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Abstract

Recently, several MAC protocols such as S-MAC and T-MAC have exploited scheduled sleep/wakeup cycles to conserve
energy in sensor networks. Until now, most protocols have assumed all nodes in the network were configured to follow
the same schedule, or they assumed border nodes would follow multiple schedules, but did not evaluate those cases. This
paper develops two new algorithms to control and exploit the presence of multiple schedules to reduce energy consumption
and latency. The first one is the global schedule algorithm (GSA). Through experiments, we demonstrate that, because of
radio propagation vagaries, large sensor networks have very ragged, overlapping borders where many nodes listen to two or
more schedules. GSA is a fully distributed algorithm that allows a large network to converge on a single global schedule to
conserve energy. Secondly, we demonstrate that strict schedules incur a latency penalty in a multi-hop network when packets
must wait for the next schedule for transmission. To reduce latency in multi-hop paths we develop the fast path algorithm
(FPA). FPA provides fast data forwarding paths by adding additional wake-up periods on the nodes along paths from sources
to sinks. We evaluate both algorithms through experiments on Berkeley motes and demonstrate that the protocols accomplish
their goals of reducing energy consumption and latency in large sensor networks.
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Abstract— Recently, several MAC protocols such as S-MAC
and T-MAC have exploited scheduled sleep/wakeup cycles to
conserve energy in sensor networks. Until now, most protocols
have assumed all nodes in the network were configured to
follow the same schedule, or they assumed border nodes would
follow multiple schedules, but did not evaluate those cases. This
paper develops two new algorithms to control and exploit the
presence of multiple schedules to reduce energy consumption
and latency. The first one is the global schedule algorithm
(GSA). Through experiments, we demonstrate that, because
of radio propagation vagaries, large sensor networks have
very ragged, overlapping borders where many nodes listen to
two or more schedules. GSA is a fully distributed algorithm
that allows a large network to converge on a single global
schedule to conserve energy. Secondly, we demonstrate that
strict schedules incur a latency penalty in a multi-hop network
when packets must wait for the next schedule for transmission.
To reduce latency in multi-hop paths we develop the fast path
algorithm (FPA). FPA provides fast data forwarding paths
by adding additional wake-up periods on the nodes along
paths from sources to sinks. We evaluate both algorithms
through experiments on Berkeley motes and demonstrate
that the protocols accomplish their goals of reducing energy
consumption and latency in large sensor networks.

I. INTRODUCTION

Wireless sensor networks use many small, wireless sen-
sors to sense their environment. Wireless sensors are often
battery operated to simplify deployment. With many nodes
placed in their target environment, changing batteries be-
comes difficult or impossible, thus sensor nodes must be
energy efficient.

The radio consumes the largest share of the power budget
in many sensor nodes, so one way to minimize energy
consumption is to keep the radio off as much as possible.
Listening to an idle radio channel wastes energy, yet many
sensor networks have long stretches of inactivity between
event detections. Recently network protocols such as S-
MAC [10] [11], T-MAC [8], and Zigbee [7] have adopted a
loosely synchronized sleep/wakeup cycle to allow nodes to
operate at low duty cycles while maintaining network-level
connectivity.

Sleep/wakeup MAC protocols establish and maintain a
schedule about when nodes listen for possible transmissions
and when they sleep. When a new node joins the network,
it listens for and tries to adopt an existing schedule. Sleep
durations and energy savings are maximized when all nodes
are on the same schedule.

Multiple schedules can occur in large networks even
though the protocols are biased to promote a single sched-
ule. Sometimes when a node starts it will fail to hear an
existing schedule and so it will create a new schedule for
itself. Moreover, in a large network we must expect that
there are nodes that cannot hear each other directly or
at certain times. Such nodes naturally generate different
schedules because they must choose independently. Finally,
if nodes are moving, then they can easily move between
different parts of the network with different schedules.

Sleep/wakeup protocols must be prepared to detect and
track neighbors operating on different schedules to maintain
global network connectivity. In S-MAC, for example, nodes
periodically listen for an entire synchronization period to
detect any new neighbors that are on different schedules. We
call nodes that share the same schedule a virtual cluster, and
nodes with neighbors in two clusters border nodes. Ideally
we expect a network to have one or only a few virtual
clusters and few border nodes, since border nodes spend
more time listening or sending data and therefore consume
more energy. Over time, these border nodes will exhaust
their batteries more rapidly than other nodes, possibly
causing network partition.

Unfortunately, in Section III-A we demonstrate that mul-
tiple schedules are quite common in practice, even when
we expect nodes to hear each other. We propose the global
schedule algorithm (GSA) that allows all nodes to converge
on a single global schedule (Section II-A).

A second weakness of a schedule-based MAC is that
sleep/wakeup schedules can increase latency in a multi-
hop network. When a packet arrives at a node it must
be queued if the next-hop is sleeping. Potentially there
can be many such schedule misses in a long multi-hop
path. Two optimizations have been proposed to reduce this
cost. Adaptive listen [11] in S-MAC uses the RTS-CTS
mechanism to wake up neighbors of the sender and receiver
after the packet is delivered, avoiding a schedule miss and
halving the latency. T-MAC proposes a future request-to-
send [8] scheme to let a node on the third hop know there is
a message for it by sending a future-request-to-send (FRTS)
packet, further reducing the sleep delay.

Although these optimizations reduce latency, the
sleep/wakeup cycle still incurs additional delay compared to
an always-on MAC protocol. This paper proposes a new al-



gorithm called fast path algorithm (FPA), which is designed
to wake up nodes along a path at exactly the right times
to avoid schedule misses. Fast paths are necessarily biased
towards a given direction or destination. Key challenges
with fast paths are handling their interactions with a default
schedule and a system to set up and tear down fast paths
as they are required.

The contribution of this paper is to explore the limits
of scheduled MAC protocols. We develop algorithms for
global schedule and fast paths to allow nodes to minimize
energy consumption and control latency. We have imple-
mented both on Mica-2 Mote hardware. We investigate each
experimentally, showing that multiple schedules are not rare
(as we previously expected) but quite common in real net-
works. Our global schedule algorithm is therefore important
to eliminate the energy overhead of border nodes. We also
demonstrate how fast paths eliminate the latency penalty
due to the scheduled sleep/wakeup, and how they interact
with each other and the standard schedule. Fast paths can be
very important when low-latency transmission is required,
as in monitoring and triggering applications. Although we
implement those two algorithms in S-MAC, the general
approaches are applicable to other MAC protocols with a
sleep/wakeup schedule, such as T-MAC and Zigbee.

II. DESIGN OF ALGORITHMS

This section describes the design of the new algorithms
we propose: global schedule convergence and fast path
forwarding. Although these algorithms can apply to all
sleep/wakeup-based MACs, we describe the details in our
implementation (based on S-MAC) when relevant.

A. Global Schedule Algorithm

As described above, nodes on the borders of different
virtual clusters consume more energy than others due to
multiple schedules. Since multiple schedules cannot be
prevented in a large distributed system we next describe the
global schedule algorithm (GSA), which allows all nodes to
converge on a common schedule. Although it might seem
simple to adopt a global schedule, in a decentralized system
we must avoid oscillating between multiple schedules.

To converge on a single schedule it requires three com-
ponents: a way to uniquely identify each schedule, a way
to propagate new schedules to other nodes, and a way to
discover new schedules that appear due to node movement
or merging of network partitions. We assume the third
component is handled by the basic sleep/wakeup MAC. For
example, S-MAC requires each node to perform periodic
neighbor discovery. We next describe how our GSA solves
the first two problems.

A simple way to identify each schedule is to use the ID
of the node that originates the schedule. The major problem
with this approach is that a node may start a new schedule

with the same ID when it reboots. An improvement is to
assigned a random identifier each time it reboots. However,
the random identifier is generated locally on a node, and is
not guaranteed to be unique in the network. Our solution is
to use the combination of the schedule originator’s ID and
the age of the schedule. The tuple uniquely identifies the
schedule even if the originating node leaves the network or
reboots.

The schedule age indicates how long the schedule has
existed in the network. When a node originates a new
schedule, it records the time when the schedule is generated.
When it later advertises the schedule, it puts the schedule
age into the packet. When a node receives a schedule
update, it updates schedule age as advertised in the packet
and record the current time as latest update time. It then
compares it to the schedule it follows. If it is a different
schedule and is older than its own schedule, the node will
switch to the new schedule. In the case that two different
schedules have the same age, the lower schedule ID breaks
the tie. When a node switches to a new schedule, it will
update its neighbors, so that the new schedule will propagate
through its virtual cluster. Every time a node sends a
schedule update, it increases the schedule age by adding
the time since its last update (either by itself or by its
neighbors). Over time, all nodes migrate toward the oldest
schedule in the network as the global schedule.

It is worth to note that it is better to identify a schedule by
its age than its birth time. Using birth time requires global
time synchronization, and our GSA does not make such
an assumption. It is also important to retain the ability to
support multiple schedules, since there are many transient
cases while the network converges to a single schedule. Our
approach ensures that data transmissions are not interrupted
when nodes switch schedules.

B. Fast Path Algorithm

Sleep/wakeup MAC protocols trade off latency for energy
saving. When a packet travels over multiple hops it can be
delayed when its next-hop node is sleeping. Although adap-
tive listen [11] and future-request-to-send [8] can reduce
these schedule misses, they affect only the next hop or next
two hops.

Our fast path algorithm is a new mechanism to explicitly
manage schedules in a multi-hop path to avoid schedule
misses. Given a source, sink, and the path between them,
we add additional wakeup periods called fast path schedules
along the path, scheduled such that they occur exactly when
the previous-hop node will be ready to send the packet.
For example, in Fig. 1, when nodes strictly follow their
sleep/wakeup cycles, if data is transfered from node 1 to
node 2 in regular listen time t1, node 2 must then wait
until time t3 before sending it to node 3. By enabling fast



path schedules (shown as dotted boxes), node 3 knows to
wake up at time t2, avoiding this delay.

Providing fast path schedules in a schedule MAC raises
several concerns. First, one must determine the path and
establish fast path schedules along it. We also must consider
how fast paths interact with standard schedules, adaptive
listen or future-request-to-send, and if multiple concurrent
fast paths are supported. We review each of these issues
below.

In a basic network we expect all nodes to follow the
global schedule. A fast path may be desired when a flow
is established from a source to a sink, or in some sensor
networks there may be a single well-known sink. If a new
path or distribution tree is created between a source and sink
(or source and sinks), this routing information can trigger
establishment of a fast path. Alternatively a single sink can
establish a fast path from all nodes to itself. When a sink
need to establish a fast path, it generates a fast path request
which is passed along to the source node. The request
is piggybacked on the resource discovery message. (In
directed diffusion [3], this would be the interest message, or
in AODV or DSR it would be the route request message.)

On receiving the request, the source node starts to es-
tablish the fast path. As show in Fig. 1, source node can
communicate with the next node during their regular listen
time, so there is no need to set up a fast path schedule on
both of them. Starting from node 2, nodes need to inform
next hop nodes where to add the extra wakeup period.
Let us assume tcs represents the maximum possible carrier
sense delay at a node, and ttx represents the time needed
for transmission of a data packet with fixed length. d is
set to be tcs + ttx. Fig. 1 shows node 3 needs to place the
fast path at least d away from regular listen time. This is
the earliest time for node 3 to wake up after transmission
between previous hop. Similarly the position P for node
4 to place its fast path schedule is 2d from regular listen
time. P is sent with the first data packet in the flow. This
fast-path setup over an n hop path requires at most O(n/2)
frame durations assuming adaptive listen is in use. From
Fig. 1, we can infer that the time needed to transfer each
following data packet in a n hop network over a fast path is
approximately n×d, about the same as if the network was
always awake.

Once a fast path is established, no special activity is
required to send data over it. Ideally a regular or fast path
period is available after the packet is received at each hop.
If the packet is delayed due to interference or corruption,
it may miss its slot, in the worst case loosing a frame.

An important question is how fast paths interact with the
global schedule and other optimizations such as adaptive
listen. When the fast path schedule overlaps with the regular
listen time or they are so close that data transmission using
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Fig. 1. Fast data forwarding when adding fast path schedules
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Fig. 2. Regular listen, adaptive listen and fast path schedule overlap

fast path schedule can not finish before regular listen time,
we use the regular listen time as the fast path schedule
instead. Fig. 2 shows this case, where node 4’s fast path
schedule overlaps with its regular wakeup period, so data
is transferred during regular listen time instead.

Similarly, if an opportunity to do adaptive listen overlaps
with a fast-path slot, we skip the adaptive listen. For
example, in Fig. 2, after data is transmitted to node 2, we
use the fast path rather than adaptive listen to send to node
3. We prefer fast paths to adaptive listen because it should
reach all the way to the sink rather than just the next hop.

There is no explicit mechanism to remove fast path
schedules. Instead, each node monitors fast path use. If
a fast path slot goes unused for a long duration (in our
case 5 frame durations), we time it out and discard it. Any
use of a fast path schedule refreshes it. When the routing
path changes, another fast path is established along with
propagation of the new route, and the old fast path will
expire.

So far, we have discussed how to apply fast path schedule



TABLE I

EXPERIMENTS SHOWING MULTIPLE SCHEDULES IN A LARGE NETWORK

Test 1: Node ID - - - 15 - - - - - 21 - 29 - 5 20 14 19 - - 27 23 32 - 10 - - 17 3 22 26 12 16 24 13 2 9 25 30 7 11 31 4 8 - 6 28 1 - - 18

Schedule 1 - - - - - - - - - - - - - - - - - - - - - - - o - - o - - - - o o - o o o o o X X o o - X X o* - - X

Schedule 5 - - - X - - - - - X - X - X* X X X - - X X X - X - - X X X X X X X X X X X X X o - X X - - o X - - -

Test 2: Node ID 36 1 - - - - - - - 25 31 34 6 9 23 19 24 4 - - 27 2 32 15 - 14 20 7 26 30 17 21 28 18 5 13 29 35 11 16 37 8 12 - 10 33 3 - - 22

Schedule 1 - X* - - - - - - - - X - X X - X X - - - - - - X - X - - - - - - - - - o - - - - - - - - - - - - - -

Schedule 3 - - - - - - - - - - - - - - - - - - - - - - o - - - - X X X - X X X X - X X X X X X X - X X X* - - X

Schedule 15 X - - - - - - - - X - X - o X o o X - - X X X o* - o X o o o X o o o o X o o o o o o o - o o o - - o

Test 3: Node ID 40 1 28 19 22 - 7 41 31 25 33 36 - 8 24 20 23 4 - 37 29 2 34 14 - 13 18 5 26 30 16 21 27 17 - 12 32 38 10 15 39 6 11 - 9 35 3 - - -

Schedule 1 - X* X X X - X - - o X - - - - X - X - - - X X o - X X - o - - - - - - - - - - - - - - - - - - - - -

Schedule 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - X - X o X X X - o X X X X X X X - X X X* - - -

Schedule 8 X - o o o - - X X X o X - o* X o X - - X X - o X - - o o X - o o o - - - - - - - - - - - - - - - - -

Schedule 14 o o o o o - o o o o o o - X o o o o - o o o o o* - o o o o o X o o o - X o o o o o o o - o o o - - -

Test 4: Node ID 33 - 24 - 22 - - 34 - - - - - 8 21 17 20 3 - 31 25 1 29 13 - 10 18 5 23 27 14 16 26 15 4 11 28 32 6 12 - - 9 - 7 30 2 - - 19

Schedule 1 - - X - X - - - - - - - - - - - - X - - X X* X - - X - - - - - - o - - - - - - - - - - - - - - - - -

Schedule 2 - - - - - - - - - - - - - - - - - - - - - - - - - - X X X X o X - X X o X X X X - - X - X X X* - - X

Schedule 8 X - o - o - - X - - - - - X* X X X - - X o - o - - o o o o o o o X o - - o o - - - - - - - o - - - o

Schedule 13 o - o - o - - o - - - - - - o o o o - o o - o X* - o o o o o X o o o o X o o o o - - o - o - o - - o

50 nodes are placed in a line topology. Node IDs in the top row indicate the order in which they turn on (“-” indicates nodes that failed to activate).
Each line indicates a schedule and which nodes know about that schedule, with “*” showing the node initiating the schedule, “X” indicating the

primary schedule for that node, “o” indicating seconder schedules.

to nodes on a single path. In a large sensor network, many
fast paths may exist at the same time. We assume each
node can support a small number of active paths. Each fast
path schedule is maintained independently on each node.
If a shared node is at different hops away from different
sinks, separate fast path schedules are inserted at different
positions and they will not interfere. On the other hand,
if fast path slots from different paths overlap in time at a
given node then there will be contention. In principle this
slot could be lengthened; in practice we expect this event
to be rare enough that the slight increase in delay due can
be tolerated.

III. EXPERIMENTAL RESULTS

We next test on moderate-size sensor networks, showing
that many schedules can coexist in a large network and that
the use of fast path schedules can reduce latency.

A. Multiple Schedules

The goal of this experiment is to characterize schedule
creation and the composition of virtual clusters in a large
network. We use S-MAC without global scheduling in an
outdoor network of 50 sensor nodes, capturing the effects
of real protocol operation and radio propagation.

We implement a simplified version of global schedule
algorithm as described in sectionII-A to trace schedule
changes. Schedules are identified by the initializing nodes
IDs. For example, schedule 1 is initialized by node 1.

a) Methodology: We set up a linear topology with 50
Mica2Dot motes, each running TinyOS [2] and S-MAC [11]
at 10% duty cycle. Nodes are placed about 90cm apart,

making a line about 45m long. The transmission power of
each node is set to the lowest level (RF output power, -
20dBm; PA POW, 01). In separate experiments we expected
100% packet reception at ranges of about 2m.

In each test, we randomly activate each mote at the start
and collect sleep schedule information in the network. We
repeat the test for 4 times. Because schedule adoption is
based on which nodes hear each other, the order in which
nodes are activated is important. For example, we verified
through a separate outdoor experiment that when nodes are
activated from one end to the other in sequence, there is only
one schedule eventually formed in the network. Because the
newly activated nodes are physically close to the existing
cluster, they always hear and follow the common schedule.

We adopt the following procedure to approximate a
large deployment where nodes are turned on at different
times while avoiding the case of physically sequential
activation (the best case), or nearly concurrent activation.
Initially, each node is turned on manually and enters a pre-
experiment state where it listens continuously without using
S-MAC. We then broadcast a message from a central node
at high power to trigger all nodes to begin. Each node then
picks a random time uniformly distributed between zero
and one frame duration and then begins the normal S-MAC
initialization procedure. (It listens for other schedules for
one synchronization period and if it hears none, it selects
its own schedule.)

Unfortunately, we found unpredictable radio propagation
meant our trigger packet was not always received by the
nodes and in most experiments, 18–36% failed to particpate.



TABLE II

NUMBER OF SCHEDULES KNOWN BY NODES

number of schedules
1 2 3 4 mean (std. dev.)

Test 1 56% 44% - - 1.4 (0.50)
Test 2 32% 68% 0% - 1.7 (0.47)
Test 3 0% 66% 34% 0% 2.3 (0.48)
Test 4 9% 44% 47% 0% 2.4 (0.58)

b) Results: Table I shows the sleep schedule infor-
mation we collect from the four tests performed. All tests
showed multiple schedules, with up to four different sched-
ules being independently created. For example, in Test 4,
there are four different schedules formed in the network of
34 nodes. Nodes 1, 2, 8, 13 initiate these schedules and all
other nodes adopt one of these schedules.

A second observation is that many nodes know multiple
schedules. Table II shows the percentage of nodes knowing
different number of schedules in four tests respectively. In
Test 4 only 10% of the total nodes know one schedule, while
the others know two or three schedules. On average, a node
knows 1.4–2.4 different sleep schedules in our experiment.
Maintaining multiple schedules costs additional energy for
border nodes: they must listen during the wakeup period of a
schedule, and broadcast packets are sent on each schedule
separately. (Since in S-MAC, border nodes listen only to
the contention period of their primary schedule unless they
need to send to a node on a different schedule.)

Why do so many nodes know multiple schedules? We
expected that schedule boundaries would be relatively dis-
tinct, with most nodes following some schedule and only a
few nodes on the border knowing multiple schedules. For
example, in test 1, all nodes on the left belong to schedule
5 while some nodes on the right are in schedule 1, and a
few nodes in the middle know both schedules.

Instead, we observe that cluster boundaries are quite
complicated. This occurs for several reasons.

First, the node that initiates a schedule often actually
leaves the schedule it creates. This result is due to an opti-
mization in S-MAC called singleton schedule elimination.
After a node announces its schedule, it considers that sched-
ule temporary until it knows that someone else has adopted
it. While the schedule is temporary the initiating node will
switch to a new schedule it hears. This optimization is a
good fit for a network where one node starts among an
existing network, but it is a bad match for our experiment
where many nodes select their schedules at about the same
time. An example of this behavior can be seen by node
1 in test 1. It successfully initializes schedule 1, which is
followed by some nodes to establish a virtual cluster, but
before hearing any other node from this virtual cluster, node
1 hears schedule 5 and switches its schedule in attempt to
eliminate singleton virtual cluster.

In Test 2, for example, node 2 presumably announced
its own schedule but then adopts node 15’s schedule. Since
no other nodes adopt node 2’s schedule, this elimination
optimization reduces the total number of schedules. While it
is helpful in this case, we would prefer to simplify schedule
selection with our global schedule algorithm rather than
with special cases like singleton elimination.

Finally, the main reason so many nodes discover multiple
schedules is because of the “gray region” in radio propa-
gation [12], [9]. While short-range radio reception is quite
good to some distance (about 3m with our configuration),
packets are occasionally received at about twice that dis-
tance. Thus, even if two distant nodes are forced to choose
independent schedules, the overlap between these schedules
will necessarily be large.

These experimental results motivate our global schedul-
ing algorithm. In separate laboratory experiments and ACM
Sensys 2003 [4], we have demonstrated that global schedule
assignment will successfully allow all nodes to converge to
a single schedule quickly.

B. Fast Path Schedules

In this section we evaluate our fast-path mechanism to
show how it can reduce latency.

a) Methodology: In this experiment, we set up a linear
topology of 10 Mica-2 Motes, each 2m apart. All nodes
are configured to send at the lowest transmission power as
previous experiments. In this case, nominal radio rage is
about 3m (radio propagation differs between Mica-2s and
Mica2Dots). The first node is the data source, and the node
at the other end is the sink. In each test, the source sends
10 unicast messages, each 100B long. Each message is sent
25s after the previous, so there is never more than one in
the network at a time. We measure the arrival time of the
message at each node and repeat the experiment 5 times
each with and without fast paths enabled.

All nodes run S-MAC, this time at 5% duty cycle. S-
MAC uses adaptive listening and global schedule assign-
ment, and in half of the experiments, a fast path. With
global schedule assignment, all nodes always have one basic
schedule, and in half of the experiments they also have a
fast path. Since we have a static topology, when we enable
the fast path algorithm we pre-configure a fast path schedule
based on physical node position. (For these experiments we
have not integrated the fast-path algorithm with a routing
algorithm.) Our expectation is that we will see lower latency
when fast-paths are used.

b) Results: In the 100 packets transmitted in all the
experiments, two packets are lost and not successfully
retransmitted after 7 retries. We ignore these packets when
computing delays. In addition, six packets were lost and
then successfully retransmitted by the MAC layer. The
effect of these packets is described below.
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Fig. 3. Mean message latency on each hop of all successful transmissions
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Fig. 4. Mean message latency on each hop of all successful transmissions
with no retransmissions

Fig. 3 shows the measured mean latency on each hop of
all the successfully transmitted packets. First, we observe
that the latency with fast-pathing is very predictable. Both
fast-path and standard S-MAC have a slight delay on the
first hop, but fast-path nodes then have a short, consistent
latency for each additional hop. This confirms our analysis
that with fast-path, the per-hop delay is approximately the
contention and transmit time d = tcs + ttx as described in
Section II-A. By contrast, standard S-MAC suffers a large
delay when a schedule is missed, in this case between hop
5 and 6, hop 8 and 9.

With basic S-MAC we would expect to lose one frame
duration each hop. However, in our experiment, no schedule
miss occurs until hop 6. This result is due to the effects of
the adaptive listen algorithm. In a network where each node
can hear only its adjacent neighbors we would expect this
algorithm to avoid a schedule miss every other hop, since
only nodes that hear either the RTS or CTS know to wake
for adaptive listen. Experimentally we observe multiple
adaptive listen events, allowing the packet to travel five hops
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Fig. 5. Message latency on each hop of all successful transmissions

before suffering a schedule miss. This result is because of
radio propagation distance. In our experiment, nodes for
hops 1 through 5 were able to hear all packets exchanged
on the first five hops, so we had three successive adaptive
listen events. While this result occurred consistently in this
experiment, we cannot expect such good fortune in all cases.

The general trend in Fig. 3 shows that fast-path packets
travel consistently faster than packets without fast pathing.
However, for hops 6–8 the error bar (standard deviation) of
the fast-path case overlaps the mean of non-fast-path case.
To understand why we see such large variance in our results,
Fig. 5 shows a scatter plot of the successful transmissions
in all the experiments. This plot shows individual events
rather than means, and we observe that while most packets
are sent successfully, some have large latencies at certain
hops. This is due to packet retransmissions.

Because we must predict packet transmission time when
planning fast paths, we cannot anticipate retransmission
events. When a packet is retransmitted it will “fall off”
the fast path and suffer a schedule miss. However, Fig. 5
shows that once the packet is retransmitted it will get on
the next available fast path.

Fig. 4 shows the mean per-hop latencies of all packets
except those that are retransmitted. The trend is the same as
Fig. 3, except that the variances for the delays are reduced.
For these packets, fast pathing is clearly faster than without.

We observe that S-MAC shows a fairly large latency in
the first hop, both with and without fast-path support. This
delay occurs because messages originate at random times,
independent of a S-MAC schedule. The sender needs to
wait till the next wakeup period to send the message. This
initial delay could be avoided by synchronizing data gen-
eration with the S-MAC schedule, Alternatively, a possible
future option would generate a fast-path schedule that is
synchronized with data generation times.



IV. RELATED WORK

T-MAC [8] is another contention-based low duty cycle
MAC protocol. It demonstrates similar behaviors to S-MAC
with adaptive listen. The authors discuss the early sleeping
problem and propose several new techniques, including
future-RTS (FRTS). Their algorithms reduce the latency
incurred by a scheduled MAC, but approaches such as FRTS
are limited to the 3-hop neighborhood of the originator.

There is another type of low duty cycle MAC protocols
using the preamble sampling techniques to levitate the en-
ergy cost during idle listening. Receivers periodically wake
up for a very short duration and sample the medium for
activities. With knowledge of each neighbor’s independent
sampling schedule information WiseMAC [1] can further
reduce the wakeup preamble and energy cost. WiseMAC
saves energy from eliminating synchronization for different
schedules, but since nodes are not coordinated, a sleep
delay is introduced at each hop and could be as large as
the duration of a sampling period. B-MAC [6] is similar
work using this technique of preamble sampling. The main
contribution of B-MAC is it provides an interface for re-
configuring MAC layer parameters to meet the application’s
new and dynamically changing demand.

The work most similar to our fast path algorithm is
DMAC, independent work by Lu et al. [5]. DMAC is
designed specifically for data gathering tree applications,
where the multiple sources and a single sink in the network
construct a data forwarding tree. In their paper, they mention
forwarding interruption problem, where not all nodes on a
multi-hop path to the sink are aware of the data delivery.
They propose a similar strategy, to stagger the listen period
on a node according to its depth in the data gathering tree.
There are two important differences between their work and
ours. First, they focus on the single-sink problem, while we
propose fast paths as a general solution for an arbitrary
number of paths. Second, their work is limited to analysis
and simulation. To our knowledge, our paper is the first
to provide an experimental evaluation of scheduled MAC
protocols.

V. CONCLUSION

In this paper, we presented two new algorithms to reduce
energy consumption and latency in low duty cycle MAC
protocols. Global schedule algorithm allows all nodes to
converge on a single global schedule to conserve energy,
while fast paths allocate additional slots to avoid sched-
ule misses and reduce latency. We demonstrate through
testbed experiments multiple schedules are common in
large network, motivating the global schedule algorithm.
We also discover that the boundaries of virtual clusters are
quite diffuse, many nodes become border nodes without
the global schedule algorithm. We evaluate latency savings

of our fast path algorithm on a 9-hop network with an
implementation based on S-MAC.
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