MAC Stability in Sensor Networks at High Network Densities

ISI-TR-628, January 24, 2007

Tyler McHenry

John Heidemann

Information Sciences Institute, University of Southern California

4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292
{smchenry,johnh }Qisi.edu

Abstract

Although MAC protocols have been the subject of
extensive study, there has been little study of MAC
operation as network density (number of neighbors
per node) increases. Although network densities are
often low (2-12 neighbors), density can rise in special
situations (such as hundreds of people attending a
conference in the same room) and new deployments
(such as dense instrumentation of a structure with
a sensor network). In anticipation of these applica-
tions, this paper studies the stability of S-MAC as
network density increases to densities of 50 to 150
neighbors, well beyond its current design parameters.
We present a mathematical model of expected behav-
ior, then use experiments to show the importance of
accounting for clock offset. Although offset cannot
easily be modeled, we show that a simulation closely
matches the experimental data. Finally, we describe
how an offset-aware MAC can correct for hardware
variation to allow operations at twice the density of
current S-MAC. Although the details are specific to
S-MAC, the results apply more generally.

1 Introduction

Wireless MAC protocols are designed to promote ef-
ficient and often fair access to the network. In sen-
sor networks, MAC protocols are often optimized to
reduce energy consumption. However, most wireless

networks today are relatively low density—each node
has a relatively few neighbors, or each base station
has relatively few clients.

Low-density networks are common in sensor net-
work deployments today, where typical network de-
ployments are sparse (fewer than 6-12 neighbors per
node), or even engineered to run at very sparse but
connected densities (26 neighbors). Sparse deploy-
ments maximize spatial reuse, and a class of power-
adaptive protocols adjust node transmit power to
create topologies with 12 or fewer neighbors per
node [8, 5, 2].

While sparse networks are common today, we argue
that there will also be much denser networks in the
near future. Falling costs of sensornet hardware will
make dense deployments feasible, demand for better
coverage and reliability make dense deployments de-
sirable, and limited ability to adjust transmit power
makes density unavoidable. Already, high densities
arise in special circumstances, such as when an 802.11
network moves from a quiet home to a bustling con-
ference room with hundreds of chattering laptops. In
sensor networks, sensor placement is often driven by
the need to sense certain phenomena; applications
such as structural health monitoring force increas-
ingly dense deployments [12]. Visionaries also antic-
ipate “smart paint” with thousands of wireless com-
puting elements per square meter [1]. Wireless MAC
protocols typically have not been studied at high net-
work densities.

3 S-MAC BACKGROUND

In anticipation of these applications, this paper
studies the stability of S-MAC [14] as network density
increases to 50 to 150 neighbors, well beyond its cur-
rent design parameters. While in the abstract, MAC
protocols can operate at any density, in practice, an
implementation includes many internal parameters
that are selected with some density in mind. Our
goal is to understand how a deployed MAC protocol
must adapt to scale to both low and high densities.

Nodes must send control messages such as
RTS/CTS and, in S-MAC, synchronization packets.
As density rises, these messages can encounter col-
lisions and loss. Approaches such as randomization
and retry may work well at low densities, but they
eventually break down. While congestion control at
higher network layers can successfully increase the
overall throughput of a network, it does not resolve
the stability of MAC-layer control messages.

The main contribution of this paper is to investi-
gate MAC reliability at high densities. We present a
mathematical model of expected behavior. We then
use experiments in a scaled network to show that
hardware effects such as clock offset actually invali-
date simple models. Although offset cannot easily be
modeled, we show that an simulation closely matches
the experimental data. Finally, we describe how an
offset-aware MAC can correct for hardware variation
to allow operations at up to twice the density of cur-
rent S-MAC. Although just a beginning, we believe
this paper opens the door to future exploration of
high-density sensor networks.

2 Problems from Density

Several problems arise when network density grows,
even if application traffic remains constant. First, the
pre-allocated, fixed-size neighbor table must be large
enough to include all neighbors. Second, the soft-
state approach to maintaining this table must operate
correctly. Third, channel contention must scale as
the number of active nodes grows. In this paper we
assume that the neighbor table is large enough and
we focus on the cost of its maintenance.

In Section 3.1 we will describe the soft-state proto-
col that S-MAC uses to maintain the neighbor table.

A node appears in the tables of its neighbors provided
that it successfully sends synchronization packets at
a rate meeting or exceeding a specified minimum fre-
quency. We call nodes that do not meet this criteria
timed out, and if there is at least one such node, the
network is said to be desynchronized. By definition, a
network that is desynchronized contains at least one
node A which is not considered a neighbor by at least
one other node B, even though they are within radio
range.

The cost of a desynchronized network is longer
routing paths. Given the high density, it is likely
that all nodes are still reachable, but nodes that are
timed out will require two or more hops to exchange
data through the MAC layer, even though they are
physically within radio range. Since these extra hops
waste power needlessly, we consider a desynchronized
network undesirable.

To quantify network stability we define three val-
ues of interest. First is the network size at which
the expected or mean number of timed out nodes is
greater than one-half. We define this size as the in-
stability point, because at this point the network is
more likely than not to be desynchronized. The next
is the network size at which the expected or mean
number of timed out nodes is greater than one. This
point is called the break point because here the net-
work is perpetually desynchronized (broken) since at
least one node is always unreachable for application-
layer packets.

Finally, there is the network size at which the ex-
pected or mean number of timed out nodes is n — 1.
This point is called the total failure point because
here each node is not aware that it has any active
neighbors, and may as well not be in a network at
all. While this point is not investigated experimen-
tally in this paper, it is important to consider, since
this is the point at which every packet is expected
to be undeliverable regardless of how many hops are
allowed.

3 S-MAC Background

In this paper, we use the S-MAC protocol [14] as
our example media access layer. We chose it because

3 S-MAC BACKGROUND

it is fairly simple, a full software implementation is
freely available, and because it is representative of
contention-based sensor networking MACs that strive
to conserve energy.

There are a number of aspects of S-MAC that are
sensitive to density. In this paper we focus on the
frequency of synchronization messages, the keep-alive
message that is vital to the operation of the protocol.

3.1 Protocol Elements

S-MAC aims to allow most nodes to be in a low-
power sleeping state most of the time. Nodes period-
ically wake up and exchange information on a partic-
ular schedule. Nodes will wake up at a pre-arranged
time, at which point they will listen for and trans-
mit synchronization packets. These packets synchro-
nize schedule timing and confirm neighbor presence.
Then, if necessary, the nodes exchange RTS and CTS
packets to reserve the channel for data transfer. Af-
ter this exchange occurs, nodes not participating in a
unicast transfer return to sleep, freeing the medium
for the data transfer.

This paper will follow the terminology used in prior
S-MAC papers. A stream of communication over the
S-MAC protocol can be decomposed into frames and
periods. A frame is the basic unit of S-MAC commu-
nication; in basic usage it provides the opportunity
to send one data packet plus synchronization pack-
ets. S-MAC synchronizes all nodes so that all nodes
know when frames begin and end. Nodes periodi-
cally exchange synchronization packets to maintain
their synchronization. A period is the default inter-
val between a nodes transmission of a synchronization
packet.

Each frame is divided into three segments: the syn-
chronization segment, the contention segment, and
the data transmission segment. The synchronization
segment is composed of some number of slots, which
each represent an opportunity for one node to cap-
ture the channel for sending a synchronization packet.
Several slots are provided to allow randomization to
reduce the likelihood of collision.

The contention segment allows a node to acquire
the channel through an RTS/CTS exchange. In the
data segment, the source and destination of a packet

remain awake while all others sleep. (For broadcast
traffic, all remain awake.) At low duty cycles, data
exchange may be followed by a quiet period. With
adaptive listen [14], or if a transmission is lost and
is not acknowledged by the receiver, additional con-
tention and transmission periods may follow in one
frame and even cross into subsequent frames. We do
not consider that level of detail in this paper.

Each node in S-MAC keeps a table of its immediate
neighbors. The main purpose of this table is to track
active schedules, since multiple independent sched-
ules can arise. When multiple schedules are present,
this table is used to determine which schedule is best
for a given destination.

Since nodes may fail, turn off, or move, S-MAC
tracks nodes and requires all nodes to indicate their
schedules periodically with synchronization packets.
A node that does not successfully transmit synchro-
nization packets frequently enough is said to time out
and is considered to no longer be a member of the net-
work until it sends another synchronization packet.

The experiments in this paper are concerned with
measuring, modeling, and predicting the occurrences
of spurious timeouts in a fully-connected S-MAC net-
work as a function of network size. This data will give
a quantitative view of the robustness of the protocol
as a function of density.

3.2 Tuning S-MAC

S-MAC has a number of parameters, including the
number of synchronization header slots per frame,
frames per period, and periods per timeout. In this
paper we use the variables k, s, and ¢ to represent
these values, respectively. We also use n to refer to
the number of nodes in the network, and we assume
that all nodes can hear one another (the worst case
for high density).

Synchronization packets are actually larger than
a single synchronization slot. Thus, slots serve to
reduce the probability collision (since all nodes car-
rier sense and require a clear channel before trans-
mitting), but we assume each synchronization packet
consumes 1 slots.

In S-MAC models and simulations, we use the in-
dices 7 to indicate a particular frame and j to indicate

3 S-MAC BACKGROUND

One Irure

Licten Segment

Syne. Scgment Coentention

Segmeat
1 _Z

S

Sleep or Jara Transisslen Segment

Licter. Segment

Centention
Segment

Syre. Scgmeat

\N

W/

Sync. Slots

One Period

\\w/
Sync. Slots

Listen Segmen:s

IO_‘leFl:llJ.Lel
I R N e

Synearonize

EIEIDEDj//é

e TSN
: . ~ - / \\\
\ \\Sym:hmr_ize

C1

Figure 1: Conceptual diagram of S-MAC slots, frames, and periods.

a particular slot.

The reference implementation of S-MAC uses 15
slots per frame (k = 15 slots) and 12 periods per
timeout (¢ = 12 periods). The intention is that there
be 10 frames per period, but due to implementation
details, for S-SMAC with no customizations, there are
in practice only 9 (s = 9 frames), which is what is
used in this paper. Note that st gives a measure of
frames per timeout.

The length of a synchronization packet (1) has been
measured empirically to be approximately 13.5 mil-
liseconds, or approximately 6.75 slots. With carrier
sense, this consumes seven slots, so we set r = 7.

3.3 Neighbor Maintenance

S-MAC wuses synchronization packets to maintain
neighbor tables and schedule tables. They are es-
sentially a “keep-alive” message from one node to its
neighbors, informing them that it remains an active
part of the network. Ignoring the rest of the opera-
tion of S-MAC, the mechanism for keeping the nodes
synchronized with one another is as follows:

e Each period, a node will select one of the k syn-
chronization slots uniformly and independently

at random and carrier sense from the beginning
of the frame until the beginning of that slot.

e If the node detects a free channel at the begin-
ning of the slot, it will begin transmitting its
synchronization packet (which will then occupy
the medium for r slots).

In S-MAC, broadcast packets, including synchro-
nization packets, are not controlled with RT'S/CTS
or any other method of reserving the channel, so
they are subject to collisions. This paper will assume
that all packets properly transmitted are properly re-
ceived. From our experience, the primary cause of
lost packets is due to collisions, not other kinds of
environmental noise. We consider collisions next.

3.4 Collisions and Preemption

Three things can cause a node to be unsuccessful in
its attempt to send its synchronization message. Two
nodes may randomly pick the same slot and collide,
or the node may detect that the channel is busy and
abort its transmission, being preempted. Following a
preemption, a node skips its transmission in the cur-
rent frame and attempts again in the following frame
with a new, randomly chosen slot. There are two

4 AN IDEALIZED MODEL OF S-MAC

forms of preemption: A normal preemption occurs
when the channel is occupied because another node
that began transmitting its synchronization packet
on an earlier slot has not yet finished. The more in-
teresting situation is a offset-related preemption.

Offset-related preemption occurs when the chan-
nel is occupied because another node which is at-
tempting to transmit on the same slot began trans-
mitting early relative to the node being preempted. It
may be because the preempted node’s clock is offset
late, or because the preempting node’s clock is offset
early, or both. Regardless, there must be a signif-
icant enough discrepancy between their clocks that
the preempting node begins its transmission before
the preempted node finishes carrier sensing. Other-
wise, the preempted node would not have detected
a busy channel, and would have assumed that the
channel was free to acquire.

If the clocks for two nodes attempting to transmit
on the same slot are sufficiently synchronized that
each stops carrier sensing before the other begins to
transmit, each will assume a free channel and will as-
sume that it has acquired the channel. Then, they
will transmit their synchronization packets almost si-
multaneously, and the packets will collide.

Collisions are much worse than preemption because
the radios in question are simplex. A node cannot
detect a collision of its own packet, and so must al-
ways assume that broadcast packets (which receive
no ACK) are successful. Therefore, instead of retry-
ing the synchronization on the very next frame, all
nodes involved in the collision will instead wait an
entire period before attempting another synchroniza-
tion, as if they had succeeded. Fortunately for the
protocol, the window of synchronization tolerance be-
tween two nodes for which a collision can occur is
quite small compared to the observed clock offsets.
Thus such collisions are, in practice, relatively rare.

4 An Idealized Model of S-
MAC

Our original assumption was that the primary bar-
rier to high-density operation would be collisions of

synchronization packets. We therefore designed an
idealized model to predict S-MAC stability.

4.1 The Idealized Model

The idealized model makes the following major as-
sumptions:

1. Initially, the first synchronization attempts of all
nodes are uniformly distributed over the frames
in the first period.

2. There is no clock drift or offset; all clocks are
perfectly synchronized.

3. There is no delay between carrier sensing and
transmitting; a free channel after carrier sense
always means either a free channel for transmis-
sion or an impending collision.

The idealized model ignores all preemptions result-
ing from non-ideal clocks; experimental results in Sec-
tion 5 will show that this factor cannot be dismissed.
The idealized model further assumes that it is al-
ways possible to transmit [£] complete synchroniza-
tion packets in each frame, which is a best-case sce-
nario. Best-case analysis is appropriate for the ideal-
ized model since the model is ultimately pessimistic.
Analyzing the best case demonstrates that the pes-
simism is inherent to the model and not due to overly
stringent assumptions.

4.2 Analysis of Idealized Model

Since the idealized model assumes full synchroniza-
tion, there are no offset-related preemptions, thus
guaranteeing that there will be at most [2] nodes
attempting to synchronize in each frame. Each of
these nodes will be competing for one of the [£]
available synchronization opportunities. The chance
that a given node will succeed in synchronizing on
that frame is the chance that the slot it chooses is
unique among nodes attempting to synchronize on
that frame. Since the choice of slot is uniformly at
random, this is at least

(féw - 1> o
B

(1)

5 EXPERIMENTAL OBSERVATIONS

Then, the probability that a given node fails to
synchronize for ¢ consecutive periods is simply

N
k(%w)

And finally, since this probability is the same for
every node, the expected number of nodes that are
timed out on any given frame is the product of the
number of nodes with the probability that any given
node is timed out

(o)
: (G)

This equation provides a closed-form evaluation of
the expected number of unsynchronized nodes as a
function of network size. The predictions of this
model are plotted against experimental data in fig-
ure 2.

t

(2)

(3)

5 Experimental Observations

To verify our idealized model, we tested instability
and break points of a range of moderate-sized net-
works. The key result of these experiments is to show
the influence of systematic clock offset on network
stability, as we explain below.

5.1 Scaling the Protocol

Analysis predicted a network break point of 37 nodes.
Since we did not have enough nodes to test this pre-
diction to the break point and beyond, we scale the
S-MAC parameters down to cause instability with
smaller numbers of nodes. We can then extrapolate
from these results to a larger network with the default
parameters.

The variables ag, as, and a; represent scale factors
for the parameters k, s, and t respectively. Let /2;,
5, and t be fixed at the default values, and to scale
by the given factors we will let k = akk, s = ai, and

i

ag”

In this particular experiment we chose to scale s
and t by a factor of 3 but to leave k at its default
value. So here, as = a; = 3, and a = 1. It is impor-
tant to note that the scale factors are used only to
compensate for the lack of sufficient hardware to con-
duct a full-scale experiment. We do not claim that
the scaling is necessarily linear (although it appears
to be nearly so), but linear scaling is not required
since we avoid comparing scaled data to unscaled pro-
jections.

5.2 Experimental Methodology

For this experiment, the nodes ran a no-op applica-
tion that did not transmit any data of its own, and
each mote ran S-MAC as its MAC layer protocol. We
configured S-MAC to use a global schedule (initiated
by node number 1) and to refuse to change sched-
ules for any reason. This modification forced the col-
lection of proximate nodes to maintain, or attempt
to maintain, a single-schedule clique. Without these
configurations, at densities beyond the breakpoint
the nodes would likely have split into two or more
parallel networks with different schedules. Since such
a configuration is very wasteful of energy and pre-
cludes the study of grossly overloaded single-schedule
networks, we explicitly prevented its formation.

We arranged 37 Mica2Dot motes on a table in a
grid pattern of five nodes per row by eight rows (with
the final row incomplete). Each node had approxi-
mately an inch and a half of space between itself and
the next node both horizontally and vertically.

The data point for an n node network represents
the data gathered by booting nodes 1 through n, al-
lowing time for initial synchronization either by wait-
ing 30 seconds or by waiting for each node to send
at least one synchronization packet (whichever was
longer), and then recording the complete activity of
the network for four minutes. Given the scaling pa-
rameters used, four minutes of recording is equivalent
to approximately 64 periods, or 192 frames.

A Mica2 mote situated in the incomplete area of
the final row recorded network activity. This mote
was running a snooper application (not using S-
MAC) which listened constantly and echoed every
received packet over a serial backchannel to a work-

6 THE IMPACT OF HARDWARE EFFECTS ON THE ACCURACY OF MODELS 7

station running a packet collection application. The
packets were then analyzed on the workstation to de-
termine which nodes were considered timed out at
any given point in the experiment.

We recorded data points for network sizes from 6
to 20 nodes. After a size of 20, we stopped recording
because the expected number of timeouts per frame
reached 8—significantly past the break point. We
repeated the above experiment three times.

5.3 Evaluation and Comparison to
Model

As predicted by the idealized model, the mean num-
ber of nodes that were timed out during any given
frame experienced a decidedly exponential increase.
The exponential rate of increase reflects the direct re-
lationship between the choosing of random slots and
the well-known birthday problem [10].

The idealized results are in fact quite accurate at
lower network sizes, but increasingly pessimistic as
the network gets larger. The model correctly predicts
the break point of the scaled experiment at a network
size of about 9 nodes, but immediately afterwords
the slope of the idealized model prediction becomes
noticeably steeper than the experimental results. A
direct comparison of the values is shown in figure 2.

The stepped pattern of the idealized results is inter-
esting. This pattern is a result of the ceiling function
in the inner exponent of (3). Because of this, the
idealized model makes relatively static predictions for
groups of three adjacent sizes with large jumps in be-
tween. The accuracy of the idealized model at low
sizes is in large part due to the lack of opportunity
for the idealized model to have made many of these
large jumps at that point. This will be especially true
for unscaled networks.

6 The Impact of Hardware Ef-
fects on the Accuracy of
Models

Our experimental results, however, match poorly at
denser networks—our actual network is much more

Approximate Unscaled Network Size (Nodes)

(]

£ 0 30 60 90 120
s 10 . : — ‘
w .

3

Q

3

o 8 /[B
(] -

£

= /

D !

o

g ¢© o / :
z . /

k] i :

: S

Qo ! i

E 4} / 1
=3 ; - T 1

=z ; T 4

B Idealized model..# Vi

8 Y

-3 2| /7 */ xperimental data

w | 1 i

5 Break point NG

5 P — NA

5 A }

6 0 - SN el 1 1 L
z 0 5 10 15 20

Network Size (Nodes)

Figure 2: Expected and average timeouts per frame
versus network size for a scaled experiment (with con-
fidence intervals) and the scaled idealized model for
0 to 20 nodes.

stable at high densities than we expected. We iden-
tified the inconsistency as a simplifying assumption
in the model: we assumed clock synchronization was
perfect. We next demonstrate that this assumption
does not hold, and that clocks are actually systemati-
cally offset from each other. We show how this affects
synchronization, and describe simulation results that
better reflect reality.

6.1 Measuring Clock Offset

Ideally, all nodes are perfectly synchronized and so
each begins its carrier sense at the same instant.
With this assumption, the primary cause of instabil-
ity is synchronization packet collisions due to selec-
tion of the same slot. In practice, we will show that
accidental clock offset can be on the order of several
slot lengths.

To measure the variability of clock timings, we se-
lected eight nodes and designated one as a time ref-
erence. All nodes ran a no-op application on top of
S-MAC (i.e. no data was being transmitted between
nodes). The reference node booted once and contin-
ued to run. Then, the other seven nodes were one by
one booted in close proximity to the reference node,

6 THE IMPACT OF HARDWARE EFFECTS ON THE ACCURACY OF MODELS 8

Instances Observed
)

0 I N 1IF

Offset (milliseconds)

5 10 15

Figure 3: Histogram of measured clock offset dis-
tribution relative to stable reference node. Shading
shows data gathered from individual nodes; notice
the clustering.

allowed one minute to synchronize, and then the dis-
crepancy between the two clocks was measured pre-
cisely ten times with an oscilloscope.

The left side of figure 3 shows the results of this
experiment. While many nodes are accurate within
a few milliseconds, we see that some nodes are more
than 5ms early. Recall that slot time is 2ms, this
means nodes are drifting by several slots. Also note
that these measurements are all relative, since there
is no master clock determining when each slot begins
and ends. Rather, an arbitrary node among those
measured was chosen as a reference point for the data.

In addition, we determined that clock offset is sys-
tematic based on the hardware. The right side of fig-
ure 3 shows the data from two nodes (5 and 7) after
several cold reboots. Compared to the reference, we
can see that node 5 is consistently early, while node 7
is always 2 ms late. In other words, some nodes seem
to have clocks that are consistently early, and other
seem to have clocks that are consistently late.

6.2 Effects of Systematic Clock Offset

Systematic clock offset has a significant impact
on the stability of S-MAC. Some nodes become
synchronization-greedy, since they consistently fire
early and seize the channel, while others that are

late become synchronization-deprived. When net-
work density grows so that there is contention for
nearly every slot, nodes with early clocks will “win”
their slot regularly by beginning to transmit while
other nodes that have selected the same slot are still
carrier sensing. In contrast, late nodes will always
yield the channel (losing carrier sense) and be un-
able to send their synchronization message even after
repeated attempts.

Recall that the primary metric in the experiment
described in section 5 is the mean number of nodes
that are timed out in any given frame. The exis-
tence of greedy nodes and deprived nodes increases
the mean number of timed out nodes beyond what
an idealized hardware model would project. This
desparity exists because deprived nodes, once timed
out, are likely to continue to remain timed out for
many more periods than would be anticipated were
all nodes equally likely to “win” any given slot. This
bias may make the likelihood of a network being
desynchronized relatively high even if the likelihood
of any one randomly selected node being timed out
is relatively low.

The unfairness caused by this systematic bias is
analgous to the network capture effect observed in
Ethernet and other CSMA/CD networks [7]. In the
case of S-MAC, a group of nodes, rather than a single
node, are able to collectively capture the channel and
temporarily starve the remaining nodes. Here, hard-
ware differences, rather than the backoff algorithm, is
the source of the unfairness, and the problem is com-
plicated by the lack of collision detection in wireless
networks.

6.3 Simulation Results

To correct our model, we must account for hardware
clock variability. Since it becomes mathematically
challenging to capture clock offset in analysis, we de-
veloped a custom simulator to confirm our hypothe-
sist.

The simulator is a special-purpose design meant
only to simulate the synchronization mechanism in S-

1Source code to the simulator and a written description of
its operation are available at http://www.isi.edu/~ilense/
software/smac_sync_sim/

7 USING HARDWARE EFFECTS TO INCREASE ROBUSTNESS 9

MAC; it does not simulate the complete protocol, nor
provide even a general, discrete-event simulation. It
makes the same assumption as the idealized model re-
garding the first synchronization attempts being uni-
formly distributed. However, instead of assuming no
offsets and no delay in the transition between carrier
sensing and transmitting, the simulator approximates
reality as follows:

1. A fundamental clock offset is assigned to each
node at initialization; these offsets are selected at
random from a normal distribution with a mean
of zero and a standard deviation of 3.62 ms (the
empirical mean).

2. An additional minor variation in offset is selected
for each node every time it attempts to synchro-
nize; these variations are selected from a normal
distribution with a much smaller standard de-
viation half that of the fundamental offset, but
also with a mean of zero.

3. The time by which carrier sense begin preceeds
the beginning of the first slot is fixed at the em-
pirical mean value of 21.3 ms.

4. The delay between carrier sense end and trans-
mission is fixed at the empirical mean value of
0.68 ms.

6.4 Comparison of Simulation with
Experimental Results

Figure 4 shows a comparison of the experimental and
simulated results. The simulation results are slightly
optimistic, predicting a slightly more stable network
than experiment confirms. For the scaled network
of the experiment, the simulation predicts the break
point to be approximately 13 nodes. The experi-
mental data shows a breakpoint at approximately 10
nodes. The difference is likely due to the inadequacy
of random offset assignments for modeling the actual
hardware effects. Importantly, however, the shape of
the simulation results match the shape of the experi-
mental data better than the idealized model; this will
translate into a closer approximation to real behavior
when scaled up.

Approximate Unscaled Network Size (Nodes)
0 30 60 20 120 150
T T T T

Experimental data /](/
i/

Simulation

Average Number of Nodes Timed Out per Frame

Break point

0 5 10 15 20 25
Network Size (Nodes)

Figure 4: Mean timeouts per frame versus network
size for a scaled experiment and one run of a scaled
simulation for 0 to 25 nodes.

While our simulation captures the shape of the ex-
periments and the rough magnitude, additional work
is required to verify these results with other sets of
hardware to control for possible hardware differences.
For this reason, the simulation should not be adjusted
to fit these specific results more accurately.

7 Using Hardware Effects to
Increase Robustness

The fundamental issue discovered in the course of
this research is that despite the overall beneficial ef-
fect of the hardware imperfections on the behavior of
the protocol, the feast and famine dichotomy between
particular nodes still limits the supported densities.
However, if S-MAC could be modified to expect and
work with the hardware effects, even greater network
densities could be supported before failure.

We propose a simple modification to S-MAC to
recover from hardware clock offset and evaluate it
through simulation. An implementation is underway
as future work.

7 USING HARDWARE EFFECTS TO INCREASE ROBUSTNESS 10

7.1 An Offset-Aware MAC

When a node is being deprived because it has a late
offset, it will frequently experience offset-related pre-
emptions as described in section 3.4. By comparing
the events that occur during an offset-related pre-
emption to the events of a normal preemption, the
observed differences between them can be leveraged
to allow nodes to determine which kinds of preemp-
tions they are experiencing. This in turn will allow
them to infer the direction in which their clock is
offset.

The solution to a similar problem with IEEE
802.11 ad-hoc freqgency-hopping synchronization de-
scribed by Huang [3] also recommends that the
fastest clock should detect implicitly that it is fast,
and correct itself. They discovered the same prob-
lem that we encountered, however their focus was on
maintaining synchronized clocks, while we focus on
improving fairness. Their solution therefore attempts
to match the values and rates of all clocks, while we
are satisfied with a scheme that converges on long-
term fairness while tolerating and even encouraging
potentially large short-term discrepencies

A synchronization slot is 2ms in length. Let de-
prived node A with late offset choose slot j > 0. In
a normal preemption, the slot j — 1 will be entirely
filled with the body of another node’s synchronization
packet. In an offset-related preemption caused by
node A’s late offset, only the tail end of what node A
considers to be slot j—1 will actually be filled. A node
B which has an early offset and chooses slot j will be-
gin transmitting at about slot j — % by A’s reckoning.
Figure 5 shows a conceptual diagram of the cases for
a node attempting to send in slot 7 = 5. Normal pre-
emption occurs if some other node acquired the chan-
nel in an earlier slot (j = 2 is shown, labeled “normal
preemption”). The case of offset-related preemption
occurs when a competitor is slightly early. We can
distinguish these cases because with normal preemp-
tion the channel is busy at pre-sense time (a half slot
early), but not for offset-related preemption.

Therefore, since A carrier senses continuously from
the beginning of the frame, A can take a preliminary
RSSI reading (pre-sense) at slot j — &. If the channel
is busy at this time, A can assume that any preemp-

tion is a normal preemption. But if the channel is
empty and A is preempted anyway, A can assume
that the preemption is offset-related, and that it has
a late offset.

A node can then maintain a value called greedi-
ness which is incremented whenever it successfully
transmits a synchronization packet and decremented
whenever it experiences an offset-related preemption.
If a node’s greediness is below a certain threshold, it
considers itself to have a late offset and will artificially
reduce its lateness by considering each slot to begin
1ms earlier than it actually does. If a node’s greedi-
ness is above a certain threshold, it will consider itself
to have an early offset and will perform the opposite
correction. Using a single counter for both of these
mechanisms prevents the feast/famine situation from
simply reversing itself, since once a node successfully
synchronizes several times consecutively, it will back
off.

This algorithm does not attempt to synchronize
the nodes’ clocks (unlike that of Huang [3]). In fact,
the pessimism of the idealized model indicates that
synchronized clocks are detrimental to network ro-
bustness in this circumstance. Rather, this algorithm
attempts to increase fairness amongst nodes so that
no node or group of nodes capture the channel at the
expense of another group. A similar mechanism for
remedying the network capture effect in ethernet is
proposed by Ramakrishnan [7] which also seeks to
mildly punish nodes which experience repeated suc-
cess.

In simulation, implementing the mechanism de-
scribed above with a greediness threshold of 5 to
consider oneself to have a late offset and a greedi-
ness threshold of —5 to consider oneself to have an
early offset increases the number of supported nodes
in an unscaled dense S-MAC network by a factor of
2—from 90 to more than 180 nodes. Figure 6 shows
a comparison of S-MAC with and without offset cor-
rection.

7.2 The Effect of Offset Correction on
Density Limitations

According to the idealized model, a full-scale S-MAC
network should fail at no fewer than 35 nodes. We

7 USING HARDWARE EFFECTS TO INCREASE ROBUSTNESS 11

> Carrier Sense Begin

Pre—Sense Time -

Carrier Sense End ° - Attempt to Transmit

| Collision |

Offset—related preemption |

MNormal preemption

|
Slot: L

| |
3 4

(2]

Figure 5: Conceptual diagram of the distinguishing difference between a normal and an offset-related pre-

emption for j = 5.

Normal SMAC ~ / |

Average Number of Nodes Timed Out per Frame

2 i
Ly
. Offset-Aware S-MAC / | J
1 | Break Point ‘)\FJ 4
o W
\ v
o
ol
6 o R
0 50 100 150 200

Network Size (Nodes)

Figure 6: Projected average timeouts per frame ver-
sus network size for unscaled simulations with and
without offset correction.

consider this a very loose lower bound on reality. Ac-
cording to the simulator (without offset correction),
an upper bound, a full-scale S-MAC network should
fail by the time it reaches 90 nodes.

While 90 nodes may seem large compared to the
number of nodes normally found in a clique of an ex-
perimental network today, it is not impressive com-
pared to what S-MAC is theoretically capable of sup-
porting with its default parameters. If it were possi-
ble to ensure that every opportunity for synchroniza-

tion was used while also maintaining a bare minimum
of synchronization from all nodes, S-MAC could sup-
port many more nodes in a dense clique.

Minimally, each node needs to synchronize only
once per timeout interval. And as explained in sec-
tion 4, each frame presents at most (%W opportunities
to synchronize. So the theoretical maximum number
of nodes that can be supported by S-MAC is given
by [%] st which, plugging in default parameters, is
324 nodes.

Thus, even at the simulated upper bound, S-MAC
in practice supports only about 27% of the nodes that
it is theoretically able to support given its current
design. The lower limit is due to wasted synchro-
nization slots caused by collisions and deprivation of
nodes that are systematically late.

Using offset correction, the failure ceiling should
rise considerably. According to the simulated results,
an offset-aware S-MAC may survive up to 180 nodes.
Offset correction allows S-MAC, in expectation, to
double its efficiency and utilize up to 55% of its avail-
able capacity.

REFERENCES

8 Future Work and Applicabil-
ity to Other MAC Protocols

Important areas of future work include other ap-
proaches to S-MAC stability, general adaptivity in
S-MAC, and applicability of these results to other
MAC protocols.

We have shown that, with a minor modification to
correct for clock-offset and appropriately sized tables,
S-MAC can remain synchronized up to networks with
more than 100 neighbors. However, the cost of pre-
sizing tables for this many neighbors is prohibitive in
small-memory motes. Therefore an important step is
to avoid multiple schedules, perhaps by adopting the
global schedule algorithm [4]. (More recent protocols
such as SCP-MAC [13] take this approach.)

Here we have considered only the impact of neigh-
bor table maintenance in S-MAC. The fixed number
of slots for RT'S/CTS exchanges also poses a prob-
lem in active networks. Thus a more general solution
might be to adapt network parameters to the current
neighborhood size. For synchronization, this would
imply adjusting ¢ dynamically. While such dynamic
operation is feasible, care must be taken to coordinate
any changes to prevent inconsistencies across the net-
work.

In this paper we do not specifically consider other
MAC protocols. Most protocols such as 802.11,
TDMA protocols (such as Z-MAC [9]), and exten-
sions of S-MAC (such as T-MAC [11]) have similar
control algorithms to S-MAC neighborhood mainte-
nance with fixed numbers of slots. We expect that
they will encounter similar problems in very dense
networks. Other protocols, such as B-MAC [6], oper-
ate with much looser synchronization and therefore
may encounter fewer direct problems. However, in
effect, the long preamble in B-MAC provides syn-
chronization and would become prohibitive in dense
networks.

9 Conclusion

This paper provided a preliminary analysis of MAC
stability at high network densities. We developed a
simple model and a more accurate simulation, vali-

12

dated with experimentation. We have shown that it is
possible to accurately predict MAC stability at high
densities. In addition, we demonstrated that system-
atic clock offset caused by hardware variation plays
a critical role in MAC stability. If not accounted
for, this randomness can result in node deprivation,
but when managed with a simple modification to the
MAC protocol, we show that hardware randomness
can be beneficial to network stability.

We believe the methods described in this paper
provide a general guideline for the analysis of MAC
protocols at high network densities. Models are an
interesting starting point, but useful analysis must
take into account hardware effects such as clock off-
set both for more accurate projections and also for
possible improvements to the protocol itself.

Acknowledgments

Thanks to Wei Ye for helpful discussions about the S-
MAC protocol and its implementation, and to Affan
Sayed for assistance with taking oscilliscope measure-
ments.

References

[1] Harold Abelson, Don Allen, Daniel Coore, Chris
Hanson, George Homsy, Thomas F. Knight,
Radhika Nagpal, Erik Rauch, Gerald Jay Suss-
man, and Ron Weiss. Embedding the internet:

amorphous computing. Communications of the
ACM, 43(5):74-82, May 2000.

[2] Javier Gomez and Andrew T. Campbell. A case
for variable-range transmission power control in
wireless multihop networks. In Proceedings of
the IEEE Infocom, volume 2, pages 1425-1436,
Hong Kong, China, March 2004. IEEE.

[3] Lifei Huang and Ten-Hwang Lai. On the scal-
ability of ieee 802.11 ad hoc networks. In Mo-
biHoc ’02: Proceedings of the 3rd ACM inter-
national symposium on Mobile ad hoc network-
ing & computing, pages 173-182, New York, NY,
USA, 2002. ACM Press.

REFERENCES

[4]

[12]

Yuan Li, Wei Ye, and John Heidemann. En-
ergy and latency control in low duty cycle MAC
protocols. In Proceedings of the IEEE Wire-
less Communications and Networking Confer-

ence, New Orleans, LA, USA, March 2005.

Jeffrey Monks, Vaduvur Bharghavan, and Wen-
Mei Hwu. A power controlled multiple access
protocol for wireless packet networks. In Pro-
ceedings of the IEEE Infocom, pages 219-228,
Anchorage, Alaska, USA, April 2001. IEEE.

Joseph Polastre, Jason Hill, and David Culler.
Versatile low power media access for wireless
sensor networks. In Proceedings of the Second
ACM SenSys Conference, pages 95-107, Balti-
more, MD, USA, November 2004. ACM.

K. K. Ramakrishnan and Henry Yang. The eth-
ernet capture effect: Analysis and solution. In
Proceedings of the 19th IEEE Confrence on Local
Computer Networks, pages 228—-240, Minneapo-
lis, Minnesota, USA, October 1994. IEEE.

Ram Ramanathan and Regina Rosales-Hain.
Topology control of multihop wireless networks
using transmit power adjustment. In Proceedings
of the IEEFE Infocom, volume 2, pages 404-413,
Tel Aviv, Israel, March 2000. IEEE.

Injong Rhee, Ajit Warrier, Mahesh Aia, and
Jeongki Min. Z-MAC: a hybrid MAC for wir-
less sensor networks. In Proceedings of the Third
ACM SenSys Conference, pages 90-101, San
Diego, California, USA, November 2005. ACM.

M. Sayrafiezadeh. The birthday problem re-
visited. Mathematics Magazine, 67(3):220-223,
June 1994.

Tijs van Dam and Koen Langendoen. An
adaptive energy-efficient MAC protocol for wire-
less sensor networks. In Proceedings of the
First ACM SenSys Conference, pages 171-180,
Los Angeles, California, USA, November 2003.
ACM.

N. Xu, S. Rangwala, K. Chintalapudi, D. Gane-
san, A. Broad, R. Govindan, and D. Estrin. A

[13]

[14]

13

wireless sensor network for structural monitor-
ing. In Proceedings of the ACM SenSys Confer-
ence, pages 13-24, Baltimore, Maryland, USA,
November 2004. ACM.

Wei Ye and John Heidemann. Ultra-low duty cy-
cle mac with scheduled channel polling. Techni-
cal Report ISI-TR-2005-604, USC/Information
Sciences Institute, July 2005.

Wei Ye, John Heidemann, and Deborah Es-
trin. Medium access control with coordinated,
adaptive sleeping for wireless sensor networks.
ACM/IEEE Transactions on Networking, 2003.
accepted to appear IEEE/ACM Transactions on
Networking; draft available as ISI-TR-567.

