To appear, ACM SIGCOMM Workshop on Computer Networking: Curriculum Designs and
Educational Challenges, pp. 45--46. August 20, 2002. Pittsburgh, PA, USA.

Using Nsin the Classroom and L ab*

Christos Papadopoul os and John Heidemann'

1 Introduction

The ns-2 network simulator is widely used in research
to evaluate new networking protocols (see http://www.
isi.edu/nsnam/ns/ns-research.html). Even though
ns has been used by researchers, it has seen relatively little
use in the classroom and laboratory. Yet network simulation
is a good fit for classroom and laboratory use because sim-
ulation allows capturing and dissecting all aspects of proto-
col operation in a much simpler way that is possible with
real code and experiments. On the other hand, ns is a large
piece of software, portions of it can be complex, and start-
up overhead makes it difficult to bring to bear by a new
student or busy professor.

This white paper describes how we are using ns in net-
working education. We seek to apply simulation to two dif-
ferent areas: the classroom and the laboratory. For class-
roomuse, we seek to augment lectures with animations that
show specific protocol behavior. In laboratory use, stu-
dents modify simulation scenarios to explore protocol de-
sign choices. Here Ns is used directly by students, who
submit their work for grading. We give a brief summary of
how we have used ns in these roles and changes we have
made to ns to make it more amenable to such purposes.

2 Classroom Use

Ns’ companion tool nam provides packet-level anima-
tions of ns simulations. Animations have been used before
to show algorithms such as sorting. We believe that ani-
mations are also useful to illustrate network protocols, by
visualizing packet exchanges and state distributed in differ-
ent nodes.

We are building a library of animations that illustrate sev-
eral networking protocols, including transport-level issues
(stop and wait, the effect of various back-off strategies, and
TCP-specific issues such as slow-start and fast retransmit),
router queueing policies (drop-tail, RED, etc.), multicast
routing (flood and prune, PIM shared- and source-specific-
trees), and reliable multicast (SRM, PGM).

*This work was supported as part of the CONSER project, funded by
NSF as grant number ANI-9986208.

fChristos Papadopoulos and John Heidemann are with the USC
Comptuer Science Department and the USC Information Sciences Insti-
tutes. E-mail: {christos,johnh}@isi.edu.

Experiences. Our experience with animations in the
classroom have been very positive. Since they play-out at
some fraction of real-time, animations are particularly good
at demonstrating time-dependent concepts such as the delay
in TCP’s reaction to congestion or loss. Animations are also
good at representing distributed state since one animation
shows several nodes at the same time. For example, nodes
are annotated with SRM timer values to illustrate the bene-
fits RTT-biased and randomized delay intervals, and colors
are used to distinguish nodes waiting to send a repair re-
quest from those whose requests have been suppressed.

We are also gaining experience authoring animations.
Important lessons learned include the need to have separate
animations, each focused on a specific concept, rather than
tackling multiple concepts in a single animation. It’s also
important that the animation be completely self-contained.
Initially we anticipated animations to be augmented with
web pages (particularly for self-guided animations) In prac-
tice, however, it has proven difficult for an observer to know
when to focus on the web page and when on the animation.
Finally, as a practical matter, it should be very easy to get
started using animations. It should be easy to find anima-
tions, understand the context of the work, and put together
the necessary pieces quickly. The ability download a bi-
nary version of nam and animation scripts are important
simplifications (as opposed to compiling the software and
running simulations) if they are to be integrated into a busy
semester.

Approaches: Our initial experiences with classroom
annotation have prompted several developments. First,
we established a web-based repository of educational ns
scripts at http://www.isi.edu/nsnam/repository/.
This database stores scripts in a uniform format and allows
anyone to contribute new scripts via a simple electronic
form. As of this writing, the database contains about two
dozen modules contributed from four different institutions.

Second, we have refactored some of or early animations
into smaller, better focused modules to clarify the concepts.

Finally, we plan to gradually improve nam’s annotation
capabilities. Although nam currently provides packet-level
animations with a fair amount of control over node label-
ing, color, shape, and packet color, more work is needed
to add text annotations for packets (for example, to label
a packet “3rd dup-ack” for TCP fast-retransmit), and make



these capabilities easier to use from ns scripts.

3 Laboratory Use

An important complement to classroom lectures are lab-
oratory experiments. In networking, this often implies pro-
gramming, protocol design, experiments and measurement.
We believe that simulation has an important role here, since
it allows students to examine problems with much less work
and of much larger scope than are possible with experi-
ments on real hardaware. Simulation can be easier than
experimentation because simulators do not need to repro-
duce all the details of the real world and they can be easily
instrumented. In addition, simulations of dozens or hun-
dreds of nodes are easy on limited hardware, many more
than is affordable if physical hardware was required.

We have used ns to do several types of laboratory exper-
iments. The simplest are of the form “run this script” and
examine the trace output or nam animation, asking students
to identify TCP behavior. The next step up is to have them
modify the simulation script in simple ways that require
some or little understanding of the script details. Exam-
ples include “change the router queueing policy from drop-
tail to RED”, “vary the link propagation delay and observe
the results”, or “observe this scenario and describe what to
change to improve throughput”. We have also assigned sim-
ple protocol implementations in the context of a message
passing framework (described below) or modifying an ex-
isting C++ implementation.

Experiences: Our experiences with experiments as
homework problems have also been positive, but clearly
such problems must be designed with care. If more compli-
cated assignments are to be assigned (such as those requir-
ing new coding), it’s best to introduce the simulator gradu-
ally.

One observation that initially surprised us is that many
students were not familiar with the concepts behind dis-
crete event simulation. Confusion between real-time and
simulation-time, and multithreading and event-driven pro-
gramming can be prevented with a brief review of the con-
cepts (typically a half-hour to hour of lecture time).

We were pleased to discover that students adapted quite
quickly to using either Tcl to specify new scenarios, or C++
to changing existing modules, and many were able to use
Tcl as an scripting language to specify the scenario. Efforts
that require them to work in both languages simultaneously
are probably best reserved for more advanced classes. We
have been hesitant, however, to give students a blank slate.
The framework of an existing script is necessary to avoid
stumbling over initialization details that are irrelevant to
protocol design.

Approaches: Our experience has suggested several help-
ful approaches. First, we are developing a graphical edi-

tor based on nam that allows strictly GUI-based creation of
simple scenarios. With the editor, topology and traffic de-
sign can be done by point, drag and click operations. Con-
figuration of parameters is done with dialog boxes, and the
simulation can be launched directly from the editor win-
dow. The editor hides irrelevant details such as initialization
and scripting, allowing undergraduates to do simple exper-
iments from scratch. While, we do not believe a GUI editor
can encompass the whole range of simulations possible in
ns (there are simply too many options to make that feasible),
the editor exposed a subset of the ns functionality without
any traditional programming. (Our experiences with lab use
of the editor so far are limited to one semester.)

If ns is to be used for coding complete new protocols,
the amount of background students require must be mini-
mized. We are developing a message passing module in ns
to allow simple protocols to be developed within a subset
of the simulator. This includes simple ways to add head-
ers and process messages at each node, with alternative im-
plementations either completely in Tcl and completely in
C++. Early experience in one semester has been promising:
as an example homework, students successfully simulated
scenarios showing the synchronization of periodic routing
messages, as described by Floyd and Jacobson. As a side
benefit, the message passing model may also be useful for
researchers who want to quickly prototype a new protocol.

Finally, as a practical matter, an ns installation can some-
times be difficult and by default it consumes a large amount
of disk space. We recommend installing ns on personal
machines using the “allinone” package, which provides a
simple download and installation process. Variations in
Windows development environments have encouraged us
to provide a pre-compiled binary for that platform.

To mitigate the size of an ns installation, in systems
where many accounts have a shared file system we use a
shared installation of ns. For assignments where students
need to modify and recompile ns, we have a procedure
where students create symbolic links to the source. Stu-
dents then remove the symbolic links and make copies of
the specific files they would like to change.

4 Conclusions

We have been happy with our use of ns in the class and
lab, although we plan to continue to refine the tools and
lessons. Perhaps ns and nam are now able to serve not just
as tools for researchers, but also as tools for education.



