
Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

Management of Replicated Volume Location

Data in the Ficus Replicated File System�

Thomas W. Page Jr., Richard G. Guy, John S. Heidemann, Gerald J. Popeky,

Wai Mak, and Dieter Rothmeier

Department of Computer Science

University of California Los Angeles

fpage,guy,popek,johnh,waimak,dieterg@cs.ucla.edu

Abstract

Existing techniques to provide name transparency in distributed �le systems have been de-
signed for modest scale systems, and do not readily extend to very large con�gurations. This
paper details the approach which is now operational in the Ficus replicated Unix �ling envi-
ronment, and shows how it di�ers from other methods currently in use. The Ficus mechanism
permits optimistic management of the volume location data by exploiting the existing directory
reconciliation algorithms which merge directory updates made during network partition.

1 Introduction

Most Unix �le system implementations separate the maintenance of name binding data into two
levels: within a volume (or �lesystem), directory entries bind names to low-level identi�ers (such
as inodes); a second mechanism is used to form a super-tree by \gluing" the set of volumes to each
other. The traditional Unix volume super-tree connection mechanism has been widely altered or
replaced to support both small and large scale distributed �le systems. Examples of the former
are Sun's Network File System (NFS) [13] and IBM's TCF [12]; larger scale �le systems are
exempli�ed by AFS [7], Decorum [6], Coda [14], Sprite [9], and Ficus [2, 10]).

The problem addressed by this paper is simply stated as follows: in the course of expanding a
path name in a distributed �le system, the system encounters a graft point. That is, it reaches a
leaf-node in the current volume which indicates that path name expansion should continue in the
root directory of another volume which is (to be) grafted on at that point. How does the system
identify and locate (a replica of) that next volume? Solutions to this problem are very much

�This work was sponsored by DARPA contract number F29601-87-C-0072.
yThis author is also associated with Locus Computing Corporation.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

constrained by the number of volumes in the name hierarchy, the number of replicas of volumes,
the topology and failure characteristics of the communications network, the frequency or ease
with which replica storage sites or graft points change, and the degree to which the hierarchy of
volumes spans multiple administrative domains.

1.1 Related Solutions

The act of gluing sub-hierarchies of the name space together is commonly known as mounting.1 In
a conventional single-host Unix system, a single mount table exists which contains the mappings
between the mounted-on leaf nodes and the roots of mounted volumes. However, in a distributed
�le system, the equivalent of the mount table must be a distributed data structure. The distributed
mount table information must be replicated for reliability, and the replicas kept consistent in the
face of update.

Most distributed Unix �le systems to some degree attempt to provide the same view of the
name space from any site. Such name transparency requires mechanisms to ensure the coherence
of the distributed and replicated name translation database. NFS, TCF, and AFS each employ
quite di�erent approaches to this problem.

To the degree that NFS achieves name transparency, it does so through convention and the
out-of-band coordination by system administrators. Each site must explicitly mount every volume
which is to be accessible from that site; NFS does not traverse mount points in remotely mounted
volumes. If one administrator decides to mount a volume at a di�erent place in the name tree, this
information is not automatically propagated to other sites which also mount the volume. While
allowing sites some autonomy in how they con�gure their name tree is viewed as a feature by
some, it leads to frequent violations of name transparency which in turn signi�cantly complicates
the users' view of the distributed �le system and limits the ability of users and programs to move
between sites. Further, as a distributed �le system scales across distinct administrative domains,
the prospect of maintaining global agreement by convention becomes exceedingly di�cult.

IBM's TCF, like its predecessor Locus [12], achieves transparency by renegotiating a common
view of the mount table among all sites in a partition every time the communications or node
topology (partition membership) changes. This design achieves a very high degree of network
transparency in limited scale local area networks where topology change is relatively rare. How-
ever, for a network the size of the Internet, a mount table containing several volumes for each
site in the network results in an unmanageably large data structure on each site. Further, in a
nationwide environment, the topology is constantly in a state of 
ux; no algorithm which must
renegotiate global agreements upon each partition membership change may be considered. Clearly
neither of the above approaches scales beyond a few tens of sites.

Cellular AFS [15] (like Ficus) is designed for larger scale application. AFS employs a Volume
Location Data Base (VLDB) for each cell (local cluster) which is replicated on the cell's backbone
servers. The mount point itself contains the cell and volume identi�ers. The volume identi�er
is used as a key to locate the volume in a copy of the VLDB within the indicated cell. Volume
location information, once obtained, is cached by each site. The VLDB is managed separately

1We will henceforth use the term \graft" and \graft point" for the Ficus notion of grafting volumes while
retaining the mount terminology for the Unix notion of mounting �lesystems.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

from the �le system using its own replication and consistency mechanism. A primary copy of the
VLDB on the system control machine periodically polls the other replicas to pull over any updates,
compute a new VLDB for the cell, and redistribute it to the replicas. The design does not permit
volumes to move across cell boundaries, and does not provide location transparency across cells,
as each cell's management may mount remote cell volumes anywhere in the namespace. Again,
this may be billed as a feature or a limitation depending on where one stands on the tradeo�
between cell autonomy and global transparency.

1.2 The Ficus Solution

Ficus uses AFS-style on disk mounts, and (unlike NFS) readily traverses remote mount points.
The di�erence between the Ficus and AFS methods lies in the nature of Ficus volumes (which
are replicated) and the relationship of graft points and volume location databases.

In Ficus, like AFS [5], a volume is a collection of �les which are managed together and which
form a subtree of the name space2. Each logical volume in Ficus is represented by a set of volume
replicas which form a maximal, but extensible, collection of containers for �le replicas. Files (and
directories) within a logical volume are replicated in one or more of the volume replicas. Each
individual volume replica is normally stored entirely within one Unix disk partition.

Ficus and AFS di�er in how volume location information is made highly available. Instead of
employing large, monolithic mount tables on each site, Ficus fragments the information needed to
locate a volume and places the data in the mounted-on leaf (a graft point). A graft point maps
a set of volume replicas to hosts, which in turn each maintain a private table mapping volume
replicas to speci�c storage devices. Thus the various pieces of information required to locate and
access a volume replica are stored where they will be accessible exactly where and when they will
be needed.

A graft point may be replicated and manipulated just like any other object (�le or directory) in
a volume. In Ficus the format of a graft point is compatible with that of a directory: a single bit
indicates that it contains grafting information and not �le name bindings. The extreme similarity
between graft points and normal �le directories allows the use of the same optimistic replication
and reconciliation mechanism that manages directory updates. Without building any additional
mechanism, graft point updates are propagated to accessible replicas, uncoordinated updates are
detected and automatically repaired where possible, and reported to the system administrators
otherwise.

Volume replicas may be moved, created, or deleted, so long as the target volume replica and
any replica of the graft point are accessible in the partition (one copy availability). This optimistic
approach to replica management is critical, as one of the primary motivations for adding a new
volume replica may be that network partition has left only one replica still accessible, and greater
reliability is desired.

This approach to managing volume location information scales to arbitrarily large networks,

2Whereas a �lesystem in Unix is traditionally one-to-one with a disk partition, a volume is a logical grouping
of �les which says nothing about how they are mapped to disk partitions. Volumes are generally �ner granularity
than �lesystems; it may be convenient to think of several volumes within one �lesystem (say one volume for each
user's home directory and sub-tree) though the actual mapping of volumes to disk partitions is a lower level issue.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

with no constraints on the number of volumes, volume replicas, changes in volume replication
factors, or network topology and connectivity considerations.

1.3 Organization of the Paper

This introduction has presented the problem of locating �le replicas in a very large scale, ge-
ographically distributed replicated �le system, and brie
y stated our solution. Section 2 gives
an overview of Ficus to put our solutions in context. Section 3 details our volume location and
autografting strategy. Then, Section 4 examines the consequences of updating volume location
information using the optimistic concurrency and lazy propagation policy. Section 5 presents our
conclusions.

2 Overview of Ficus

In order to convey the context in which our solutions to replicated volume location information
management are employed, this section presents an overview of the Ficus replicated �le system.
Both its optimistic concurrency control and stackable layered structuring signi�cantly in
uence
the character of our solutions to con�guring the name space.

Ficus is a replicated distributed �le system which can be added easily to any versions of the
Unix operating system supporting a VFS interface. It is intended to provide highly reliable,
available, and scalable �ling service, both to local clusters of machines and to geographically
distributed work groups. It assumes no limits on the number of sites in the network, the number
of Ficus volumes, or on the number of volume replicas. However, while placing no hard limit on
the number of replicas, Ficus does assume that there is seldom call for more than a small number
of fully updatable replicas of any one volume and hence optimizes for the limited case.

Ficus supports very high availability for write, allowing uncoordinated updates when at least
one replica is accessible. No lost updates semantics are guaranteed; con
icts are reliably detected
and directory updates are automatically reconciled. Asynchronous update propagation is provided
to accessible copies on a \best e�ort" basis, but is not relied upon for correct operation. Rather,
periodic reconciliation ensures that, over time, all replicas converge to a common state. We argue
that serializability is not provided in single machine Unix �le systems, and is not required in
distributed �le systems. This kind of policy seems necessary and appropriate for the scale and
failure modes in a nation-wide �le system. Details of the reconciliation algorithms may be found
in [3, 11], while for more information about the architecture of Ficus see [10, 4].

2.1 Reconciliation

The essential elements of the optimistic replica consistency strategy are the reconciliation algo-
rithms which ensure eventual mutual consistency of replicas. They are necessary since update
is permitted during network partition, and since update propagation to accessible replicas is not



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

coordinated via a two-phase commit protocol. The algorithms guarantee that updates will even-
tually propagate and that con
icting updates will be reliably detected, even given the complex
topology and failure modes of the internet communications environment. The reconciliation al-
gorithms propagate information through intermediate sites in a \gossip" fashion to ensure that
all replica sites learn of updates, even though any two replica hosts may rarely or never directly
communicate with each other.

The optimistic consistency philosophy applies not only to updates to existing �les, but also to
the name space (creation and deletion of names and the side-e�ects of deleting the last name for
a �le). The Ficus reconciliation system is able to reconcile most \con
icting" directory updates
since the semantics of operations on directories are well-known. The exception is the independent
creation of two �les with the same name (a name con
ict) and the update of a �le which is removed
in another replica (a remove-update con
ict) which the system can only detect and report. In the
case of operations on arbitrary �les where the system cannot know the semantics of the updates,
Ficus guarantees only to detect and report all con
icts.

A reconciliation daemon running the algorithms periodically walks the tree of a volume replica,
comparing the version vector of each �le or directory with its counterpart in a remote replica of the
volume. Directories are reconciled by taking the union of the entries in the two replicas less those
that have been deleted. Consider for example, the case where two replicas, A and B, of a directory
have been updated independently during a network partition. A new �le name, Brahms, has been
added to A, while the name, Bach, has been deleted from B. When these two replicas reconcile, it
is clear that neither can be directly propagated over the other because an update-update con
ict
exists (both directory replicas have changed). However, given the simple semantics of directories,
it is clear that the correct merging of the two replicas should contain the new name Brahms, and
not the name Bach. This is what results in Ficus. The case where one replica knows about a �le
name create and the other does not is disambiguated from the case where one has the �le's entry
but the other has deleted it by marking deleted entries as \logically deleted". File names marked
logically deleted may be forgotten about when it is known that all replicas know that all replicas
have the name marked logically deleted (hence the two-phased nature of the algorithms). When
the link count for a replica goes to zero, garbage collection may be initiated on the pages of the
�le; however, the �le data cannot actually be freed until reconciliation determines that all replicas
have a zero link count (no new names have been created), a dominant version exists, and it is the
dominant replica being removed (there is no remove-update con
ict).3

Each �le replica has a version vector attached to it with a vector element for each replica
of the �le. Each time a �le is updated, the version vector on the copy receiving the update is
incremented. File replicas are reconciled by comparing their version vectors as described in [11].
As a part of reconciliation, a replica with a dominant version vector is propagated over the out-
of-date replica which also receives the new version vector. If neither replica's vector is dominant,
a write-write con
ict is indicated on the �le and a con
ict mark is placed on the local replica,
blocking normal access. Access to marked �les is permitted via a special syntax in order to resolve
con
icts. We will see how these same algorithms may be leveraged to manage the volume location
data.

3The details of the two-phase algorithms for scavenging logically deleted directory entries and garbage collecting
unreferenced �les can be found in [1, 3]. The issues are somewhat more subtle than a �rst glance would suggest.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

2.2 Stackable Layers

Ficus is also unique in its support for extensible �ling environment features via stackable layered
structuring. This architecture permits replication to co-exist with other independently imple-
mented �ling features and to remain largely independent of the underlying �le system implemen-
tation. We brie
y introduce the layered architecture here; for more details, see [4, 10, 2]

The stackable layers architecture provides a mechanism whereby new functionality can be
added to a �le system transparently to all other modules. This is in contrast to today's Unix
�le systems in which substantial portions must be rebuilt in order to add a new feature. Each
layer supports a symmetrical interface for both calls to it from above and with which it performs
operations on the layers below. Consequently, a new layer can be inserted anywhere in the
stack without disturbing (or even having source code to) the adjacent layers. For example, a
caching layer might look for data in a cached local �le, forwarding reads to the underlying layers
representing a remote �le in the case of a cache miss. Thus, stackable layers is an architecture for
extensible �le systems.

Each layer supports its own vnode type, and knows nothing about the type of the vnode
stacked above or below4. The vnodes, which represent the abstract view of a given �le at each
layer, are organized in a singly linked list. The kernel holds a pointer to the head of the list only.
Operations on the head of the list may be performed by that vnode, or forwarded down the stack
until they reach a layer which implements them. At the base of the stack is a layer with no further
descendants, typically a standard Unix �le system.

The term \stack" is somewhat of a misnomer as there may be both fan-out and fan-in in a
stack. Fan-in occurs when a vnode is part of more than one stack (for example when a �le is
open concurrently on more than one site). Fan-out occurs when a single �le at a higher layer
is supported by several �les at the next layer down. For example, in Ficus replication, a single
�le from the user's point of view is actually supported by several �le replicas, each with its own
underlying stack.

Replication in Ficus is implemented using two cooperating layers, a \logical" and a \physical"
layer. The logical layer provides layers above with the abstraction of a single copy, highly available
�le; that is, the existence of multiple replicas is made transparent by the logical layer. The
physical layer implements the abstraction of an individual replica of a replicated �le. It uses
whatever underlying storage service it is stacked upon (such as a Unix �le system or NFS) to
store persistent copies of �les, and manages the extended attributes about each �le and directory
entry. When the logical and physical layers execute on di�erent machines, they may be separated
by a \transport layer" which maps vnode operations across an RPC channel in a manner similar
to NFS. Figure 1 illustrates a distributed �le system con�gured with three replicas: one on a local
Unix box, one connected remotely via a transport layer, and a third stored on an IBM disk farm
running MVS connected by NFS (with a Unix box running the Ficus physical layer acting as a
front-end). The replicated �le system is shown mounted both on a Unix workstation and a PC
(via PC-NFS).

4The exception is when a service such as Ficus replication is implemented as a pair of cooperating layers, a
layer may assume that somewhere beneath it in the stack is its partner.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

Ficus
Logical

PC-NFSDOS

NFS

Ficus
Physical

IBM 3090
FS

Ficus
Physical

Ficus
Physical

(UFS)
Storage

Transport Transport

(UFS)
Storage

Unix

Figure 1: A Ficus layer con�guration with three replicas.

2.3 Ficus Layers and Volumes

It is the Ficus logical layer which implements the concept of a volume. Each mounted logical layer
supports exactly one logical volume. The Ficus physical layer supports the concept of a volume
replica. Mounted under each logical layer is one physical layer per volume replica. The volume
location problem concerns how an instance of a logical layer �nds the instances of physical layers
to attach, and how to move, add, or delete such physical layer instances. Consequently, it is the
Ficus logical level which interprets the volume location information contained in graft points; as
far as the physical layer is concerned, a graft point is a normal directory.

3 Volume Locating and Autografting

A volume is a self-contained rooted directed acyclic graph of �les and directories. A volume replica
is represented by a vfs structure (see [8]). Each volume replica must store a replica of the root
directory, though storage of any other �le or directory replica within the volume is optional.

3.1 Autografting

In a distributed �le system which spans the Internet, there may be hundreds of thousands of
volumes to which we might desire transparent access. However, any one machine will only ever
access a very small percentage of the available volumes. It is therefore prudent to locate and



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

graft volumes on demand, rather than a priori. The main memory data structures associated
with grafted volumes which are not accessed for some time may be reclaimed. Hence only those
volumes which are actually in use on a given site take up resources on that machine. We refer to
this on demand connection of the super-tree as autografting.

Since a graft point resides in a \parent" volume, although referring to another volume, the
graft point is subject to the replication constraints of the parent volume. There is no a priori
requirement that the replication factor (how many replicas and their location in the network) of
a graft point match, or even overlap, that of the child volume. If each site which stores a replica
of the parent directory in which the graft point occurs also stores a copy of the graft point, the
location information is always available whenever the volume is nameable. There is very little
bene�t to replicating the graft point anywhere else and considerable loss if it is replicated any
less.

The graft point object is a table which maps volume replicas to their storage site. The sequence
of records in a graft point table is in the same format as a standard directory and hence may be
read with the same operations used to access directories. Each entry in a graft point is a triple of
the form hvolid; replid; hostnamei identifying one replica of the volume to be grafted. The volid
is a globally unique identi�er for the volume. The replid identi�es the speci�c volume replica to
which the entry refers. The hostname is the internet address of the host which is believed to house
the volume replica. The system then uses this information to select one or more of these replicas
to graft. If later, the grafted volume replica is found not to store a replica of a particular �le, the
system can return to this point and graft additional replicas as needed.

In the course of expanding a path name (performing a vop lookup operation on a vnode at
the Ficus logical level), the node is �rst checked to see if it is a graft-point. If it is, and a volume is
already grafted as indicated by a pointer to the root vnode of that volume, pathname expansion
simply continues in that root directory. The root vnodes may be chained allowing more than one
replica of the grafted volume to be grafted simultaneously. If no grafted root vnode is found, the
system will select and autograft one or more volume replicas onto the graft point.

In order to autograft a volume replica, the system calls an application-level graft daemon on
its site. Each site is responsible for mapping from volume and replica identi�ers to the underlying
storage device providing storage for that volume. If the hostname is local, the graft daemon looks
in the �le /etc/voltab for the path name of the underlying volume to graft. If the hostname is
remote, the graft daemon obtains a �le handle for the remote volume by contacting the remote
graft daemon (similar to an NFS mount; see [13]) and completes the graft.

A graft point caches the pointer to the root node of a grafted volume so that it does not have
to be reinterpreted each time it is traversed. The graft of a volume replica which is not accessed
for some time is automatically pruned so it does not continue to consume resources.

3.2 Creating, Deleting and Modifying Graft Points

Creating and deleting graft point objects require operations on the directory containing the graft
point to add or remove a name for the object. Updates to the containing directory which create
and delete names for graft points are handled identically to updates creating or deleting any entry



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

in a directory. Note that moving a graft point is equivalent to creating a copy of it in a di�erent
place in the name hierarchy, and deleting the original name. These updates change the way the
super-tree of names is con�gured and hence are very rare.

The graft points themselves (as opposed to the directory containing them) are modi�ed when-
ever a volume replica is created, dropped, or moved from one host to another. This type of
operation is transparent to the user in that it does not a�ect the name space.

While updating a graft point is also a relatively rare event, when it does occur, it is generally
important. Hence it is not reasonable to require that all, or even a majority of the replicas of the
graft point be accessible. Further, the motivation for updating a graft point may be at its greatest
precisely when the system is unstable or partitioned. Perhaps the whole reason for updating the
graft point is to add an additional replica of a volume for which, due to partitions or node failures,
only a single replica remains accessible; this update must be permitted, even though it cannot
immediately propagate to all replicas of the graft point.

Hence, for exactly the same reason that Ficus utilizes an optimistic philosophy for maintaining
the consistency of �les and directories, the same philosophy must be applied to graft points.
Rather than adopting a separate mechanism for maintenance of super-tree information, Ficus
makes double use of its directory management algorithms. This is achieved by structuring graft
points with exactly the same format as directories and, as a sequence of records, very similar
semantics.

3.3 Update Propagation

All updates in Ficus, whether to �les, directories, or graft points, are performed �rst on a single
replica of the object. An update noti�cation is then placed on a queue serviced by a daemon
which attempts to send out update noti�cations to other accessible replicas. The noti�cation
message is placed on another queue at the receiving sites. Graft point and directory update
noti�cations contain enough information to apply the update directly to the replica if the version
vector attached to the message dominates the local replica. Normal �le updates, on the other
hand, are not piggybacked with the noti�cation message and must instead be pulled over from
an up-to-date replica. Update noti�cation is on a one shot, best e�ort basis. Any replica which
is inaccessible or otherwise fails to receive the noti�cation will be brought up to date later by
reconciling with another replica.

The reconciliation daemon running on behalf of each volume replica ensures eventual mutual
consistency of both the replicated directories containing graft points, and the entries in the rep-
licated tables. It periodically checks (directly or indirectly) every other replica to see if a newer
version exists. If a newer version is found, it initiates update propagation; if an update con
ict
is found, a con
ict mark is placed on the object which blocks normal access until the con
ict is
resolved. Access to marked objects is permitted via a special syntax for use in resolving con
icts.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

4 Concurrent Updates to Graft Points

As with directories, the semantics of graft point updates are quite simple, and hence updates
which would have to be considered con
icting if viewed from a purely syntactic point of view
may be automatically merged to form a consistent result. For example, if in non-communicating
partitions, two new replicas of the same volume are created, the two resulting graft point replicas
will each have an entry that the other does not have. However, it is clear that the correct merged
graft point should contain both entries, and this is what will occur.

The somewhat surprising result is that, unlike directories, there are no con
icts resulting
from the optimistic management of the replicated graft point tables that cannot be automatically
merged by the existing directory reconciliation algorithms. That is, entries in a graft point
experience neither name con
icts or remove-update con
icts. However, as an entry in a directory,
the graft point itself (as opposed to the data in the graft point), may be manipulated so as to
generate a con
ict. The reconciliation algorithms will automatically merge all updates to graft
points, and reliable detect any name con
icts or remove-update con
icts on the directory in which
the graft point resides.

To understand how the directory reconciliation algorithms double as graft point reconciliators,
it is important to know how the graft point entries are mapped into directory entry format. The
triple hvolid; replid; hostnamei is encoded in the �le name �eld of the directory entry (the inode
pointer �eld is not used). As a result, graft point semantics are even simpler than directories as
name con
icts do not occur. Recall that if two di�erent �les are created in di�erent copies of
the same directory, a name con
ict results, since, in Unix semantics, names are unique within
directories. However, in the case of graft points two independent entries in the table with the
same h volid; replid; hostname i may be considered equivalent and cause no con
ict5.

A deleted entry in the graft point table (dropped replica) is indicated with the \logically
deleted" bit turned on. This is used to distinguish between entries which have been deleted, and
entries which never existed. Like directory entries, deleted graft point entries may be expunged
when all replicas have the entry logically deleted, and all replicas know that all replicas know the
entry is logically deleted (hence the two-phase nature of the reconciliation algorithms; see [3]).

Now consider moving a volume replica. When a replica storage site is changed, the h hostname i
�eld in the graft point entry is updated. Since this corresponds to a rename (the �eld changing
is part of the name in the directory entry view), it is carried out by creating a new entry and
marking the old one as logically deleted. When the two replicas of the graft point table are rec-
onciled, it will be found that a new entry exists and an old entry has been marked deleted; the
out-of-date replica will update its graft point accordingly. It cannot occur that the same entry
is moved independently in two copies of the graft point, since one needs to be able to access a
replica in order to move it6. Hence if replica A of the graft point is updated to re
ect a change of
host for a volume replica, then no other replica of the graft point can update the host �eld until
it has received the update propagation or reconciled with a copy which has, because until then,
it will not be able to �nd the replica.

5Due to the way volume ids and replica ids are assigned, it is not possible to create di�erent volumes or replicas
independently and have them assigned the same id.

6This requires that moving a replica and updating the graft point must be done atomically so that replicas are
not lost in the event of a crash.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

4.1 Reconciliation of Directories Containing Graft Points

While no con
icts are possible within the replicated volume location tables, the graft points
themselves are named objects in a replicated directory which may be subject to con
icting updates.
As with uncoordinated updates to any replicated directory in Ficus, the reconciliation algorithms
guarantee to merge the inconsistent replicas to create a coherent and mutually consistent version
of the directory. The same exceptions also apply; reconciliation will reliably detect name con
icts
or remove update con
icts, even if they involve graft points.

A name con
ict occurs when in one copy of a directory a new graft point is created, while in
another replica, another object (be it a graft point, ordinary �le, etc.) is created with the same
name. The system saves both entries in the reconciled directory, marking them in con
ict, and
allowing access by an extended disambiguating name for purposes of resolving the con
ict.

A remove-update con
ict is created when in one replica the last name for a graft point is
deleted (link count becomes zero), while in another the graft point is modi�ed internally (by
adding or deleting replica entries). In this case, the graft point disappears from the directory in
which it occurs, but is saved in an orphanage from which it may be later retrieved or deleted7.

5 Conclusions

In order to provide a network transparent view of the �le name space, all sites in the system must
agree on what volumes are grafted where, and be able to locate a replica. Previous methods which
rely on either a fully replicated mount table, informal coordination among system administrators,
or replication only within a cell, fail when the system scales towards millions of sites. The
solution to this problem in Ficus is predicated on the beliefs that the volume location data must
be selectively replicated for performance and availability, and the replicas must be optimistically
managed since a conservative approach restricts updates unacceptably.

This paper presents a solution to volume location data management in which the super-tree
of volumes is glued together by graft points which are stored in the �le hierarchy itself. Graft
points may be replicated at any site at which the volume in which they occur is replicated. The
same reconciliation daemons which recover from uncoordinated update to �les and directories in
Ficus also manage the graft point objects, detecting and propagating updates. By structuring
graft points internally just like ordinary directories, no modi�cations are needed to the reconcili-
ation implementation to support graft points. While it has always been our contention that the
reconciliation algorithms which were originally developed for the express purpose of maintaining
a hierarchical name space were applicable in a wider context, this re-use of the reconciliation
daemons unmodi�ed provides the �rst such evidence.

The graft point solution presented in this paper has been implemented and is operational
in Ficus. Volumes are autografted on demand, and ungrafted when unused for several minutes.
While actual use Ficus in a large scale environment is so far limited to installations including only
a cluster of hosts at UCLA connected to individual machines at ISI and SRI, our initial experience

7This re
ects our philosophy that the system should never throw away data in which interest has been expressed,
in this case, by updating it.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

with this approach to autografting is quite positive.

References

[1] Richard G. Guy. Ficus: A Very Large Scale Reliable Distributed File System. Ph.D. disser-
tation, University of California, Los Angeles, 1991. In preparation.

[2] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Gerald J. Popek, and
Dieter Rothmeier. Implementation of the Ficus replicated �le system. In USENIX Conference

Proceedings, pages 63{71. USENIX, June 1990.

[3] Richard G. Guy and Gerald J. Popek. Algorithms for consistency in optimistically replicated
�le systems. Technical Report CSD-910006, University of California, Los Angeles, March
1991. Submitted for publication.

[4] John S. Heidemann and Gerald J. Popek. A layered approach to �le system development.
Technical Report CSD-910007, University of California, Los Angeles, March 1991. Submitted
for publication.

[5] John Howard, Michael Kazar, Sherri Menees, David Nichols, Mahadev Satyanarayanan, Rob-
ert Sidebotham, and Michael West. Scale and performance in a distributed �le system. ACM
Transactions on Computer Systems, 6(1):51{81, February 1988.

[6] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson, Vasilis Apostolides, Beth A.
Bottos, Sailesh Chutani, Craig F. Everhart, W. Anthony Mason, Shu-Tsui Tu, and Edward R.
Zayas. Decorum �le system architectural overview. InUSENIX Conference Proceedings, pages
151{163. USENIX, June 1990.

[7] Michael Leon Kazar. Synchronization and caching issues in the Andrew File System. In
USENIX Conference Proceedings, pages 31{43. USENIX, February 1988.

[8] S. R. Kleiman. Vnodes: An architecture for multiple �le system types in Sun Unix. In
USENIX Conference Proceedings, pages 238{247. USENIX, June 1986.

[9] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson, and
Brent B. Welch. The sprite network operating system. IEEE Computer, pages 23{36, Febru-
ary 1988.

[10] Thomas W. Page, Jr., Richard G. Guy, Gerald J. Popek, and John S. Heidemann. Architec-
ture of the Ficus scalable replicated �le system. Technical Report CSD-910005, University
of California, Los Angeles, March 1991. Submitted for publication.

[11] D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce J. Walker, Eve-
lyn Walton, Johanna M. Chow, David Edwards, Stephen Kiser, and Charles Kline. Detection
of mutual inconsistency in distributed systems. IEEE Transactions on Software Engineering,
9(3):240{247, May 1983.

[12] Gerald J. Popek and Bruce J. Walker. The Locus Distributed System Architecture. The MIT
Press, 1985.

[13] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation of the Sun Network File System. In USENIX Conference Proceedings, pages
119{130. USENIX, June 1985.



Appeared in the Proceedings of the
Summer USENIX Conference,
June 1991, pages 17-29

[14] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere. Coda: A highly available �le system for a distributed workstation
environment. IEEE Transactions on Computers, 39(4):447{459, April 1990.

[15] Edward R. Zayas and Craig F. Everhart. Design and speci�cation of the cellular Andrew
environment. Technical Report CMU-ITC-070, Carnegie-Mellon University, August 1988.


