
tion and intermediate storage. It tracks and adjusts computation
of each stage, creating more processing instances as required to
accommodate both structural and computational skew. Plumb also
tracks I/O-boundness of each stage and generate alerts for users for
possible merging of I/O bound stage to a CPU-bound stage. Plumb
currently uses named large size files as a proxy for large-blocks.

We exercise Plumb with the processing pipeline for B-Root DNS
traffic. Compared to the currently operational, hand tuned system,
we expect Plumb to provide one-third the latency while utilizing
22% less CPU. Moreover, the Plumb abstractions enable multiple
users to contribute to processing with minimal coordination, and
it keep latency low during normal conditions, while adapting to
cope with dramatic changes to traffic and processing requirements
when handling denial-of-service attacks.

The contribution of this poster is to provide an organization-wide
processing substrate Plumb that can be used to solve commonly
occurring problems and to achieve a common goal. Plumb makes
multi-user sharing a first-class concern by providing pipeline-graph
abstraction. This abstraction is simple and based on fundamental
model of input-processing-output but is powerful to capture pro-
cessing and data duplication. Plumb then employs best available
solutions to tackle problems of large-block processing under struc-
tural and computational skew without user intervention.

This material is based on research sponsored by Air Force Research Laboratory
under agreement number FA8750-18-2-0280. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

REFERENCES
[1] Emilio Coppa and Irene Finocchi. 2015. On Data Skewness, Stragglers, and

MapReduce Progress Indicators. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 139–152. https:
//doi.org/10.1145/2806777.2806843

[2] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Yi-
fung Lin Marc Friedman, and Sriram Rao Konstantinos Karanasos. 2018. Com-
putation Reuse in Analytics Job Service at Microsoft. In Proc. of ACM SIG-
MOD International Conference on Management of Data. ACM, Houston, TX, USA.
https://doi.org/10.1145/3183713.3190656

[3] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 423–438.

519

https://doi.org/10.1145/3267809.3275461
https://doi.org/10.1145/2806777.2806843
https://doi.org/10.1145/2806777.2806843
https://doi.org/10.1145/3183713.3190656

	References

