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Abstract
Services such as DNS and websites often produce streams
of data that are consumed by analytics pipelines oper-
ated by multiple teams. Often this data is processed in
large chunks (megabytes) to allow analysis of a block of
time or to amortize costs. Such pipelines pose two prob-
lems: first, duplication of computation and storage may
occur when parts of the pipeline are operated by different
groups. Second, processing can be lumpy, with structural
lumpiness occurring when different stages need different
amounts of resources, and data lumpiness occurring when
a block of input requires increased resources. Duplica-
tion and structural lumpiness both can result in inefficient
processing. Data lumpiness can cause pipeline failure or
deadlock, for example if differences in DDoS traffic com-
pared to normal can require 6× CPU. We propose Plumb,
a framework to abstract file processing for a multi-stage
pipeline. Plumb integrates pipelines contributed by mul-
tiple users, detecting and eliminating duplication of com-
putation and intermediate storage. It tracks and adjusts
computation of each stage, accommodating both struc-
tural and data lumpiness. We exercise Plumb with the
processing pipeline for B-Root DNS traffic, where it will
replace a hand-tuned system to provide one third the orig-
inal latency by utilizing 22% fewer CPU and will address
limitations that occur as multiple users process data and
when DDoS traffic causes huge shifts in performance.

1 Introduction
Services such as DNS and websites often produce streams
of data that are consumed by analytics pipelines operated
by multiple teams. Often this data is processed in large
blocks or files that are megabytes in size, so that analytics
can examine a range of time, amortizing processing costs,
and chunk data for fault detection and recovery. These
blocks of data are processed in pipelines of many steps,
each transforming, indexing, or merging the data. For
long-lived systems, the analysis grows over time, and dif-
ferent groups may be responsible for different portions of
the pipeline.

Such pipelines pose two problems: unnecessary du-
plication of computation and storage, and lumpiness as
different stages or files require different amounts of re-
sources. Duplication and lumpiness reduce processing ef-
ficiency, increasing hardware costs and delaying results.

Unnecessary duplication of work can result as the
pipeline is extended by multiple parties. In a large
pipeline, data is often transformed into different formats,
compressed, and decompressed. When different users are
responsible for different portions of the pipeline, these
stages may be duplicated if each user assumes they be-
gin with raw input, or duplication may arise over time as
portions of the pipeline evolve.

The second inefficiency is lumpiness, or uneven con-
sumption of resources across the pipeline. We consider
two kinds of lumpiness: structural lumpiness, when dif-
ferent stages need different amounts of resources; and
data lumpiness, when a particular block of input requires
increased resources (compared to typical input blocks).

Structural lumpiness is a problem in multi-stage
pipelines. Consider an n-stage pipeline: it can either
be scheduled to run concurrently using n cores, or each
stage can run independently. With concurrent process-
ing, any stage that consumes more or less than one core
will unbalance the pipeline and leave other stages idling,
wasting resources. If stages are scheduled independently,
stages with different computation requirements may re-
quire more (or fewer) concurrently executing instances,
and all stages must pay the overhead of buffering inter-
mediate output, perhaps through the file system.

Data lumpiness is similar, but is triggered when a par-
ticular input increases the computation required at one or
more stages. If computation increases somewhat, ineffi-
ciencies similar to structural lumpiness may arise. If com-
putation increases significantly, processing timeouts may
occur, making progress impossible. As an example of data
lumpiness, consider a pipeline tuned for regular DNS pro-
cessing that is then faced with a TCP flooding attack, or
a spoof flooding attack that triggers use of TCP. In both
cases, nearly all arriving flows are TCP, compared to a few
percent in normal traffic, and each TCP flow requires re-
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assembly, stressing memory and computation (search) in
processing and pushing CPU to 6× normal or more.

In this paper we propose Plumb, a framework to ab-
stract file processing for a multi-stage pipeline. Plumb in-
tegrates pipelines contributed by multiple users, detecting
and eliminating duplication of computation and interme-
diate storage. It tracks and adjusts computation of each
stage, creating more processing instances as required to
accommodate both structural and data lumpiness.

We exercise Plumb with the processing pipeline for B-
Root DNS traffic. Compared to the currently operational,
hand tuned system, we expect Plumb to provide one-third
the latency while utilizing 22% less CPU. Moreover, the
Plumb abstractions enable multiple users to contribute to
processing with minimal coordination, and it keep latency
low during normal conditions, while adapting to cope with
dramatic changes to traffic and processing requirements
when handling denial-of-service attacks.

The contributions of this paper are to define the chal-
lenges of structural and data lumpiness in large-file, multi-
user, streaming workloads. We then describe the Plumb
architecture (§2), where each user specifies their com-
putation with a pipeline graph (Figure 2). Plumb uses
this description to integrate computation from multiple
users while avoid duplicate computation (§2.3), and out-
put (§2.4). To balance lumpiness, it supports identifica-
tion of IO-bound stages (§2.5), and dynamically sched-
ules stages to avoid structural (§2.6) and data lumpiness
(§2.7). We evaluate each of these design choices in §3,
using controlled experiments tested with components of
the B-Root processing workload (§2.1).

2 System Design
We next describe Plumb, and its requirements, and spe-
cific optimizations to de-duplicate storage and processing,
and to mitigate processing lumpiness.

2.1 Design Requirements and Case Study
Our system is designed to provided large-file streaming
for multiple users while being easy-to-use.

Large-file streaming means data constantly arrives at
the system, and it is delivered in relatively large blocks.
Data is streaming because it is continuously collected.
Unlike other streaming systems that emphasize small
events (perhaps single records), we move data large
blocks—from 512 MB to 2 GB in different deployments.
Large files are important for some applications where
computations frequently span multiple records. Large
files also amortize processing costs and simplify detection
of completeness (§2.2) and error recovery (§2.7).

For our sample application of DNS processing, large
files are motivated by the need to do TCP reassembly,
which benefits from having all packets for a TCP connec-
tion usually in the same file. Compression is much more

efficient on bulk data (many KB). We find error handling
(such as disk space exhaustion or data-specific bugs) and
verification of completeness is easier when handling large,
discrete chunks of data.

Streaming also implies that we must keep up with real-
time data input over the long term. Fortunately, we can
buffer and queue data on disk. At times (after a processing
error) we have queued almost two weeks of data, requiring
more than a week to drain.

Multiple users implies that different individuals or
groups contribution components to the pipeline over time.
This requirement affects our choice of processing defini-
tion in §2.4 and supports de-duplication of computation
(§2.3).

Finally, ease-of-use is an explicit design goal. As with
map-reduce [10], analysis are presented with a simple
pipeline model and the framework handles parallelism.
Inspired by Storm [40], we adapt parallelism of each
pipeline stage to match the workload lumpiness (§2.7).

DNS Processing as a Case Study: These require-
ments are driven by our case-study: the B-Root DNS
processing pipeline. Figure 1 shows the user-level
view of this workflow: three different output files (the
ovals at the bottom of the figure), include archival data
(pcap.xz), statistics (rssacint), and processed data
(message question.fsdb.sz). Generating this
output logically requires five steps (the squares), each of
which have very different requirements for I/O and com-
putation (shown later as Table 1). This pipeline has been
in use for 2.5 years and takes as input 1.5 to 2 TB of
data per day. We would like to extend it with additional
steps, and migration of the the current hand-crafted code
to Plumb is underway.

2.2 Plumb Overview
We next briefly describe workflow in Plumb to provide
context for the optimizations described in the following
sections. Figure 4 shows overall Plumb workflow.

Users provide (step 1 in Figure 4) Plumb their work-
loads as with a YAML-based pipeline specification (Fig-
ure 2). Plumb integrates workloads from multiple users
and can provide both graphical (Figure 3) and textual
(Figure 2) descriptions of the integrated graph. Plumb
detects and optimizes away duplicate stages from multi-
ple users (§2.3). Data access from each user is protected
by proper authentication and authorization, mediated by a
database of all available content (tag 5).

User’s pipeline stage programs need to adhere to Plumb
interaction rules. Programs get input and output via stdin
and stdout respectively if there are just one input and one
output. Otherwise, system provides inputs via multiple -0
and output via multiple -1 command line arguments. User
stage program is expected to be a serial code, that streams
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Figure 1: The DNS processing pipeline, our case study described in §2.1. Intermediate and final data are ovals,
computation occurs on each arc, with duplicate computation across users in rectangles.

Figure 2: A Pipeline Graph for a portion of the DNS
pipeline.
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Figure 3: Optimized pipeline before and after merging a
third user’s pipeline.
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Figure 4: A user submits their pipeline into Plumb.

input and output (without excessive buffering). Plumb en-
forces above restriction for efficient CPU utilization.

When a user submits their pipeline graph, Plumb eval-
uates it and integrates it with graphs from other users.
Plumb first checks the user pipeline for any syntax errors,
and checks access to input data. Then, system finds any
processing or storage duplication across all users’ jobs
and removes it. Internally, our system abstracts storage as
queues with data stored in a distributed file system, with
input and output of each stage bound to specific queues.

If accepted, our system schedules each stage of the opti-
mized pipeline to run in a YARN cluster. Stages typically
require only small containers (1 core and 1 GB RAM), al-
lowing many to run on each compute system, and avoid-
ing external fragmentation that would occur scheduling
larger jobs onto compute nodes. Also, system returns this
container after processing one file for better and fair re-
source sharing on cluster. Our system assigns workers in
proportion to current stage slowness due to lumpiness.

Finally, each large-file input is assigned a sequence
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number. Confirming all sequence numbers have been pro-
cessed is a useful check on complete processing, and we
can set aside files that trigger errors for manual analysis
(§2.7).

2.3 The Pipeline Graph and De-duplication
of Processing and Storage

Our first goal is to de-duplicate computation and stor-
age across all users. To accomplish this goal, each user
submits their computation as a pipeline graph and Plumb
merges these graphs into a master pipeline graph after op-
timizing away duplication. Optimizations include com-
bining stages that are identical computation, combining
storage of intermediate and final output (§2.4) and identi-
fying IO-bound stages where duplicating computation is
more efficient than extra IO if it was eliminated (§2.5). To
de-duplicate computation and data storage, we need to de-
tect duplication, and eliminate the copies of computation
and storage.

Our model is that each pipeline stage does one step of
processing, consuming one or more inputs and producing
data to be consumed by one or more downstream stages,
or as an end-result. Data may stream directly between two
stages that are executing concurrently, or it be buffered on
stable storage when the computation cost of two stages are
mismatched (§2.5), or if there is a backlog of processing.

We detect duplication by user-supplied pipeline graphs.
Figure 2 is an example of a user’s pipeline graph. In the
pipeline graph, each stage defines its input sources and
format, the computation to take place, and its outputs and
their formats. Input formats are identified by global names
such as pcap, DNS, anon-DNS, etc. By definition, any
stages that identify input of the same format (that is, use
the same format name) will share processed data of that
type.

Plumb can now eliminate processing duplication by de-
tecting stages submitted by multiple users that have the
same input and output. We make this judgment based on
textual equivalence of input and output of stages in the
pipeline graph, since the general problem of algorithmi-
cally determining that two programs are equivalent is un-
decidable [38].

The outcome of merging users’ pipeline graphs is a
combined pipeline graph that efficiently executes compu-
tation for all users. We then schedule this computation
into a Hadoop cluster with YARN [42].

Figure 3 shows optimized merged pipeline graph of first
two users in Figure 1 while a third user is submitting his
pipeline (Figure 2). Plumb will detect first two stages are
same as in the current optimized pipeline and will remove
them. Additionally, input of third stage is also already
available and will be utilized.

2.4 Data Storage De-duplication
Although de-duplication detects identical computation
and output, we still must efficiently and safely store a (sin-
gle) copy of output.

We store exactly one logical copy of each unique data
format and instance in a shared storage system. To
store single copy of data, but with the user illusion of
private individual data, we use a publish-subscribe sys-
tem. This system emulates Linux hard-link like mecha-
nism using database for meta-data and HDFS distributed
file system to store actual data. Plumb on the behalf of a
pipeline stage subscribes for its input to appropriate data
store. Whenever an input data items appears, our system
publishes it to all registered subscribers by putting an em-
ulated hard-link per subscriber.

To uniquely identify a data item across system, we
enforce a two-level naming scheme on all files names.
Each file name has two parts: data store name based on
user provided input or output names, and a time-stamp
and a monotonically increasing number (for example:
20161108-235855-00484577. pcap.sz).

While there is one logical copy of each data block,
when data is stored in HDFS, HDFS replicates the data
multiple times. This replication provides reliability in the
case of single machine failures, and locality when net-
works do not support full bisection bandwidth.

In our multi-user processing environment, security is
very important and fully enforced. For all user interac-
tions with the system, we use two-way strong authentica-
tion based on digital signatures. For data access autho-
rization, we use HDFS group membership. Any user’s
pipeline is only accepted for execution if he has access to
all the data formats mentioned in his pipeline graph.

2.5 Detecting I/O-Bound Stages
While we strive to elimination of de-duplicate computa-
tion and storage, in some cases, duplicate computation
saves run-time by reducing data movement across stages
via HDFS. Prior systems recognize this trade-off, rec-
ommending the use of lightweight compression between
stages as a best-practice. We generalize this approach, by
detecting I/O-bound stages; in §3.2 we show the impor-
tance of this optimization to good performance.

We automatically gather performance information
about each stage during execution, measuring bytes in,
out, and compute time. From this information we can
compute the I/O-intensity of each stage as intensity =
(I + 3O)/P bytes per second. For our cluster’s hard-
ware, we consider stages with I/O-intensity more than 50
to suggest the computation should be duplicated to re-
duce I/O; clusters with different hardware and networks
may choose different thresholds. Such threshold depends
on cluster hardware and can be established empirically by
running a stage known to have high I/O intensity. Table 1
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stage I O P IO-Intensity
snzip 765 2048 28 246.75
dnsanon 2048 1590 180 37.87
rssac 717 73 180 5.2
xz1 2048 235 780 3.52
xz2 873 110 540 2.23

Table 1: Relative costs of Input and Output (I and O, mea-
sured in megabytes) processing (CPU seconds), and IO-
intensity relating them.

shows an example of I/O intensity from our DNS pipeline.
It correctly identifies snzip decompression stage as most
IO bound among all.

Once I/O-bounds stages have been identified we allow
the user to restructure the pipeline. We recommend that
users duplicate lightweight computation to avoid I/O, by
merging it with some other CPU-bound stage. Such merg-
ing should happen via pipes, so that inter-stage data flows
via memory. Although in principle we could automate
this step, placing the user in control of these kind of struc-
tural changes allows an expert to consider the consistency
of the I/O data (does it vary across different inputs). It
also allows an expert to make decisions such as how many
stages to merge, and insures that they are aware of inter-
mediate data formats when doing debugging.

2.6 Mitigating Structural Lumpiness
Structural lumpiness is when one stage of a pipeline is
slower than others. We can define it as the ratio of the
slowest stage to the fastest. As an example, our DNS
pipeline (Figure 1) has a structural lumpiness ratio of 6.4,
comparing the xz stage to the snzip stage.

We mitigate structural lumpiness by creating additional
workers on slow stages and generally scheduling each
stage independently. While this approach is taken in
most big data computation systems (for example MapRe-
duce [10], and even early systems like TransScend [17]),
we considered alternative structures, and run I/O-bound
stages concurrently. We describe these alternatives next
and compare them in §3.6.

The challenge in scheduling is assigning cluster con-
tainers to pipeline stages. In principle, each stage can
require one or more cores, and will have some typical
runtime. One can run stages independently or together
in parallel; when run in parallel they may choose to send
data directly through inter-process communication, avoid-
ing buffering I/O through a file system.

Table 2 shows the four options we consider. With
Linearized/multi-stage/1-core, each input file is assigned
a single container with one core, and it runs each stage
sequentially inside that task. This scheme is efficient and
flexible, providing excellent parallelism across input files.
Though this scheme has high latency and yield no flexi-

bility addressing lumpiness problem because container as-
signment is for full pipeline and not at stage level.

For Parallel/multi-stage/multi-core with limits, we as-
sign multiple stages to a single YARN container, giving
it as many cores as the number of stages in the pipeline.
We then run all stages in parallel, with the output of one
feeding directly into the other, and we strictly limit com-
putation to the number of cores that are assigned (using an
enforcing container in YARN). The advantage with this
approach is that data can be shared directly between pro-
cesses (the processes run in parallel), rather than through
the file system. The difficulty is that it is hard to pre-
dict how many cores are required: structural lumpiness
means some stages may underutilize their core (resulting
in internal fragmentation), or stages with varying paral-
lelism may overly stress what they have been allocated.
Figure (a) and (b) in Figure 13 show, this configuration
consumes substantially high container hours as compared
to other choices and even latency benefits are mild on a
heterogeneous cluster.

For Parallel/multi-stage/multi-core without limiting,
we assign multiple stages to a single YARN container with
as many cores as there are stages in the pipeline, running
in parallel, with one core per stage (or perhaps fewer),
but here we allow the container to consume cores beyond
the container strictly allocates. The risk here is that re-
sources are stressed—if we underprovision cores per con-
tainer, we reduce internal fragmentation, but also stress
the system as a whole when computation exceeds the al-
located number of cores. Figure (c) in Figure 13 shows
an 8 core server from a deployment, that started well with
very little core waste, but became overloaded over time as
workload characteristics changed. (This approach might
benefit from approaches that adapt to system-wide over-
commitment by adapting limits and throttling computa-
tion on the fly [54]; this approach is not yet widely avail-
able.)

With Linearized/single-stage/1-core, where we assign
each stage (or two adjacent stages for I/O limited tasks
(§2.5)), to its own YARN Container with a single core.
In effect, the pipeline is disaggregated into many inde-
pendent tasks. This approach minimizes both internal and
external fragmentation: there is no internal fragmentation
because each stage runs to completion on its own, and
no external fragmentation because we can always allo-
cate stages in single-core increments. It also solves struc-
tural lumpiness since we can schedule additional tasks for
stages that are slower than others. The downside is data
between stages must queue through the file system, but
we minimize this cost with our I/O-based optimizations.

In §3.6 we compare these alternatives, showing that
Linearized/single-stage/1-core is most efficient.
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Run Configuration Through-
put Latency Cost

Efficiency
Disk
Use

Fragme-
ntation RAT Cluster

Sharing
Stage

Scaling LFD Heterogeneous
Cluster

Linearized/multi-stage/1-core High High Good High No Low Good Bad Complex Higher average latency
Parallel/multi-stage/multi-core with limits Low Low Low Low Yes High Worse Bad Complex Higher structural lumpiness
Parallel/multi-stage/multi-core without limiting High Low Good Low No High Bad Bad Complex Higher structural lumpiness
Linearized/single-stage/1-core High High Good Higher No Low Good Good Simple Lower latency

Table 2: Comparison of different configurations of stages into containers. RAT: Resource Allocation Time. LFD:
Lumpiness management, Fault-tolerance, and Debugging.

2.7 Mitigating Data Lumpiness
Our approach to structural lumpiness (where each stage
runs in its own container) can also address data lumpiness.
The challenge of data lumpiness is that a shift in input data
can suddenly change the computation required by a given
stage.

To detect data lumpiness we monitor the amount of data
queued at each stage over time (recall that each stage runs
separately, with its on queue §2.4).

We can reduce the effects of data lumpiness by assign-
ing computational resources in proportion to the queue
lengths. Stage with the longest queue is assigned the most
computational resources. We sample stages periodically
(currently every 3 minutes) and insure that no stage is
starved of processing.

Another risk of data lumpiness is that processing for a
stage grows so much the stage times out. Our use of large-
file processing helps here, since we can detect repeated
failures on a given input and set those inputs aside for
manual evaluation, applying the error-recovery processes
from MapReduce [10] to our streaming workload.

3 Evaluation
We next evaluate the design choices to show their effects
on efficiency. We evaluate efficiency by measuring cluster
container hours spent, so lower numbers are better. For
processing running in a commercial cloud, these hours
translate directly to cost. A private cluster must be sized
well above mean cluster hours per input file, so efficiency
translates in to time to clear bursts, or availability of un-
used cluster hours for other projects.

3.1 Benefits of de-duplication
Our first optimization is to eliminate duplicate computa-
tion (§2.3) and data storage (§2.4) across multiple users.
We show the effects of those optimizations here.

To measure the benefits of de-duplication, we use the
DNS processing pipeline (Figure 1) with 8 stages, two
of which (snzip and dnsanon) are duplicated across three
users. We run our experiment on our development YARN
cluster with configuration A from Table 3, scheduling
stages as soon as inputs are available.

As input, we provide a fixed 8,16 or 24 files and mea-
sure total container hours consumed. In a real deploy-
ment, new data will always be arriving, and cycles will be

configuration
resource A B
Servers 30 37
vCores 328 544
Memory (GB) 908 1853
HDFS Storage (TB) 139 224
Networking (Mbps) 1000 1000

Table 3: Cluster capabilities for experiments.
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Figure 5: Comparing un-optimized (left bar) and de-
duplicated (second bar) experimental pipelines and mod-
eled (right two bars) for different workloads (bar groups).
Mean of 10 runs with standard deviations as bars.

shared across other applications.
We compare measurements from our DNS pipeline run-

ning with related sample data in two configurations: un-
optimized and de-duplicated. With the unoptimized con-
figuration all stages run independently, while with de-
duplication, identical stages are computed only once (see
§2.3), producing an output file that is provided as input to
each next stage (see §2.4).

We expect that removing redundant computation will
reduce overall compute hours and HDFS storage, lower-
ing time to finish a given input size and freeing resources
for other concurrent jobs. These benefits are a function
of how many duplicate stages can be combined, so an ad-
ditional duplicated stage (for example, a decryption step)
would provide even more savings relative to an unopti-
mized pipeline.
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Processing: Figure 5 shows our results for three dif-
ferent numbers of inputs (each group of bars). The de-
duplicated pipeline (the second bar from the left) is con-
sistently faster than unoptimized (the leftmost bar).

We first compare increasing size workloads in the left
three groups of bars. With 8 files as input, de-duplication
uses 39% fewer container hours. These benefits increase
with 16 and 24 input files, since the majority of compute
time is in a stage (dnsanon) that can be de-duplicated.

We next vary the pipeline, adding an additional shared
stage at the head of DNS pipeline for each user. This
extra shared stage simulates a scenario when ingress and
egress traffic is captured in separate large-files that must
be merged (as can happen with optical fiber capture). This
different configuration is shown in the fourth group of
bars from the left of Figure 5, labeled “8 files-2 way
stream”. We observe 178% fewer container consump-
tion by our de-duplicated configuration compared to un-
optimized. This experiment shows how adding additional
stages that can be de-duplicated has a greater benefit.

As a final variation of the pipeline, we add two users
to the tail of the pipeline (consuming dnsanon output and
emitting statistics data). In this case, the rightmost set of
bars, we see that de-duplication shows a 6× speedup rela-
tive to unoptimized, and a much greater savings compared
to the either of the other two pipeline structures. Adding
additional users late in the pipeline exposes significant po-
tential savings.

To confirm our understanding, we defined a simple an-
alytic model of speedup based on observed times and a
linear increase of execution time for duplicated stages.
The right two bars show predictions for optimized and
unoptimized cases. The model significantly underesti-
mates the savings we see (compare the change between
the two right bars of each group to the change between
the two left bars), but it captures the cost of additional
input files and the benefits of additional stages that may
be de-duplicated. This underestimate is due to I/O over-
head due to synchronized file access (a “thundering herd
problem”) as we evaluate next.

Storage: Like processing, disk usage decreases with in-
creasing de-duplication. Figure 6 shows total logical data
that is stored over time (data is three-way replicated, so
actual disk use is triple). Each data point is the average of
ten runs.

In this for example, de-duplication reduces storage by
77% relative to un-optimized for the 8-file workload.
Storage is particularly high in the middle of each run when
the cluster is fully utilized. Finally, the larger amount of
disk space not only consumes storage, but it can lead to
disk contention, and even network contention in clusters
that lack a Clos network.

This graph also highlights reduced latency that results
from de-duplication. Since fewer resources are required,
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Figure 6: Amount of data stored over each processing run
for different workloads (color and shape), unoptimized
(filled shapes) and de-duplicated (empty shapes).

the backlog of input data is cleared more quickly, as
shown by earlier termination of the de-duplicated cases
(empty shapes) relative to their unoptimized counterparts
(filled shapes).

Summary: Overall, these experiments demonstrate the
significant potential efficiencies that are possible in a
multi-user workload when users share common needs,
and that those savings grow both with additional data and
additional pipeline complexity. This savings can be used
by other applications in shared clusters, or to reduce la-
tency in a dedicated cluster.

3.2 I/O Costs and Merging
We next evaluate the improvements that are possible by
reducing I/O. Reducing I/O is particularly important as
the workload becomes more intense and contention over
disk spindles grows. For example, when we increased the
size of the initial workload from 8 to 16 and 24 (the left
three groups in Figure 5), doubling the input size increases
the container hours about 2.3× for the un-optimized case.

We first establish that I/O contention can be a problem,
then show that merging I/O-intensive stages (§2.5) can re-
duce this problem.

The problem of I/O contention: Figure 7 examines
the container hours spent in each stage for our three work-
loads, both without optimization and with de-duplication.

We see that the compute hours of the snzip stage grow
dramatically as the workload size increases. Even with
de-duplication, the snzip stage consumes many container
hours even though we know it actually requires little com-
putation (Table 1).

This huge increase in cost for the snzip stage is because
it is very I/O intensive (see Table 1), reading a file that
is about 765 MB and creating at 2 GB output. Without
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Figure 7: Computation spent in each stage (bar colors),
unoptimized (left bar) and de-duplicated (right), for three
size workloads (bar groups).

contention, this step takes 28 s, but when multiple concur-
rent instances are run, and with HDFS 3-way replication
running underneath, we see a significant amount of disk
contention.

Some of this cost is due to our hardware configuration,
where our compute nodes have fewer disk spindles than
cores. But even with a much more expensive SSD-based
storage system, contention can occur over memory and
I/O buses.

Benefits of Merging I/O-Bound Stages: Next we
quantify the improvement in throughput that occurs when
we allow duplicate I/O-intensive stages and merge them
with a downstream, compute-intensive stage. This merger
avoids storing I/O on stable storage (and it avoids file
replication); the stages communicate directly through
FIFO pipes. We expect that this reduction in I/O will make
computation with merged stages more efficient.

We examine three different input sizes (8, 16, and 24
files) with the DNS pipeline with four different optimiza-
tions: first without computation de-duplication and with
each stage in a separate process, then merging the snzip
stage with the next downstream stage, then those two
cases with compute de-duplication.

Figure 8 shows the results of this experiment, with dif-
ferent input sizes in a cluster of bars, and each optimiza-
tion one of those bars in the cluster.

We expect merging the snzip stage with the next stage
to reduce I/O, and to also reduce compute time by reduc-
ing disk contention. Comparing the left two bars (raw
umber and olivetone) of each group shows that this opti-
mization helps a great deal. We still see benefit after stage
de-duplication (compare the right two bars of each group),
but the relative savings is much less, because the amount
of I/O contention is much, much lower.
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Figure 8: Computation with and without I/O merged with
duplicated processing (left two bars) and de-duplicated
(right two bars) for three size workloads (bar groups).

Summary: We have shown that I/O contention can
cause a super-linear increase in cost, balancing I/O across
stages by running I/O intensive stages with the next stage
can greatly improve efficiency, reducing container hours
even if some lightweight stages duplicate computation.
We saw up to 2× less container hours consumption and
this benefit increases with higher I/O contention. That
merging snzip helps should be expected—enabling com-
pression for all stages of MapReduce output is a com-
monly used best practice, and the snzip protocol was
designed to be computationally lightweight. However,
Plumb generalizes this optimization to support merging
any I/O-intensive stages, and we provide measurements
to detect candidates stages to merge.

3.3 Pipeline Disaggregation Addresses
Structural Lumpiness

Pipeline disaggregation (§2.6) addresses structural lumpi-
ness by allowing additional copies of slower stages to run
in parallel. Structural lumpiness occurs when two stages
have unbalanced runtimes and they are forced to run to-
gether, allowing progress at only the rate of the slowest
stage. Here we first demonstrate the problem, the show
how pipeline disaggregation addresses it.

The problem of structural lumpiness: To demon-
strate structural lumpiness we use a two-stage pipeline
where first stage decompresses snzip-compressed input
and recompresses it with xz, and the second stage does the
opposite. Xz compression is quite slow, while xz decom-
pression and snzip compression and decompression are
quite fast. (The first stage has mean runtime of 19.65 min-
utes, standard deviation 5.8 minutes after 10 trials, while
the second stage runs in just less than 1 minute.)

We compare two pipeline configurations: aggregated
and disaggregated. With an aggregated pipeline, both
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Figure 9: Comparing aggregated (left bar) and de-
aggregated (right) processing, with delay added by
cpulimit (top row) and sleep minutes (bottom row).

stages run in a single container with 2 cores and 2 GB of
RAM, with each process communicating via pipes. For a
disaggregated pipeline, each of the stages runs indepen-
dently on a container with 1 core and 1 GB memory, with
communication between stages through files. Thus the ag-
gregated pipeline will be inefficient due to internal frag-
mentation since the first stage is 20× slower than the sec-
ond, but the disaggregated pipeline will have somewhat
greater I/O costs but computation will be more efficient.

During the experiment we vary lumpiness in two differ-
ent ways. First, we can reduce the CPU speed available
for use with cpulimit, and we can also lengthen computa-
tion by adding intentional sleep.

Figure 9 compares aggregated and disaggregated
pipelines (the left and right of each pair of blocks), exam-
ining compute-time used (the left two graphs) and wall-
clock latency (the right two graphs), with both methods
of slow down (cpulimit in the top two graphs and sleep
in the bottom two). We see that disaggregation is consis-
tently much lower in compute minutes used (compare the
left and right bars in the left two graphs). Aggregated is
usually twice the number of compute minutes because one
of its cores is often idling.

Disaggregation adds lightly to latency (compare the
right bar to the left in the right two graphs), but only a
fixed amount. This increase in latency represents the cost
of queueing intermediate data on disk.

We see generally similar results for both methods of
slowdown, except that CPU throttling shows much greater
variance in the disaggregated case. This variance follows
because our Hadoop cluster has nodes of very different
speeds.

Summary: This experiment shows that disaggregation
can greatly reduce the overhead of structural lumpiness,
although at the cost of slightly higher latency.
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Figure 10: The throughput comparison of static (left bar)
and dynamically scheduled workers (right) as lumpiness
increases.

3.4 Disaggregation Addresses of Data
Lumpiness

Disaggregation is also important to address data lumpi-
ness. With data lumpiness, changes in input temporarily
alter the compute balance of stages of the pipeline. Dis-
aggregation enables dynamic scheduling where Plumb ad-
justs the worker mix to accommodate the change in work-
load (§2.7). We next demonstrate the importance of this
optimization by replaying a scenario drawn from our test
application.

We encountered data lumpiness in our DNS Pipeline
when data captured during a DDoS attack stressed the
dnsanon stage of processing—TCP assembly increased
stage runtime and memory usage six-fold. We repro-
duce this scenario here by replaying a input of 100 files
(200 GB of data when uncompressed), while changing
none, half, or all to data from a DDoS attack. (Both reg-
ular and attack traffic are sampled from real-world data.)
We use our DNS processing pipeline and a workload of
100 files. We use YARN with 25 cores for this experi-
ment. We then measure throughput (container hours) and
time to process all input.

Figure 11 shows latency results from this experiment.
(Throughput, measured by container hours, is similar in
shape as shown in Figure 10.) The strong result is that dy-
namic scheduling greatly reduces latency as data lumpi-
ness increases, as shown by the relative difference be-
tween each pair of bars. Without any DDoS traffic we can
pick a good static configuration of workers, but dynam-
ically adapting to the workload is important when data
changes.

To show how the system adapts, each column of Fig-
ure 12 increases amount of data lumpiness (the fraction
of DDoS input files), Each row of graphs shows one as-
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Figure 12: Comparing dynamic scheduling at 0%, 50%
and 100% lumpiness: First row shows worker assignment
to stages over time. Second row shows corresponding data
production. Third row shows queue lengths for 5 stages.

pect of operation: the number of workers, the number of
files output from each of the three final stages, and queue
lengths at each stage. In the top row we see how the mix
of workers changes with dynamic scheduling as the in-
put changes, with more dnsanon processes (the brown line
with the * symbol) scheduled as lumpiness increases.

3.5 Overall Evaluation on Real Inputs
To provide an overall view of the cumulative effect of
these optimizations we next look at runtime to process two
different days of real-world data, with a third day showing
a synthetic attack to show differences in our system.

We draw on data from two full days of B-Root DNS:
2016-06-22, a typical day, with about 1.8 TB of input
data in 896 files, and 2016-06-28, a day when there was
a large DDoS attack [35]. Because of problems with

scenario date input latency
normal day 2016-06-22 1.8 TB / 896 files 8.3h
attack day 2016-06-25 1.4 TB / 711 files 6.20h
simulated attack — 1.8 TB / 896 files 11.75h

Table 4: Latency with Plumb on full day worth of DNS
data using 100 cores

rate-limiting associated with the DDoS attack, we actu-
ally capture much less data on that day, capturing about
1.4 TB of traffic in 711 files. To account for this input
difference, we construct an synthetic attack day where we
replicate one attack input 896 times, thus providing ex-
actly the same volume as our normal day (1.8 TB in 896
files), but with data that is more expensive to process (the
dnsanon stage is about 6× longer for attack data than reg-
ular data). This synthetic attack data depicts a worst case
scenario where full day traffic is stressful. (Input data is
compressed with xz rather than snzip as in our prior ex-
periments, but xz decompression is quite fast so this does
not change the workload much.)

We process this data on our compute cluster with
a fixed 100 containers, while using all optimizations
(de-duplication and lumpiness mitigation) and I/O-bound
merging.

Table 4 shows the results of this experiment. The first
observation is that, in all cases, plumb is able to keep
up with the real-time data feed, processing a day of in-
put data in less than half a day. Our operational system
today processes data with a hand-coded system using a
parallel/multi-stage/multi-core strategy (all stages run in
a single large YARN container). Based on estimates from
individual file processing times, we believe that Plumb re-
quires about one-third the compute time of our hand-build
system. Most of the savings results from elimination of
internal fragmentation: we must over-size our hand-build
system’s containers to account for worst-case compute re-
quirements (if we do not, tasks will terminate when they
exceed container size), but that means that containers are
frequently underutilized.

We were initially surprised that the processing day of
DDoS attacks is complete faster than the typical day (6.2h
vs. 8.3h), but that difference is due to there being less
data on this day. This drop in traffic is due to a link-layer
problem with B-Root’s upstream provider where we were
throttling traffic before collection due to its high rate, thus
not receiving all traffic addressed to B-Root. Actual traffic
sent to B-Root on that day was about 100× normal dur-
ing the attack. We correct for this under-reporting with
our synthetic attack data, which shows that a day-long at-
tack requires about 40% more time to complete process-
ing than our regular day.

Based on this success we are planning to transition
Plumb into production use as testing is completed.
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Figure 13: Comparing alternative configurations of stages per
container. Parallel/multi-stage/multi-core with limits marked as
lumped.

3.6 Comparing Design Alternatives for
Stages per Container

In §2.6 we examined four alternatives (Table 2) for map-
ping pipeline stages into containers. We suggest that
linearized/single-stage/1-core provides flexibility and ef-
ficiency. The alternative is to allow many stages run in
one container, with or without resource over-commitment.
Here we show that both of those alternatives have prob-
lems: without over-commitment is inefficient, and allow-
ing over-commitment results in thrashing.

The top two graphs in Figure 13 compare
parallel/multi-stage/multi-core with limits (left bar
in each group) against linearized/single-stage/1-core
(“disaggregated”, the right bar in each group) for 4
sizes of input data. The left graph examines resource
consumption, measured in container hours, and the
right, latency. We see that disaggregation cuts resource
consumption to less than half because it avoids internal
fragmentation (idling cores). The effects on latency (right
graph) is present but not as clear in this experiment;
latency differences are difficult to see because CPU
heterogeneity in our cluster results in high variance in
latency.

The bottom graph in Figure 13 evaluates parallel/multi-
stage/multi-core with and without limits by showing com-
pute load over almost two years. Load is taken per minute
by measurements of system load from one 8-core com-
pute node of our current hand-built pipeline in opera-
tion today. There are at most 4 concurrent stages in
our hand-built pipeline. Around Feb. 2017 (about one-
third of the way across the graph) we changed this sys-
tem from under-committed, with each container included
4 cores, to over-committed, with each container allocat-
ing only 2 cores. Under-committed resources ran well
within machine capacities, but often left cores idle (as

shown in the top two graphs). Over-commitment after
Feb. 2017 shows that load average often peaks with the
machine stressed with many more processes to run than
it has cores. We conclude that it is very difficult to as-
sign a static number of cores to a multi-process com-
pute job while avoiding both underutilization and over-
commitment. With dynamically changing workloads, one
problem or the other will almost always appear. Disaggre-
gation with the linearized/single-stage/1-core avoids this
problem by better exposing application-level parallelism
to the batch scheduler.

4 Related Work
We next briefly compare Plumb to representatives from
several classes of big-data processing systems. Over-
all, our primary difference from prior work is our focus
on integrating workflow from multiple users and coping
with classes of performance problems (data and structural
lumpiness) in a framework with minimal required seman-
tics of the underlying data.

Workflow management: Workflow systems for sci-
entific processing use explicit representations of their
processing pipeline to capture dependencies and assign
work to large, heterogeneous compute infrastructure. Un-
like scientific workflow systems (for example [11, 9])
we only use workflow to capture data flow dependency
to facilitate de-duplication. Big-data workflow sys-
tems [21, 45] bring together computation from different
systems (perhaps MapReduce and Spark) into one work-
flow; we instead focus on optimizing inside a common,
loosely coupled framework. Other systems place greater
constraints on components (such as [26, 44, 25, 36]), al-
lowing component-specific optimizations (for example,
joins); our model does not strive for this level of inte-
gration. We consider data as opaque binary stream with
unique naming scheme to find and unlock data and pro-
cessing duplication. We currently use Apache YARN as a
our executor [42].

Batch systems: Batch systems, such as MapRe-
duce [10] and Dryad [20] focus on scheduling and fault
tolerance, but do not directly consider streaming data, nor
integration of multi-user workloads as we do. Google’s
pipelines provide meta-level scheduling, “filling holes” in
a large cluster [13]. Like them, we are optimizing across
multiple users, but unlike their work, we assume a single
framework and leave cluster-wide sharing to YARN.

Streaming big-data systems: A number of recent sys-
tems focus on low-latency processing of small, streaming
data, including Nephele [23], MillWheel [1], Storm [40],
and at Facebook [8]. They often strive to provide simple
semantics, such as transaction-like, exactly-once evalua-
tion, and stream data in small pieces to minimize latency.
We instead focus on large-file streaming, because our ap-
plication needs a broader view than single records, and to
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provide easier fault-tolerance and completeness tests. Our
focus on processing of larger blocks of data raises issues
of structural and data lumpiness that differ from systems
with fine-grain processing.

Streaming systems like Flink [5] optimize for through-
put or latency by configuration; we focus on throughput
while considering latency a secondary goal.

Programming-language integration: A number of
programming languages provide abstractions that inte-
grate with big-data processing and optimizations (for ex-
ample [41, 47, 7, 37]). These systems often optimize
only for a given job, while we integrate work from mul-
tiple users. Compilers can match an I/O pattern to a suit-
able optimization when framework enforces structure on
I/O consumption [19] easily. SQL-compilers for declar-
ative languages [6, 28, 39, 32, 4, 27, 3] and Parallel
databases [31] match language abstractions to database
access patterns and optimizations.

Most approaches integrated with programming lan-
guages focus on structured data. We instead target arbi-
trary programs processing data without a formal schema.
In addition, they typically optimize each user’s compu-
tation independently, while we consider integrating pro-
cessing from multiple groups.

Big-data schedulers: Many systems consider different
schedulers to optimize resource consumption or delay [15,
33, 46, 12], applications or to enhance data locality [48].
We work with existing schedulers, optimizing inside our
framework to mitigate lumpiness.

Straggler handling: Lumpiness can be thought of
a kind of performance problem like straggler handling.
A number of systems cope with stragglers. Specula-
tive execution [10] recovers from general faults. Static
sampling of data [43, 16], predictive performance mod-
els [24, 55, 53], dynamic key-range adjustment [20], and
aggressive data division [29] seek to detect or address data
lumpiness. These systems are often optimized around
specific data types or computation models, and assume
structured data. Our system can be thought of as another
approach to addressing this problem where there are few
assumptions about the underlying data.

Resource optimization for high throughput: Sev-
eral systems exploit close control and custom scheduling
of cluster I/O [34] or memory [22, 49] to provide high-
throughput or low latency operation. Such systems often
require full control of the cluster; we instead assume a
shared cluster and target good efficiency instead of abso-
lute maximum performance.

One area of work emphasizes exploiting cluster mem-
ory for iterative workloads [52, 51, 2, 50, 49]. While we
consider sharing across branches of a multi-user pipeline,
our workloads are streaming and so are not amenable to
caching.

Multi-user systems: Like our work, Task Fusion [14]

merges jobs from multiple users. They show the potential
of optimizing over multiple users, but their work is not au-
tomated and does not address performance problems such
as structural and data lumpiness.

Several systems suggest frameworks or libraries to im-
prove cluster sharing and utilization [30, 18]. Some of
whose resemble our optimized pipeline, but we focus on
a very simple streaming API and loosely coupled jobs.

5 Conclusions
We have described Plumb, a system for processing large-
block, streaming data in a multi-user environment. Users
specify their workflow, allowing Plumb to de-duplicate
computation and storage. Plumb accommodates both
structural and data lumpiness by dynamically schedul-
ing workers for each processing data. We have exercised
Plumb on workloads drawn from DNS processing, show-
ing it shifts in traffic due to events such as DDoS attacks,
and that it significantly more efficient than current inflex-
ible, hand-built systems. We expect that Plumb will be of
use to similar kinds of applications that need to analyze
streaming data structured as large blocks.
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