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ABSTRACT
Full allocation of IPv4 addresses has prompted interest in
measuring address liveness, first with active probing, and re-
cently with the addition of passive observation. While prior
work has investigated how to increase coverage by combin-
ing multiple sources, this paper explores what factors affect
a passive observer’s view. All passive monitors are sparse,
seeing only a part of the Internet. We seek to understand
how different types of sparsity impact observation quality:
the interests of external hosts and the hosts within the ob-
served network, the temporal limitations on the observation
duration, and coverage challenges to observe all traffic for
a given target or a given vantage point. We study sparsity
through inverted analysis — a new approach where we use
passive observations at three end networks to infer what of
these networks would be seen by virtual monitors, located
at all traffic destinations. We show that visibility provided
by monitors is heavy-tailed—interest sparsity means popu-
lar monitors see a great deal, while 99% see very little. We
find that traffic is mostly bipartite, with greater visibility be-
tween client-networks and server-networks, than within each
group. Finally, we find that popular monitors are robust to
temporal and coverage sparsity, but these sparsities greatly
reduce power of monitors with initially low visibility.

1. INTRODUCTION
Understanding Internet address use (“liveness”) is

of growing importance, given full IPv4 allocation and
growth in address marketplaces. Recent work estimating
liveness has observed surprisingly light use of much of the
address space [12, 7, 28]. Address liveness also supports
studying network topology [10], Internet outages [22],
and Internet-level modeling of security phenomena [16,
19, 18].

Prior studies of liveness have used active probing [12,
22]. Recent work has supplemented active probing with
passive observation [7, 28] to increase coverage, partic-
ularly in regions that do not respond to active probes.
Both active probing and passive observation will miss
some addresses and blocks. Prior work investigated how

various factors (such as probe method and type, dura-
tion and filtering) affect the completeness for passive
and active at campuses [1] and in the Internet [12, 7,
28]. While that work has established that contributions
of multiple passive and active sources are necessary to
achieve good coverage, there has been little understand-
ing of what specific causes make sources more or less
effective, and which portions of the IPv4 space are more
or less observable by different sources. Our focus in this
paper is to understand what factors affect completeness
of passive observations. We believe our findings can
help researchers improve collection strategies, interpret
observations, and clarify sources of imprecision inherent
in measurements of the full Internet.

We assume a monitor, placed at some vantage point,
assesses liveness for a given target network. The moni-
tor’s passive observation of the target through the traffic
it sends provides some visibility into the target’s live
addresses.

The first contribution of our paper is to identify spar-
sity, the properties of the monitor and target that limit
visibility. Sparsity takes several forms. Interest sparsity
reflects how much users care about content. An observer
at a popular website will see many more addresses, than
an observer at a rarely visited site. Temporal sparsity
follows from the finite duration of any observation, which
may miss infrequently used addresses. Coverage sparsity
occurs when traffic for a target evades observation, for
example if only some links for an organization support
monitors, due to multi-homing or use of different media
(wired and wireless). A variation is sampling sparsity,
where observations are down-sampled to handle high line
rates.

Our second contribution is to develop a new mea-
surement methodology, inverted analysis, to understand
sparsity at Internet scales. We use traces of outgoing
traffic from three U.S. universities as ground truth. We
treat these networks as our measurement targets, and
place “virtual” observers at all other network prefixes.
These virtual observers tell us what a passive observer
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there would see of our targets. Inverted analysis is es-
sential to generalize from our targets to what one could
see around the Internet.

Our combination of many virtual observers and traffic
analysis helps us understand why some observers see
more or less of our target networks. As the final contri-
bution, we demonstrate that interest sparsity has the
strongest effect on completeness of passive observation.
While other aspects of sparsity can be controlled (observe
longer, capture all links, and avoid sampling), interest
sparsity reflects the inherent nature of a vantage point’s
location and traffic patterns. We show that human inter-
est strongly affects passive observations, and is essential
for observation completeness. A few networks, which
host highly-popular content have much higher visibility
into our targets, than the rest of the Internet – leading to
heavy tail. We further show that networks, which preva-
lently host clients form nearly bipartite communications
patterns with those networks which consist mostly of
servers. This means that visibility between client-heavy
networks and server-heavy networks is larger, than the
visibility within each network category.

2. PROBLEM STATEMENT:
LIVENESS AND SPARSITY

We next frame the problem we study: we define live-
ness, discuss how it can be measured, and discuss spar-
sity’s effects on measurement.

2.1 Evaluating Liveness
The definition of liveness depends on the source of

liveness information and the purpose of estimation. Cu-
mulative liveness denotes a target as live if it is active
in any available data source, within some long time in-
terval. Such liveness is easily estimated from passive
observations [8, 28] or from multiple Internet censuses,
or a survey with repeated observation [12], and is useful
for studies of the Internet’s address space utilization.
Instantaneous liveness represents what is live in a snap-
shot at one time. It can be collected over months (a
virtual snapshot [5], as in censuses), but each address
gets one “try”. Liveness can be assessed via counts of
live addresses, or one may want to learn the exact identi-
ties of the computers using those addresses, or even the
services they run. One may also study liveness of blocks
of adjacent addresses, typically defined by the length of
the IPv4 address prefix they have in common

This paper examines cumulative counts of liveness of
addresses and /24-prefix blocks (aka “blocks” for short)
using passive observations. Our approaches also apply
to IPv6. Because we have low volumes of IPv6 traffic in
our datasets, we leave its study for future work.

2.2 Passive and Active Measurement Methods
Researchers have studied Internet liveness through
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Figure 1: A monitor next to a Known Network (left) and
two virtual monitors (right and bottom).

passive observations, active probing [13, 9], and their
combination [1, 7, 28].

Active measurement sends probes (often ICMP echo
requests or TCP SYNs) to some or all addresses, and
recognizes those that reply as live. Internet censuses
cover the entire IP space, typically in one pass, while
surveys cover a fraction, but via repeated, more frequent
probes. One-pass active probing captures an instanta-
neous count of live addresses that are willing to respond
to probes, while repeated censuses or surveys can build
cumulative counts.

Passive observations record traffic that passes a moni-
tor. That monitor records packets or flows (pcap, netflow,
and Argus are common formats); the source addresses of
traffic that transits the monitor are noted as live. Pas-
sive monitors are vulnerable to spoofing (forged source
addresses).

A passive monitor may reside at a border router of an
end-network and observe all traffic between this network
and the outside world [11]. In Figure 1, the left region
labeled Known Network is such a monitored network,
with a monitor between it and the Internet. Multiple
peerings (such as the dashed link from k0 to the Internet)
result in incomplete observations (§ 6.3).

We obtain traffic from several real monitors in front
of end networks, as described in § 3.1. In § 3.2 we
develop inverted analysis, an approach that allows us to
study what can be seen of our Known Networks, when
observations are made near their traffic’s destinations.
We therefore talk about virtual monitors in those far
networks, and what they observe of our Known Networks
as targets. Virtual monitors are boxes with dashed lines
on the right of Figure 1. Monitor 1 sees traffic sent from
k0/24 to blocks m0/24 and m1/24, and monitor 2 sees
traffic sent from k0/24 to b3/24. When we highlight the
location of a monitor, we use the term near monitor for
data we collect at our Known Networks, and far monitor
for virtual monitors placed around the Internet.

We can generalize monitors in two ways. First, al-
though monitors are at the Internet gateways of edge
networks in our datasets, in principle they could be
placed at backbone networks [4, 3]. With asymmetric
routing, monitors on backbones will have a high degree
of coverage sparsity. Second, in addition to directly ob-
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served packet data, one could use any kind of logs [24,
25] to infer liveness of sources, which created log entries.
In this case, the “monitor” is effectively the aggregate of
all end systems providing logs.

We define the visibility Vm,t of a monitor m with
respect to a given target t as the percentage of t’s live
addresses or /24 blocks that are observed by m. In other
words, Vm,t is the fraction of ground truth m is able to
learn about t. We define sparsity as the limitations of
the monitor that reduce visibility: Sm,t = 1− Vm,t.

Different monitors will see different fractions of a tar-
get. We find it helpful to group monitors by their“power”:
the fraction of a given target, which they observe. We
group monitors into regions of low, medium, high, and
near-complete visibility defined as less than 1%, 1–10%,
10–50%, or more 50% of the active addresses or /24
blocks for a given target. These terms are defined rela-
tive to the actual number of target’s addresses, which
were active over the measurement period (not allocated),
and is defined (from a theoretical point of view) even
if that number is not known. In practice, we evaluate
it using the best-available ground truth for our targets,
provided by our real monitors.

2.3 Sparsity: the Challenge for Passive
We seek to quantify how different types of sparsity

impact the visibility of targets and if some targets or
monitors are impacted more than others. We identify
four types of sparsity:

Interest sparsity: a monitor at the far network does
not observe the target, because end clients from the far
network are not interested in the content served by the
target network, and vice versa.

Temporal sparsity: a monitor does not observe the
target because the target is intermittently active and
the monitor’s observation is not long enough.

Coverage sparsity: a monitor does not observe the
target because it does not observe links traversed by
some of the target’s traffic to the far network.

Sampling sparsity: a monitor does not observe the
target because it samples packets or flows to reduce load.
The target sends a small number of packets, and the
monitor’s sampled observations miss all of them.

2.4 Clients, Servers and Promiscuity
To understand visibility and causes for interest spar-

sity, we must examine how a target’s addresses and
blocks send traffic to external networks. This includes
traffic sent to initiate communication, and responses to
requests sent by external networks. Traffic comes from
clients and goes to servers. These are properties of traf-
fic, but we find many addresses act mostly as a client or
mostly as a server, some perform as both (§ 5.1), and a
few are neither (e.g., they only send ICMP probes). We
describe how we classify addresses in § 3.3.

The contribution of each address to visibility depends

on its promiscuity : how many other addresses it talks
to. Promiscuity indicates traffic exchange, and is a
property of both clients and servers. Clients’ promiscuity
is driven by the interests of their users who initiate
communications. Servers respond to traffic, with their
promiscuity driven by the popularity of their content. A
scanner walking the IP address space or a Web crawler
are examples of promiscuous clients, since they talk to
many external networks. The Alexa Top-100 websites
are hosted on promiscuous servers; they are visited by
many clients from external networks, and in turn send
responses to them, which makes them visible in passive
traces.

This paper looks at edge networks, but others have
considered passive observation at backbones. Backbone
monitors on routes leading to promiscuous clients and
servers will have good visibility of many targets.

3. METHODOLOGY
We next describe how we study liveness: our data

sources, how we use virtual monitors around the Internet,
and how we classify traffic and addresses.

3.1 Data Sources
We use five passive datasets in our study, from four

sources: three week-long traces capturing much of the
traffic at the edge of three US universities, and two traces
from a major U.S-based CDN. We call these subjects
our Known Networks, and use them as both targets
and monitors at different times in our work. Table 1
gives times and durations of each dataset, the size of the
Known Network, and how many external blocks it sees.

Each trace has all addresses anonymized, with the
24 most-significant bits unchanged and the remaining 8
bits cryptographically scrambled [27]. (We omit IPv6
from analysis at this time, see § 2.1). Anonymization
is consistent for each dataset but not across sources,
allowing for comparison of /24 blocks but not specific
addresses, across datasets.

The three universities in Known Networks are all of
similar sizes: each about 30,000 students. U.Ga. and
CSU operate /16 networks, and USC operates two /16s.
All collect Argus-format flow data [17].

We evaluate completeness of data collection (coverage
sparsity) in § 6.3. We show that USC is near-complete,
but at CSU we consistently miss some blocks . For
U.Ga., we also see no external ICMP traffic, and they
also employ NAT for many of their clients (around 95 K
addresses from 172.16.0.0/12). Our collector is inside
the NAT and we do not know the mapping of private to
public IP addresses, so we discard all NAT’ed traffic in
both directions.

Our CDN data uses logs from webservers, summarized
to only show client /24 blocks and anonymized client
addresses. We have two datasets; each sampled differ-
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Known Network Observation Known Net Size External
organization prefixes Format Start End Duration Flows IPs blocks blocks

USC 128.125.0.0/16, 68.181.0.0/16 Argus 2014-06-17 2014-06-23 7 days 461 M 31,997 492 6.2 M
UGA 128.192.0.0/16 Argus 2016-02-06 2016-02-18 13 days 682 M 5,243 198 0.7 M
CSU 129.82.0.0/16 Argus 2014-06-17 2014-06-23 7 days 2.2 B 17,732 186 4.4 M

CDNXpop — logs 2014-06-17 2014-06-23 7 days 266 B — — —
CDNXglobal — logs 2014-06-17 2014-06-23 7 days 200 B — — —

Table 1: Datasets used in this paper.

ently due to high traffic volumes. CDNXpop takes all
log entries from all servers at points-of-presence in Los
Angeles and Chicago, then down-samples to save roughly
1 record in 1,000. The data is recorded continuously over
one week. CDNXglobal , instead covers all PoPs (more
than 30, at the time), and records all queries, but only
for 1 hour per day, every day for a week. The specific
hour is chosen to match peak traffic period, at each
PoP’s location. Sampling makes analysis of our CDN
dataset difficult, but we compare the traces and scale to
approximate unsampled data (§ 5.3.1).

Limitations of these sources: Our data sources
have certain limitations. Each covers a tiny part of
the entire Internet and so may not be representative.
However, our universities have both clients and servers,
while CDNX is a large real-world CDN. Our datasets
thus have diversity of clients and servers, both as targets
and as observers.

Our observations are only one week long, while prior
work includes data for months or years [28, 7]. Longer
data is essential to provide estimates of the number of
live addresses in the Internet, but our goal is instead to
understand the reasons for where passive observations
works well or poorly. These reasons are not strongly
dependent on observation duration.

Our observations are sparse in several ways: we do not
get complete traffic for all Known Networks (although
we believe we get most of it), and we have some measure-
ment loss for USC during peak load (the busiest hour
of the day). We evaluate the effects of these kinds of
sparsity in § 6.3.

While more data is always helpful, we believe our
five datasets from four different sources are sufficient to
support our findings about sparsity and its effects on
visibility of passive monitors.

3.2 Inverted Analysis: Who and How Much
We have access to monitors for only four networks

(Table 1), and by themselves they cannot observe much
of the Internet. However, inverted analysis enables us
to place virtual monitors at all networks to which our
Known Networks send traffic. This enables us to study
what the world sees of our Known Networks.

Consider the two dashed virtual monitors in Figure 1.
We have a real monitor covering what the Known Net-
work k0/24 sees of the world. Using observations of
outgoing traffic at this monitor, we infer what far virtual
monitors m1/24 and m2/24 see of k0/24.

3.3 Classifying Flows, Address, and Blocks
We have several goals in analyzing our flow and log

data. First, we use it to identify live addresses, and
from those live blocks at our Known Networks. But to
understand the reasons why we see or miss addresses,
we also classify traffic flows by their purpose (e.g., scan,
ICMP probe, etc.) and the role a Known Networks’
address plays in the flow (e.g., server, client). From
this classification, we can infer the dominant traffic for
each address in the Known Network (client, server, etc.),
and from there, classify addresses and blocks by their
common usage.

3.3.1 Cleaning Flow and Log Data
We first must identify and correct for sources of error

in our data formats. For CDN log data (in CDNX ), a
request record indicates an established TCP connection,
so we immediately declare the source to be live.

Argus flow data requires much more care than log data,
because its summarization of a flow discards information,
particularly in the face of packet loss or reordering at the
monitor. Argus flow records indicate its understanding
of a TCP connection’s source and destination, and its
dynamics, but discard packet-level details (for example,
we lose information needed to differentiate between a
transmission of two SYN-ACK packets versus, a SYN
followed by an ACK).

We found several situations where Argus would switch
the source and destination addresses in a flow record.
When Argus processes out-of-order TCP and UDP pack-
ets (even if their timestamps indicate the misordering)
it flips the source and destination in the resulting flow
record, along with other features such as ports and TTL.
For ICMP ECHO Requests, out-of-order packets also
cause a source/destination flip, but the type and code
fields are not flipped. In some cases we can identify
and correct Argus’ mislabeling. Overall, 13.9% USC ,
2.2% U.Ga. and 21.3% CSU TCP and UDP flows were
flipped. We use IANA-defined service ports to identify
clients and servers in TCP and UDP flows and correct
Argus’ source and destination assessment. We apply this
correction to all TCP and UDP flows, which we have
identified as flipped. We observed similar levels of ICMP
mislabeling (by measuring mislabeling on flows from
known active probers), but unlike the TCP and UDP
cases, we have no way to identify and correct mislabeled
flows. We therefore avoid using analysis which relies
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on differentiating between the source and destination of
ICMP flows.

3.3.2 From Data to Flow Types and Liveness
We next classify flows to identify their purpose (“flow’s

purpose” in Table 2) and the role of our target’s address
in the flow (“target address’s role” in Table 2).

In passive observations, some flows may be spoofed.
Spoofing does not affect our inverted analysis as we
use traces collected near our targets, and observe only
flows from our assigned address ranges. While a scanner
within our target could subnet-spoof a different address,
we do not see many outgoing scans and thus believe
this type of spoofing does not affect our findings. In
§ 5.3 we consider what we see of the world, and there
our observations may include spoofed traffic. There we
apply statistical analysis, as outlined in [28] to correct
our observations for spoofed traffic.

We infer clients and servers based on well-known
service ports [14]. We mark flows as ambiguous when
both ports are service ports, or both are client ports.
Such flows may be peer-to-peer traffic or communication
between NTP or DNS servers. In principle, we could
identify client and server from the flow direction, but
packet reordering and Argus flipping of the source and
destination labels provides noise, which interferes with
this approach.

3.3.3 From Flows to Address Types
Going from flows to addresses, we label each address

by aggregating address-role labels of its flows. We prefer-
entially choose labels that carry more information about
an address: choosing client or server over other role
labels. Addresses, which participate both in client and
server flows are labeled as client-server. Those that only
have ambiguous, echo-src, responder or unidirectional
flows are labeled as ambiguous, prober, responder and
oneway source, respectively.

3.4 Statistical Corrections for Spoofing
For analysis in § 5.3.1, we can account for spoofing

statistically by adapting the technique from Zander et
al. [28] to our datasets. We identify known unused
address space (about 50 /8 blocks), then look for traffic
from those addresses to determine the mean spoofing rate
s. We find about 17 K spoofed addresses per unused
/8 in the entire USC dataset, but only 900 in U.Ga.
and 50–150 in CSU . This difference suggests that U.Ga.
and CSU actively filter unsolicited traffic. If we assume
spoofing uses all IPv4 addresses with uniform probability,
we can then compute the probability that any packet
is spoofed as p = s/224. We find that p ranges from
5 ∗ 10−8 to 0.001 for our datasets.

Since we study counts of live hosts we do not need to
identify and remove the exact spoofed addresses. Instead
we correct our live address/block count estimates for

spoofing by discarding each live address as statistically
spoofed with probability p, and discarding blocks where
all addresses are statically spoofed.

4. THE ROLE OF INTEREST SPARSITY
We now show that interest sparsity significantly im-

pacts visibility. When vantage points (VPs) are placed
at edge networks, VPs placed at the most popular net-
works will see far more than VPs placed at randomly
chosen networks.

We then investigate the effects of aggregating obser-
vations from multiple monitors, and show that gains are
limited, unless the monitors initially have high visibility.

These two results point to interest sparsity : only“inter-
esting” content results in powerful monitors. We explore
a possible cause for interest sparsity in § 5.

4.1 Visibility is Heavy Tailed
The more popular the content at a monitor, the more

targets are attracted to the monitor, increasing the vis-
ibility the monitor has. We show here that the “popu-
larity” of a monitor’s content is the dominant factor in
what it sees—this visibility is heavy tailed.

We evaluate the power of different monitors with in-
verted analysis of our three University targets, asking
how much of each target would be seen by all possible
external monitors. We place a virtual monitor at all
possible /24 blocks that exchange traffic with each of
our three targets, and evaluate how many of the target’s
addresses and blocks each monitor would see. Figure 2
shows the the log-log complementary CDF.

These graphs show only the visibility of blocks that
see our targets. Most of the Internet does not see them
at all: there is no interaction between 93% of routable
blocks and U.Ga., 58% and CSU , and 41% and USC .
These calculations are based on the size of the routed
address space at these observation periods, as reported
by RouteViews [26] (10,537,665 in 2014, and 11,000,925
in 2016).

Both graphs show an inflection point, where a handful
of monitors see half of each target, then a basically linear
region where visibility falls off as a heavy tail over about
three orders of magnitude. The tail is weakest (shortest
and most inflected) for University of Georgia. U.Ga. has
far fewer hosts in its globally routable prefix (the rest
of U.Ga.’s addresses are private addresses, which are
NATted and thus we do not include them in our analysis)
than the other targets (see Table 1), and those hosts are
seen by far fewer external monitors (0.7 M, compared to
CSU ’s 4.4 M and USC ’s 6.2 M), which leads to the tail
weakness.
Conclusion: The visibility of monitors is heavy tailed.

4.2 Whole ASes Improve Visibility
When we look at monitors observing traffic from a
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Flow label Proto. Criteria
Flow’s purpose

useful T/U TCP PSH in both directions or two-way UDP flow
scan T/U Pkt to a service port. For TCP it must be a TCP SYN pkt
TCP scan response T Pkt from a service port, received TCP SYN, replied with TCP SYN ACK or TCP RST
backscatter response T Pkt to a service port, received TCP SYN ACK, replied with TCP RST
partial T/U all other T/U flows
echo/unreach I ICMP flows

Target address’s role
client T/U send pkts to a service port (which receive some reply)
server T/U receive pkts on and reply from a service port
ambiguous T/U both ports on the flow are a service port, or both are a non-service port
echo-src I send ECHO pkts and receive replies
echo-responder I receive ECHO pkts and reply to them
rst-responder T receive pkts on a service port and reply with TCP RST with optional ACK bit set
unidirectional T/U/I no reply from Far IP

Final flow classification
human-interest T/U (client or server) and useful
unsolicited T/U/I ((client or server) and (scan or scan response or backscatter response))

or echo-src or echo-responder or rst-responder or oneway
undetermined T/U/I ambiguous or other

Table 2: Labeling flows by their behavior. Protocols are TCP, UDP, or ICMP.
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Figure 2: Visibility of addresses and blocks from all pos-
sible virtual monitors, placed in networks that exchange
traffic with our targets.

/24 block of addresses, visibility is heavy-tailed. Many
organizations run networks that are larger than 256
IP addresses, so we next consider what happens if we
place monitors that cover an entire AS. We evaluate this
as a thought experiment since ASes represent adminis-
tratively distinct entities some of which may be large,
geographically distributed and difficult to monitor in
their entirety.

We enumerate all ASes that see our targets by starting
from each /24 block that receives traffic from a target,
identifying that block’s AS from Neustar Web API [20],

then identifying all other prefixes that belong to that AS
through IPInfo [15]. Figure 3(c) shows the distribution
of sizes of these ASes, as a count of /24 blocks.

Figure 3 shows CCDF for how much of our targets
is seen from AS-sized monitors with graph scale held
the same as Figure 2. We see that visibility of both
addresses and blocks improves, in that the curves shift
up and left. Between 2.42% and 9.3% of organization-
level monitors see more than 1% of our target’s IPs
(compared to 0.08-0.6% of block-level monitors), and 39–
69% of organizations see more than 1% of our target’s /24
prefixes (compared to 26-29% of block-level monitors).

4.3 Promiscuity Enables Visibility
To understand why visibility is heavy tailed, we con-

sider communication dynamics of the target and the far
network. We find that promiscuity of targets and of
hosts in the far network is what affects visibility.

Promiscuity of target addresses: Target addresses
that talk to many external sites are more widely seen.
Figure 4 ranks each address in a target by how many
external /24 blocks it exchanges traffic with. That many
block-level monitors will observe the given address. On a
log-linear graph, we see that a few target addresses speak
with many external blocks. The first 6–14% addresses
in each target interact with 1,000 or more external /24
blocks (10% for USC , 14% for U.Ga., and 6% for CSU ).
We expect that these are popular Web servers contacted
by many external clients, Web proxies for the university,
or scanners. Because of their high promiscuity, they will
be seen by many far monitors. The majority of addresses
in each target talk to a small number of external net-
works in a week, and thus will not be widely seen by far
monitors. These addresses are likely client machines and
servers serving less popular content.

Promiscuity of blocks in the far network: Promis-
cuity also applies to addresses and blocks on the “other
side” of the monitor, in the far network. The stacked
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Figure 3: Visibility of addresses and blocks from all possible remote ASes as monitors. (For ASes that receive traffic
from our targets).
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Figure 4: Promiscuity of addresses in each target to all far monitors, shown sorted by descending rank. Colored layers
indicate the visibility power of far monitors by category (low, medium, high, or near-complete).

layers in Figure 4 each show the visibility range (low,
medium, high or near-complete) of each far monitor
with regard to the given target. We see that the most
powerful remote networks (the blue band at the base of
the stack) see almost all addresses—these networks run
scanners, popular web services, or update services for
common software (§ 5.2.1).

While many IPs talk to a few common /24 blocks,
the rest of communications is scattered among a large
number of blocks, with each having high to moderate
visibility into our targets. A complement to these pow-
erful remote monitors, are low-visibility monitors, which
show as a thin light blue band at top of the stack. These
monitors see only a few target addresses, and those that
are seen are usually very promiscuous.

Figure 4 shows promiscuity of target blocks. We see
similar results as for addresses, and omit their discussion
due to space.
Conclusion: Promiscuity in target and monitor ad-
dresses and blocks is the dominant factor affecting visi-
bility.

4.4 More Monitors Do Not Help
We have shown that promiscuity determines the heavy-

tailed nature of visibility—a few addresses in the target
are visible everywhere, and a few remote monitors see a

great deal. The implication of this result is that more
monitors show limited benefits—what matters is moni-
tors which observe in promiscuous networks.

To quantify the effect of more monitors, we pick a
random set of n monitors, all uniformly chosen from
monitors with the same level of visibility (low, medium,
or high). Figure 5 shows how the addition of monitors
improves visibility. Each point in this graph represents
100 iterations of the experiment, with the lines showing
the median values, boxes quartiles, and whiskers mini-
mum and maximum. Complete visibility (1 on graphs)
here is the estimated number of live addresses in the
target based on observations from our near monitors.
(We report data for USC as a target; other targets show
similar trends.)

We first observe that there is a huge advantage to
selecting monitors with stronger visibility. The visibility
power of any given monitor depends strongly on the pop-
ularity of its server content and the activity of its clients,
i.e. promiscuity of far networks dominates visibility.

Second, we see that adding a few monitors shows
considerable benefit in each class. Adding a second,
third, or forth monitor can improve visibility by 2× to
4×. While the effect is far smaller than replacing a given
monitor with a more popular one, diversity from a few
sites of the same popularity is helpful.
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Figure 5: Visibility as numbers of block-monitors grows.
Monitors are drawn from different classes of visibility
(low, medium or high). Lines show median, boxes quar-
tiles, and whiskers minimum and maximum. Target:
USC .

Finally, we see that additional coverage quickly reaches
diminishing returns. There seems relatively little ben-
efit with more than 20 high-visibility monitors. With
medium- or low-visibility monitors, there is much more
room to improve, but improvements still diminish as
more monitors are added.
Conclusion: monitor power, not quantity matters. Only
twenty high-visibility monitors are required to see most of
our target networks (80%), and adding more does little
to increase coverage.

4.5 Better Passive Analysis: Capture-Recapture
More monitors show diminishing improvements in

visibility, but can we make smarter use of the monitors
we have? Capture-recapture analysis uses estimates
about the incremental discovery by each new monitor to
predict the total population size, with promising results
at improving estimates of network visibility [28].

To apply capture-recapture analysis, we select n ran-
dom block-monitors from different visibility ranges (as
in § 4.4), but we use capture-recapture technique to esti-
mate total number of addresses in our targets. Choice of
statistical model is important in capture-recapture, and
standard practice is to select the model with the smallest
BIC (Bayesian Information Criterion), breaking ties in
BIC by selecting the model with the smallest degree of
freedom. We apply this approach two ways, first con-
sidering two Poisson models, as in prior work [28], and
then considering all available models in the R software’s
Rcapture package [23]. We take 100 random trials for
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Figure 6: Visibilty with capture-recapture estimation,
as numbers of /24-block monitors grows. Monitors are
drawn from different classes of visibility (low, medium or
high). Lines show median, boxes quartiles, and whiskers
minimum and maximum. Target: USC .

each experiment, but are forced to use only 20 trials
with 12–15 monitors due to high computation cost. In
each case we plot median, quartiles, and minimum and
maximums in Figure 6.

Poisson models: We see that with Poisson models
(Figure 6(a)), capture-recapture provides considerable
benefit for a few monitors—estimates with two or three
monitors approach the actual visibility of about six mon-
itors using only direct observation (compare Figure 6(a)
with Figure 5(b) for any type of monitor). Although
capture-recapture converges more quickly than brute
force, it seems to converge on about the same limit.

Additional models: With additional models, capture-
recapture results in much higher estimates than mere
aggregation of monitor observations. The gain is espe-
cially high for low and medium-visibility monitors.

However, using more than just Poisson models adds a
great deal of uncertainty to the results, as manifested in
the large quartiles (the yellow, orange, and blue boxes) in
Figure 6. This is especially notable for medium-visibility
monitors, which have huge quartiles and change the
median value. In addition, many estimates drawn from
medium-visibility monitors give results that are much
larger than our estimated ground truth. Samples from
high- and low-visibility monitors show a more consistent
median, but still have wide quartiles.

We caution that capture-recapture analysis poses a
risk. Its analysis depends on assumptions about the
independence of observers and the target. It is not clear
that that independence is warranted, as shown by the
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high degree of noise we see in capture-recapture results.
The root cause of this noise is likely large variation in
address promiscuity (§ 4.3) and the heavy-tailed visibility
of monitors (§ 4.1), both of which violate the assumption
of independence. This problem is at its worst for medium-
visibility monitors, where the amount of overlap between
two monitors can vary a great deal, leading to very
different estimates. It is possible that capture-recapture
can be applied by carefully choosing monitor locations
to improve independence, or by carefully validating the
results against known targets, but both seem challenging
to estimate.
Conclusion: Capture-recapture increases estimates of
visibility with few monitors, but it provides limited ben-
efits as the number of monitors increase, and it risks
introducing large uncertainty into estimates.

5. BIPARTITE TRAFFIC AND INTEREST
SPARSITY

We showed that monitor visibility is heavy tailed, and
the biggest factor that affects visibility is promiscuity:
addresses that interact with many others. But why do
some address interact with many others? And which
others do they they interact with?

We next show that most addresses are either clients
or servers, but rarely both, based on their wide-area
traffic. This leads to mostly bipartite traffic patterns,
with more communication, and greater visibility between
client-heavy (eyeball) networks and server-heavy (cloud)
networks, than within each network category. This bipar-
tite structure has a strong influence on visibility, because
while there are promiscuous addresses that are either
clients or servers, neither has good visibility into others
of its own type.

We perform our analysis by first classifying addresses
in our targets (§ 5.1). This helps us understand the na-
ture of far monitors, and how much of each address class
they see (§ 5.2), and establish this bipartite structure.

We then reverse this approach, asking what our datasets,
consisting of monitors at three client-heavy networks
(USC , U.Ga. and CSU ) and one server-heavy network
(CDNX ) see of the world (§ 5.3). This confirms the
bipartite structure.

5.1 Classifying Addresses in Our Known Net-
works

Table 3 shows our classification of addresses in our
targets, using rules from Table 2. We see that our
networks include many clients: with 55–71% of addresses
sending client traffic only. However, we see a smaller but
significant number of servers (4–14%), and a number of
addresses that send a mix of client and server-like traffic
(10–22%). Finally, we see very few addresses which send
no client or server traffic, but send ambiguous flows, or
send/respond to unsolicited traffic. The mix of clients

address USC UGA CSU
class addrs. blocks addrs. blocks addrs. blocks
CO: client-only 55% 86% 52% 62% 71% 87%
SO: server-only 12% 63% 14% 68% 4.4% 39%
CS: client-server 21% 77% 22% 51% 10.1% 72%
A: ambiguous 1% 26% 2% 21% 0.7% 32%
P: prober 3% 48% 0% 0% 0.2% 2%
R: responder 1% 12% 4% 21% 13.3% 83%
OW: oneway src. 6% 59% 5% 35% 0.3% 22%

Table 3: Address and /24-block classification at three
targets: USC , U.Ga. and CSU .

and servers in university environments makes our targets
ideal for our study.

Looking at the compositions of /24 blocks, addresses
that are clients and servers are spread over all blocks.
This diversity in location means most blocks include both
clients, servers and addresses sending mixed client-server
traffic. Only CSU shows larger homogeneity across
blocks, with servers and clients being more segregated.
This diversity in each block makes it likely that all classes
of remote monitor will see many prefixes, even if they
touch only certain addresses in each prefix.

5.2 Who Sees Classes in Our Targets
Having classified addresses in our targets, we next

look at far monitors to find what they see. We start
by looking at those that see the most of our targets,
heavy see-ers. We then turn to a random sample of far
monitors for an unbiased characterization.

5.2.1 The Heavy See-ers
We begin by looking at far monitors that have the

greatest visibility into our targets. Such monitors are the
most important in any study using passive observation.

Table 4 shows the ten top, block-monitors and what
they see of our targets, ranked by their visibility of target
addresses. Monitors are identified by their AS names,
and duplicates are common for providers who have many
address blocks. We further report the top flow label in
the last column of Table 4.

We see that the top possible monitor is always an
academic network close to our targets. Using reverse
DNS for these blocks, we confirmed that they host caches
for Google, Netflix and Akamai. Going further down the
list, the remaining top monitors are mostly large content
providers and CDNs: Google, Akamai, Facebook, and
Edgecast.

Finally, we see that these monitors see clients and
mixed client-servers in each target, due to client traffic
sent by our targets. The exceptions are WIDE for USC
and Secured Servers for CSU , which also see servers
and responders. The broad coverage of WIDE is due to
ICMP ECHO probing, and that of Secured Servers is
due to their scanning of port 443. The large visibility
of oneway sources in U.Ga. by all monitors occurs
because of asymmetric TCP traffic, which we classify as
unidirectional.
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Top Far % seen % address classes seen why
Monitors addrs blks CO SO CS P R OW
target: USC
CSU Net 63 79 90 0 66 0 0 0 cli-usef
Google 56 77 79 0 58 0 0 0 cli-usef
Google 56 77 79 0 58 0 0 0 cli-usef
Akamai 55 78 77 0 60 0 0 0 cli-usef
NTT 51 78 72 0 54 0 0 0 cli-usef
Edgecast 50 77 71 0 53 0 0 0 cli-usef
Akamai 50 77 70 0 55 0 0 0 cli-usef
Edgecast 47 77 68 0 48 0 0 0 cli-usef
Facebook 47 77 67 0 48 0 0 0 cli-usef
WIDE 46 75 34 85 63 89 16 0 echo-resp
target: U.Ga.
Georgia Tech 92 74 95 0 89 0 0 46 cli-usef
Google 92 72 94 0 88 0 0 40 cli-usef
Google 89 72 92 0 86 0 0 37 cli-usef
Google 89 71 91 0 86 0 0 37 cli-usef
Google 88 71 91 0 86 0 0 36 cli-usef
Facebook 88 69 90 0 84 0 0 32 cli-usef
Google 85 71 87 0 84 0 0 34 cli-usef
Google 83 70 85 0 82 0 0 32 cli-usef
Edgecast 77 70 79 0 78 0 0 34 cli-usef
target: CSU
UCAR 69 83 87 1 71 0 0 18 cli-usef
Google 59 82 74 1 61 0 0 1 cli-usef
Google 49 81 63 0 43 0 0 0 cli-usef
Secured Svrs. 49 87 40 34 59 14 95 0 rst-resp
Time Warner 48 80 62 0 43 0 0 0 cli-usef
Edgecast 47 80 61 0 36 0 0 0 cli-usef
Edgecast 46 80 59 0 42 0 0 0 cli-usef
Google 43 81 57 0 33 0 0 0 cli-usef
Facebook 43 80 55 0 34 0 0 0 cli-usef

Table 4: Ten block-monitors with the largest visibility of
addresses. Their visibility into blocks and addresses-by-
class is also shown, as well as top cause of visibility. Far
monitors are identified by their ASes.

Conclusion: The analysis of our three targets show
that server-heavy monitors have excellent visibility into
our client-heavy networks.

5.2.2 What Most Far Monitors See
We saw that some server networks have high visibility

into our client-heavy targets (due to high promiscuity,
§ 4.3), but that in general many far monitors have low
visibility (§ 4.4).

To understand the relationship between visibility and
a nature of far network (server-heavy or client-heavy)
we need a set of /24-blocks that provide a range of types
of networks with different levels of visibility for our uni-
versity targets. Thus, for each university, we randomly
select 300 /24-blocks that see that it, 100 blocks from
each of the low, intermediate and high visibility range.
We call this set the Random Far Monitors.

We then manually classify each Random Far Moni-
tor as client- or server-heavy. We first identify its AS
and organization, and then examine information from
the organization’s web pages, the company overview
page of the Bloomberg site (if it exists), [2] and the
PeeringDB [21]. We classify ASes owned by hosting net-
works (Secure Servers, Fastly, etc.), CDNs and content
providers (Akamai, Dropbox, Facebook, etc.), and en-
terprises (such as banks and news sites) as server-heavy.
ASes owned by organizations, which provide connec-
tivity (T-Mobile, Comcast, India Telecomm) or host
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Figure 7: Visibility into each target (the three groups),
from far /24-block monitors of different visibility classes
(left, center and right bars of each group), with far mon-
itors identified as client- or server-heavy (the top and
bottom of each bar).

large numbers of users (such as universities) we label as
client-heavy. When classification is unclear, we follow
the primary service presented on the organization’s web
page.

Figure 7 shows the visibility into each target by the
Random Far Monitors, with groups of three bars by tar-
get, and in each group, bars broken out by the visibility-
region of the monitor. All three targets are seen in
similar ways. Remote monitors at client-heavy networks
tend to have poor visibility into each target (the left bar
of each group is mostly client-heavy monitors). To get
good visibility into these targets, one needs to operate a
monitor at a server-heavy network (the right two bars).
This analysis generalizes the observations from our last
section, that mostly servers have good visibility of our
client-heavy targets. It is the first step in showing that
network traffic is largely bipartite.

To confirm our assessment of causes of visibility, we
look at the top flow label for traffic going from our
targets to each of our Random Far Monitors. For space
reasons, we only discuss what causes USC visibility by
Far Random Monitors. In the high-visibility region, 84%
of server-heavy monitors see us due to our client traffic.
The remaining 16% scan us, and receive TCP resets,
ICMP ECHO replies or SYN ACKs from us. Further,
38% of client-heavy monitors in this region see us due to
our client traffic. These networks are large connectivity
providers, such as NTT, which also host a lot of content.
While they may be client-heavy, we only talk to their
servers. The remaining 62% of client-heavy monitors see
us because we respond to their scans. In the medium-
visibility region, 100% of server-heavy monitors see us
because they receive our client traffic. Client-heavy
monitors still see us due to either their hosting of server
content (48% of monitors) or scanning (43%). In two
cases, a client-heavy monitor sees us due to peer-to-peer
traffic. In low-visibility region, 100% server-heavy and
3% of client-heavy monitors see us due to our client
traffic. Further, 19% of client-heavy monitors see us due
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to peer-to-peer traffic, 47% due to their clients visiting
our servers, and the rest due to scans they send to us,
or we to them.

5.3 What We See of Others
Our analysis of who sees us (§ 5.2) is promising, but

it allows us to only study who sees our client-heavy
networks as targets. To get a broader view, we next flip
this analysis around and examine what our networks
see of targets out in the world. Our three universities
provide client-heavy networks that see the world, and
to these we add data from a large commercial CDN
(CDNX ) to evaluate what a server-heavy network sees
of the world.

For targets, we begin with the 900 Random Far Moni-
tors from § 5.2.2, and reuse their classification as client-
or server-heavy. There are 875 unique /24-blocks when
we eliminate duplicates. We map these 875 blocks to 295
ASes, since sometimes blocks are geographically-specific
(for example, in a CDN). We call these ASes the Random
Far Targets. We then consider all prefixes allocated to
each of these ASes, making up about 5M /24-blocks.
Using our universities and the CDN as monitors, we
then study how many addresses and blocks are seen in
each Random Far Target.

5.3.1 Correcting for sampling sparsity
Our datasets at universities may contain spoofed traf-

fic. We correct for spoofing statistically as described in
§ 3.4.

The second observation challenge is that our CDNX
datasets both suffer from sampling sparsity. CDNXglobal
covers all PoPs of the CDN, but only for one hour per
day; it is sample-sparse in time. CDNXpop contains
all data for the week, but it covers only two PoPs of
the CDN (about 0.1% of their servers); it is sample-
sparse in space. We use the CDNXglobal as our primary
source, because the CDN shows intentional geographic
bias at certain PoPs, causing spatially-sparse sampling to
systematically under-represent visibility of many targets
(it will miss targets that are geographically far from the
PoP taking observations).

Let V̂m,t,T be the visibility of the monitor m into tar-
get t for observation period T . Our goal is to find for all
targets V̂allpop,∗,1w, the estimated visibility from all of
CDNX PoPs for a week-long observation, even though
we only know V̂allpop,∗,1h, the hourly visibility from ev-

erywhere in CDNXglobal , and V̂2pop,catch,1w, the weekly
visibility at two PoPs in CDNXpop of some targets catch,
which are mostly routed to those two PoPs, because they
are geographically close. To correct CDNXglobal ’s under-
count due to sample-sparsity in time, we look for a scaling
factor to estimate how much we miss by observing only
one hour per day: scatchh→w = V̂2pop,catch,1w/V̂allpop,catch,1h.

We estimate this scaling factor separately for addresses
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Figure 8: Visibility of addresses in server- and client-
heavy targets, shown as the ratio of visibility of client-
heavy monitors (at USC , U.Ga. and CSU ) to an esti-
mated visibility of server-heavy monitor (CDNX cor).

and for blocks. For blocks, sbh→w = 1.01, so an hour-per-
day at a single PoP sees nearly everything it would see
in a week. For addresses, we need to know how much
more will be observed per block instead of in bulk. Thus
we estimate scaling factor for addresses per block in the
PoP’s catchment: sah→w(bi). Overall in 91% of blocks
the scaling factor is lower than 2, and in about 45% of
blocks the scaling factor is less than 1—CDNXglobal sees
more of these prefixes than CDNXpop. These factors
are expected, since CDNs cache popular content locally
and most clients go to their nearby POPs. However,
clients are sometimes routed to other PoPs for rarely
used content. Such occasional routing leads to higher
visibility of these client blocks in CDNXglobal than in
CDNXpop. Overall this analysis supports our use of
CDNXglobal as providing sufficient visibility, in spite of
being temporally sparse. We adopt sah→w = 2, as this
corrects sufficiently for 91% of blocks.

5.3.2 What client- and server-heavy networks see of
others

After selection of the far targets and correction for our
server-heavy monitor, we now compare what our three
client-heavy monitors (at USC , U.Ga. and CSU ) see rel-
ative to our corrected server-heavy monitor (CDNX cor).

Figure 8 shows our results in observing addresses in
two different types of targets. We see that our client-
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Figure 9: Visibility of /24 blocks in server- and client-
heavy targets, shown as the ratio of client-heavy monitors
(at USC , U.Ga. and CSU ) to an estimated server-heavy
network (CDNX cor).

heavy monitors (the three universities) generally see
large numbers of servers: in Figure 8(a) CSU almost
always sees more than CDNX cor (the blue line is above
the horizontal line for CDNX cor for about 90% of tar-
gets), and USC sees more than CDNX cor for half of the
targets. By contrast, these client-heavy universities see
less of client-heavy targets: in Figure 8(b), universities
as monitors almost always see less than CDNX cor (they
are below the y = 1 line).

We see similar results when we count active blocks, as
shown in Figure 9. The relative differences are smaller
though (the graphs have different ranges), likely because
there are more “mixed” blocks with both clients and
servers (as was the case in our datasets, see Table 3),
so there is more opportunity to see all blocks from any
type of monitor.

We make two assumptions in this comparison: that
we can correct for sampling sparsity in CDNX and that
that the differences in sizes and activities at our targets
do not dominate our comparison.

Conclusion: The trends in our data across hundreds
of targets show that WAN communication is bipartite,
with client-heavy and server-heavy networks talking to
each other more than within their own network class.
The implication is that good overall visibility will require
both powerful client and server monitors.

6. OTHER KINDS OF SPARSITY
Although interest sparsity is the dominant factor, de-

termining the overall coverage, care must be taken with
other types of sparsity.

6.1 Temporal Sparsity
Temporal sparsity reflects the importance of listening

“long enough”. Prior work showed visibility increases
logarithmically with time, with 70–90% of the addresses
being discovered in the first 3 days [1, 6]. In each case,
these prior studies evaluated effect of observation dura-
tion on the visibility that all their monitors had of the
given targets (a university [1] and the Internet [6]). In-
verted analysis allows us to study how temporal sparsity
impacts diverse monitors.

We consider how visibility changes as we vary duration
of passive observation – n – in unit of hours, from 1 up to
the full duration. We start with all possible far monitors
(all networks that see our three university targets), but
discard very low-visibility monitors (80%), retaining only
those that see the target in at least ten one-hour periods
over the full trace. For space reasons, we report findings
only for USC and only for addresses, but see similar
results for our other two targets, and for blocks.

Figure 10 shows the distribution of visibility across all
retained monitors as a function of time, compared to the
baseline of evaluation over the full duration. Consistent
with interest sparsity (Figure 4) we see a few monitors
are able to reach their full coverage very quickly (5% of
monitors need only one day). These are low-visibility
monitors, whose coverage does not improve with time.
After three days, 54% of monitors have seen at least
70% of their full visibility. These monitors’ visibility
exhibits logarithmic growth, with longer observations
bringing reducing benefit. “Heavy see-ers” (§ 5.2.1),
all reach 60–80% of their full visibility within a day,
and reach more than 90% of full visibility within three
days. Most monitors, however require multiple days and
show linearly-increasing visibility even after 3 or 6 days.
After three days (half of our observation period) 46% of
monitors have achieved less than half of their maximum
visibility.

Conclusion: Low-visibility monitors experience lin-
ear growth in their visibility and need longer observations
to converge. Very low-visibility and medium to high-
visibility monitors converge within days to at least 70%
of their visibility.

6.2 Sampling Sparsity
Sampling sparsity accounts for monitors that discard

a fraction of traffic or flows, typically to keep up with a
high-bitrate link (as in USC ) or with limits on back-haul
of monitor traffic (as in CDNXglobal).

To investigate sampling sparsity, we discard packets
from flows with a given probability. If all packets are dis-
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(a) Address visibility

Figure 10: Address visibility after one hour, twelve hours,
one day and three days. (Block visibility is similar.)
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(b) Block visibility

Figure 11: Reduction in visibility of addresses and blocks
when packets are sampled.

carded, we remove that flow. We then perform inverted
analysis on the remaining flows, and compare visibility
on non-sampled vs sampled flows.

Figure 11 shows the percentage of monitors in several
ranges of remaining visibility—more than 90%, 50-90%,
10-50% and less than 10%. Monitors are grouped into
low, medium and high visibility groups based on their
visibility on non-sampled flows. Each group of bars
shows a different sampling rate: 1 in 2, 10, 100, or 1,000.

We find that resiliency of monitors to sampling de-
pends on their initial visibility. High- and medium-
visibility monitors are barely affected by 1 in 2 sampling,
and most just lose 50% of their address visibility with 1
in 10. Even at 1 in 100 sampling rate, these monitors
retain much of their address visibility (between 10% and

(near) far monitor
target metric USC U.Ga. CSU CDNX

USC

addrs
near - 125 14,495 17,673
far - 167 15,008 19,077

near-cor. - 158 14,541 18,549

blks
near - 84 357 388
far - 84 356 390

near-cor. - 80 350 386

U.Ga.

addrs
near 91 - 77 2,167
far 262 - 575 3,574

near-cor. 227 - 542 3.042

blks
near 37 - 42 107
far 158 80 202

near-cor. 130 70 170

CSU

addrs
near 260 138 - 9,370
far 308 161 - 14,881

near-cor. 297 113 - 12,030

blks
near 72 58 - 153
far 88 81 - 203

near-cor. 79 61 - 173

Table 5: Cross-validating sites to test coverage sparsity.

50%).
On the other hand, low-visibility monitors are severely

affected by sampling. At 1 in 2 sampling, 60% of moni-
tors lose half of their visibility.

Block visibility (Figure 11(b)) is much more robust
to sampling than address visibility (Figure 11(a)), The
opportunity to observe any addresses helps.

Conclusion: Sampling amplifies the effects of promis-
cuity, harming low-visibility monitors more than high-
visibility ones.

6.3 Coverage Sparsity and Cross-Dataset
Validation

Coverage sparsity is incompleteness in observing all
traffic to the target. For example, in Figure 1, if the
dotted link from k0/24 to the Internet exists, the near
monitor will not see all traffic. We next evaluate coverage
sparsity by comparing what each of our Known Networks
see of each other. This comparison also serves as an end-
to-end validation of our data sources.

To validate, we compare the visibility of each of our
three targets by one of four far monitors (three univer-
sity monitors and CDNX ), as predicted by the inverted
analysis, with the actual visibility calculated from the
far monitor’s observations. In effect, we use far as the
ground truth against which we test near. If the near
monitor misses addresses, that indicates either cover-
age sparsity (missing an incoming peering), or sampling
sparsity (perhaps resulting from overload at the monitor,
since we do not intentionally sample).

Table 5 summarizes these comparisons of our three
universities against our four observers. We see good
agreement between all sites about USC . However, re-
mote sites see much more than predicted by our inverted
analysis of U.Ga. and CSU (10–50%). (For example,
CDNX sees 14 K addresses in CSU , while CSU expects
them to see only 9 K addresses.) We believe our under-
count at CSU occurs because of coverage sparsity—there
are some blocks at CSU that are very active but only
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seen by the far monitor, consistent with multi-homing.
When we “correct” the target network by eliminating
these never-monitored blocks (the near-cor. rows) we
see much better agreement. At U.Ga., we believe our
undercount occurs because U.Ga. dataset is two years
younger than the rest, so our predictions based on its
current traffic, do not match the observations made two
years prior.

7. RELATED WORK
Our work is motivated by the increasing use of passive

sources to understand network services [1] and address
liveness [7, 6, 28].

Early work compared passive and active techniques
for discovering services in a campus network [1]. Bartlett
et al. compared repeated active scans with a two-week
long passive observation. They showed that duration
of passive observation is critical, with popular servers
appearing quickly; our evaluation of promiscuity gen-
eralizes and builds on this observation. Bartlett et al.
also showed the role of third-party scanners in passive
observation, and identified the difference in snapshot
and continuous estimation of liveness due to dynamic
addressing.

Dainotti et al. were the first to apply passive dis-
covery to study Internet-wide liveness, complementing
and expanding on active scanning [7, 6]. They recognize
the importance of filtering spoofing, and identify the
importance of multiple data sources. In their later work,
they identify temporal and coverage factors that affect
their passive observation, concluding from consistent re-
sults over time that neither factor biases their projected
utilization [6]. We do not use their broad data sources
and do not give new projections of Internet-wide address
use. Instead, our work builds upon theirs to explore
the root causes in the visibility provided by different
monitors and the role of clients and servers. We also
systematically study how visibility changes with sizes
and types of monitors.

Zander et al. adopt the capture-recapture framework
from estimation of biological populations, and apply it
to extend prior passive and active estimates of Internet
liveness [28]. They validate their approach on six chosen
networks and use many data sources, however they do
not explore the reasons their sources provide different
information. Inspired by their work, we explore this
question in § 4.5.

Overall, our work complements prior work by exploring
the underlying reasons driving the visibility of passive
sources, and sources of observation bias. We expect
prior techniques can benefit from our analysis in source
selection and to help understand and strengthen their
findings.

8. CONCLUSION

In this paper we investigated what passive observers
can learn about address liveness. We introduced the
notion of sparsity to guide our understanding of when
passive sources (monitors) add information, how much
and why. We further developed inverted analysis as a
new technique to allow evaluation of these questions
by deriving many virtual monitors from a few actual
monitors. We found that interest sparsity plays a key
role in driving visibility, and that visibility is heavy-
tailed. We also found that network traffic is mostly
exchanged between client-heavy and server-heavy net-
works. Our insights can provide guidance to interpret
existing evaluations of address liveness and to guide new
measurements.
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APPENDIX
A. THE ROLE OF UNSOLICITED TRAF-

FIC
In § 5 we explored the role of how bipartite traffic

between client- and server-heavy networks affects vis-
ibility. In this appendix we expand on that analysis
and consider how unsolicited traffic, such as scans and
backscatter, affects visibility. Prior work has shown that
scanners can make large contributions to passive obser-
vation at a University [1] target, helping fast discovery
of servers. Our results here complement these findings
in the following ways:

1. We confirm that unsolicited traffic is crucial for
server discovery, and that it can also be used to
effectively discover clients (§ A.1)
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2. Most monitors do not gain visibility through scans
and most monitors do not participate in wide scan-
ning. Other types of unsolicited traffic, such as
backscatter or unsuccessful connection attempts,
provide greater visibility than scanning (§ A.2).

3. The effectiveness of scans at discovering hosts or
services depends greatly on the target, as well as
the type of scan (for example, ICMP or TCP SYN)
(§ A.3).

4. Local policies affect visibility (§ A.4) of a target.

A.1 Unsolicited Traffic May Lead to Good Vis-
ibility

Our first result is that many addresses and blocks
are visible through unsolicited traffic. We define useful
traffic as traffic where we can identify the client and the
server, and show that both parties actively participate
in the conversation—there is payload exchanged in both
direction of the connection. On the other hand, unso-
licited traffic consists of scans or unsuccessful connection
attempts, backscatter, and ICMP probes (ECHO pack-
ets and replies). Table 2 shows all flow labels, which are
grouped under “unsolicited” category.

Table 6 shows the percentage of addresses and blocks
at each target that are visible through either useful or
unsolicited traffic, for all virtual monitors. This figure
also breaks out visibility by address type, as defined in
§ 3.3.2 and Table 3.

While useful traffic reveals many blocks (useful traffic
contributes to visibility of 78–86% of addresses and 82–
91% of blocks), we see that unsolicited traffic shows even
more (89–99% of addresses and 95–98% of blocks). This
improvement occurs because of two phenomena. First,
unsolicited traffic into our targets probes all addresses—
some of these probes receive a reply from addresses that
are not otherwise active. Second, some addresses in our
targets send only unsolicited traffic, and appear to be
infected by Trojans.

A.2 High Visibility Usually Comes from Use-
ful Traffic

Our second result is that most high-visibility monitors
achieve their high visibility through useful traffic. We
again regard traffic as useful or unsolicited, using our
flow classification from § 3.3.2 (Table 2).

We expect web traffic to be the dominant contributor
in useful traffic, and demonstrate this is the case by
singling out web traffic based on port usage (identifying
web as TCP ports 80, 443, and 8080).

Finally, we label each flow with regard to the target
address’s role in this flow as “src” or “dst”. For exam-
ple, a label “useful-src” identifies a useful flow originated
by the target toward some server. Unfortunately, as
described in § 3.3.1, Argus reverses the source and desti-
nation addresses for some ICMP flows in a way that we

cannot identify and correct. As a result, we cannot guar-
antee correct identification of the source or destination
of unsolicited ICMP traffic. This deficiency may artifi-
cially skew the results for unsolicited traffic when broken
down by origin, elevating counts for the “unsolicited-src”
category.

Figure 12 shows contributions of different classes of
traffic (useful, web-src, web-dst, unsolicited-src and unsolicited-
dst) to overall visibility for each virtual monitor. The
sum of all contributions exceeds 1, since any given ad-
dress could be observed through more than one traffic
class. To smooth the noise, we average the contributions
for groups of monitors whose visibility is within 1% of
each other. Each sub-figure shows one of our targets,
with the x-axis showing the address visibility of virtual
monitors.

When we consider virtual monitors with high visibility
(the left side of each graph), we see that for most mon-
itors, high visibility comes from the presence of useful
traffic (the dark purple line is much higher than the or-
ange and yellow lines on the left side of each graph). Web
traffic sent from our targets to servers in virtual monitor
networks (the green line) shows an especially large dif-
ference. This data shows that, while some high-visibility
monitors see a lot of our targets through scanning, it
is much more common for monitors to see our targets
because they host popular content that is accessed by
clients in the target. Conversely, external monitors that
see 0.01% to 1% of the target often see it through unso-
licited traffic. This finding holds across all three targets.

A.3 Visibility through Direct Scans Depends
on Scan Type and the Target

Our third finding is that visibility through direct scans
to the target may sometimes be quite low, and that
different protocols used in scans dominate visibility for
different targets.

We define a direct scan that receives a reply as: (1)
ICMP echo packet that receives ICMP echo reply, (2)
TCP SYN going from a non-service port to a service port
that receives TCP SYN-ACK or TCP RST, (3) UDP
packet going from a non-service port to a service port
that receives a reply from that port or that leads to an
ICMP unreachable reply. We break out visibility through
unsolicited traffic, into visibility afforded by direct scans
to the target, which receive a reply, and visibility through
other unsolicited traffic. We then subdivide direct scans
by protocol into scan/ICMP (ICMP echo request or
reply) and scan/non-ICMP (that is, TCP and UDP).

Table 7 shows that these subclasses of traffic make
very different contributions across our targets. There is
no clear trend: for USC , ICMP and non-ICMP discover
similar fractions of addresses and blocks. For CSU , non-
ICMP discover much more than ICMP. Finally, no ICMP
appears in our U.Ga. data, and non-ICMP gets visibility
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traffic category client- server- client- one-way
by target only only server ambiguous prober responder source addresses blocks
useful

USC 98% 88% 97% 0% 0% 0% 0% 85% 82%
UGA 98% 94% 99% 0% 0% 0% 0% 86% 91%
CSU 95% 35% 90% 0% 0% 0% 0% 78% 90%

unsolicited
USC 97% 99% 99% 96% 100% 100% 100% 98% 98%
UGA 91% 68% 98% 41% 0% 100% 100% 89% 95%
CSU 99% 99% 100% 88% 100% 100% 100% 99% 95%

Table 6: Visibility of various address categories through different traffic types
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Figure 12: Contributions of different classes of traffic to address visibility: virtual monitors are grouped by their power.

similar to what it does at CSU . We conclude that site-
specific policies and data sources affect visibility.

Data to support this claim of variation comes from
comparing Table 6 and Table 7. Comparing numbers
for visibility through unsolicited traffic in Table 6 (last
two columns) and visibility through direct scans in (last
column), we see that 26–67% of addresses and 7–10% of
blocks are visible through the unsolicited traffic other
than replies to scans. For example, unsolicited traffic re-
veals 98% of addresses and blocks at USC , but only 72%
of addresses and 91% of blocks are revealed due to their
replies to direct scans. The rest are revealed because
they either reply to backscatter traffic, or they have some
failed attempts to initiate connections to popular servers.
Thus direct scans have limited success at discovering live
addresses. This limited success may result from different
causes: either a network may identify scanners and filter
out their traffic, or addresses may be dynamic and may
be scanned at the time when they are not assigned to a
host. We investigate the first reason in the next section,
and leave the second for future work.

A.4 Local Policies Affect Visibility
Our fourth finding is that local security policies greatly

affect visibility achieved through scanning. Our data
indicates that U.Ga. and CSU employ some scan filter-
ing, which greatly reduces their visibility through direct
scans. Looking at Table 7 almost all allocated USC ’s
addresses and blocks receive both non-ICMP and ICMP
scans. Further, 53% of live addresses (90% of blocks)
reply to non-ICMP scans, and 58% of live addresses

Scan type Scanned Replied (% live)
(% alloc.) Posit. Negat. All

USC
non-ICMP 99% (99%) 31% (75%) 22% (87%) 53% (90%)

ICMP 99% (99%) 58% (89%) 0 (0) 58% (89%)
all 99% (99%) 66% (90%) 22% (87%) 72% (91%)

UGA
non-ICMP 11% (82%) 23% (81%) 16% (60%) 30% (85%)

ICMP 0 (0) 0 (0) 0 (0) 0 (0)
all 11% (82%) 23% (81%) 16% (60%) 30% (85%)

CSU
non-ICMP 8% (62%) 11% (61%) 22% (85%) 30% (85%)

CMP 66% (68%) 6% (55%) 0 (0) 6% (55%)
all 66% (69%) 14% (74%) 22% (85%) 32% (85%)

Table 7: Percentages of addresses and blocks per target
that receive direct scans and that reply to scans.

(89% of blocks) reply to ICMP scans. U.Ga. traces con-
tain only TCP and UDP traffic. Only 11% of allocated
U.Ga. addresses (82% of blocks) receive non-ICMP scans.
Because most of blocks are scanned, and because the
smallest routing unit is usually a /24 block, we believe
that our monitor sees all incoming traffic for allocated
U.Ga. blocks. We also have no reason to believe that
U.Ga. addresses are less attractive to scanners. Instead,
we hypothesize that the small percentage of addresses
scanned points to an aggressive scan filtering policy at
U.Ga.. Out of live U.Ga. addresses and blocks, 30% of
addresses and 85% of blocks reply to non-ICMP scans.

With regard to allocated address space at CSU , 8%
of addresses (62% of blocks) receive non-ICMP scans,
and 66% of addresses (68% of blocks) receive ICMP
scans. Again, because majority of blocks receive both
types of scans, we conclude that the small percentage
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of probed addresses points to aggressive scan filtering
policy. Out of live CSU addresses and blocks, 30% of
addresses (85% of blocks) reply to non-ICMP scans, but
only 6% of addresses (55% of blocks) reply to ICMP
scans. This points to further filtering of ICMP scans or
replies, either at the host or at the network level.
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